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THE PROJECTIVE AND INJECTIVE
TENSOR PRODUCTS OF L?[0,1]
AND X BEING GROTHENDIECK SPACES

QINGYING BU AND G. EMMANUELE

ABSTRACT. Let X be a Banach space and 1 < p, p’ < o0
such that 1/p + 1/p’ = 1. Then LP[0,1]®X, respectively
LP[0,1]® X, the projective, respectively injective, tensor prod-
uct of LP[0,1] and X, is a Grothendieck space if and only if X
is a Grothendieck space and each continuous linear operator

from LP[0, 1], respectively v’ [0,1], to X*, respectively X**,
is compact.

1. Introduction. In [1, 4, 5], Bu, Diestel, and Dowling gave a
sequential representation of LP[0,1]&X, the projective tensor product
of LP[0,1] and X when 1 < p < co. By this sequential representation,
they showed that LP[0,1]®X, 1 < p < oo, has the Radon-Nikodym
property (respectively the analytic Radon-Nikodym property, the near
Radon-Nikodym property, contains no copy of ¢g) if and only if X
has the same property. Using this sequential representation, Bu in [2]
showed that LP[0,1]®X, 1 < p < oo, contains no copy of I; if and only
if X contains no copy of [; and each continuous linear operator from
L?[0,1] to X* is compact, and he also in [3] discussed all these geometric
properties in LP[0,1]®X, the injective tensor product of LP[0,1] and
X when 1 < p < o0.

In [9], Emmanuele showed that if X and Y are Grothendieck Banach
spaces, one of which is reflexive, and if each continuous linear operator
from X to Y* is compact, then X®Y', the projective tensor product
of X and Y, is a Grothendieck space. And he also in [10] showed
that if X®Y is a Grothendieck space and Y* has the (b.c.a.p), then
each continuous linear operator from X to Y* is compact. As a special
case of Emmanuele’s results, we have that if X has the (b.c.a.p), then
LP[0,1]®X, 1 < p < oo, is a Grothendieck space if and only if X is a
Grothendieck space and each continuous linear operator from L?[0, 1]
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to X* is compact. In this paper, through the sequential representation
of LP[0,1]®X, we give a new proof of Emmanuele’s special case and,
meanwhile, we characterize LP[0,1]®X and LP[0,1]®X, 1 < p < oo,
being Grothendieck spaces for any Banach space X.

2. Preliminaries. For 1 < p < oo, let p’ denote its conjugate, i.e.,
1/p+1/p’ = 1. For a sequence ¥ = (z;); € X~ and n € N, denote

.f(l > TL) = (0, . ,O,Z‘n+1,£n+2, .. )

For any Banach space X, we will denote its topological dual by X*
and its closed unit ball by Bx. For two Banach spaces X and Y, let
L(X,Y) denote the space of all continuous linear operators from X
to Y, K(X,Y) the space of all compact operators from X to Y, and
N(X,Y) the space of all nuclear operators from X to Y.

From [12, p. 3] and [13, p. 155], we know that the Haar system
{X;}32, is an unconditional basis of LP[0,1] for 1 < p < oco. Let us
use K, to denote the unconditional basis constant of the basis {X;}5°;.
Now renorm L?[0, 1] by

IFI5* = sup {

oo
ZeiaiXi
i=1

f=" ax; € LP[0,1].

i=1

:Hi:i17i:1,2,...},
p

Then
[l < - 155 < K- |- Ml

With this new norm, LP[0,1] is also a Banach space. Furthermore,
{X;}22, is a monotone, unconditional basis with respect to this new
norm. Now let

e
Pallpe
Then {e;}£2; is a normalized, unconditional basis of (LP[0,1], | - [|5°*)

whose unconditional basis constant is 1. For convenience, let

e; Xi 1,2

P T T pewr P S
’Lp/
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From [12, pp. 18-19] we have the following

Proposition 1. Let u =) .° ef(u)e; € LP[0,1], 1 < p < co. Then
(i) For each subset o of N, || ZZEU ef(u )elH;’eW < Hu||“ew.

(ii) For each choice of signs 6 = {0;}3°, |32 0ief (w)es][5™ <
‘new‘

[[ullp
(iii) For each A = (\;); € loo, ||Zfil/\ief(u)ei||;‘ew < 2 A [ -l

For any Banach space X and 1 < p < oo with 1/p+ 1/p’ = 1, define

LY i (X) = {35 = (2;); € XN Zx*(xi)ei converges in

%

L7[0,1] ¥ o* eX*},

L?(X) = {j = (z;); € XN Z\xf(xm <ooV(x}); € Lfv/eak(X*)};

and define norms on LY (X) and LP(X), respectively, to be

weak

new

felze, 0 = suw { e B b 7€ LX)

p

. —sup{zx @I By} F LX)

With their own norm, respectively, L? , (X) and LP(X) are Banach
spaces [1, 4]. Let LY (X) denote the closed subspace of LY . (X)

weak,0
such that the tail of each member of L? (X)) converges to zero, i.e.,

weak,0

L euseo(X) = {7 = (20)i € 15,0 (X) +im 2 > )1z, ) = 0}

From [1] we have the following proposition.

Proposition 2. (i) For each T = (z;); € LP(X),

li7ILn |Z(i > n)HLP(X) =0.
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(ii) LP[0,1]®X is isomorphic to (LP[0,1], | - [[5°V)®X which is iso-
metrically isomorphic to L (X).

Proposition 3. L? . (X) is isometrically isomorphic to

LALP [0, 1], 1| - [5), X).

Proof. Define
¢ Liear(X) — ﬁ(( L [0, 1], | - 37, X)

& |
,*3:
é}/\

where, for each z = (2;); € LY, (X),

o(@) : (LY [0, 1], || - 1) — X

u — Zu* (e;)x
i=1

Let u* € (L*'[0,1], ]| - 7)) and n,m € N with m > n. Then
m
Zu €;)T = sup{ Zu ei)x* (z;) x*GBx*}
i=n
= sup { <Zu* (e;)er, Zx*(xz)el> rate BX*}
i=n i
m new new
< sup{ Zu*(ei)e Zx x;)e st GBX*}
i=n p
m new
||35HL1§Mk ZU*(ei)e
i=n P’

Since Y,u*(e;)e converges in (LP'[0,1], ]| - 155, {2, u “(e)wi}o
is a Cauchy sequence in X and, hence, converges in X. So Y .o u*(e;)x;
€ X and

< e

we 1k

( ‘)wi x) - [l
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Therefore ¢ is well defined and

(1) le@I < l1Zllzz,, x)-

On the other hand, Let T' € £((L*'[0,1], ] - 157 X). Define z; =
T(ef) for each ¢ € N. By Proposition 1, for each z* € X* and each
n €N,

new

p

’L

1ﬁ<33@ﬂmﬂJ¢yw}

tu” € By [0,1},|<|;7W)}
b's

=1

n
— "] -sup{

=1

<l - 1T - sup{

T(e;) ‘ cut € By [0,1],||~|“?W)}
X P

:ueﬁwmmum}

p!

new

< la* - |71 sup{

“eﬂwmmum}

p!

< [l {1171l

So

new

(2) sup <l - T < oo

Zx*(mi)e

Since {e;}{° is a boundedly complete basis of LP[0,1], the series
>x*(z;)e; converges in LP[0,1] for each z* € X*. Thus z = (z;); €

LP . (X). Moreover, ¢(Z) = T. Therefore ¢ is onto. Furthermore,
from (2),
3) 13l o) < ITH = 6]l

Thus, combining (1) and (3), ¢ is an isometry. o
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p
weak,0

Proposition 4. L (X) is isometrically isomorphic to

K(LP'10,1, ] - 157), X)

p/

which is isomorphic to LP[0,1]&X .

Proof. For each = (z;); € Lj . o(X), it is easy to see that
its corresponding operator T; is the limit of finite rank operators.
So Tz € K((LP'[0,1],]|-[[%"¥),X). On the other hand, if Ty €
K((LP'[0,1], | - [7), X), then its adjoint operator T3 : X* — LP[0, 1]
is compact. Note that, for each z* € X*, T#(2*) = Y o0 2% (z;)e;. So
{32 2% (z;)e; : a* € Bx+} is a relatively compact subset of L?[0,1].
Thus,

lim[|2(i > n)||r  (x) = 1imsup{ Z x*(x;)e; cxt e BX*}
" " 1=n-+1 P
=0.
Hence z € L o(X). Therefore L%\ o(X) = K((L¥'[0,1], ]| - [[5™),

X). Note that LP[0,1] has the approximation property. Thus
K(L*[0,1], X) = LP[0,1]®X. O

It is known that, cf. [8, p. 230], (L?[0, 1]®X)* is isometrically isomor-
phic to £(LP[0,1],X*). Thus, from Proposition 2 and Proposition 3,
we have

Proposition 5. (LP(X))* is isometrically isomorphic to Lfvleak(X*).
The dual operation is defined by

(3,37 = Y (@)

for each T = (z;); € LP(X) and each T* = (zF); € ¥ (X*).

weak

Note that LP[0, 1] has the Radon-Nikodym property when 1 < p < oco.
It is known from [8, pp. 232, 248, Theorem 6] that (LP[0,1]®X)* is
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isometrically isomorphic to N(LP[0,1],X*). Also note that L?[0,1]
has the approximation property. It is also known from [14, p. 3]
that LP'[0,1]®X is isometrically isomorphic to A(LP[0, 1], X). Thus,
combining Proposition 2 and Proposition 4, we have

Proposition 6. (L? . (X))* is isometrically isomorphic to LP (X,

The dual operation is defined by
(@,2°) =) i (z:)
i=1

for each T = (x;); € L” (X) and each T* = (x}); € L" (X*).

weak,0

3. Main results. Recall that a Banach space X is called a
Grothendieck space, cf. [6, 11], if each separably valued bounded linear
operator on X is weakly compact. By [8, p. 179] we know that a Banach
space is a Grothendieck space if and only if any weak® convergent
sequence in its dual space is weakly convergent.

Lemma 7. Let z(") = (ﬂc(n))z eL?

7 weak,0

(X) for each n € N. Then

(X),LP (X*)) —limz™ =0

n

(4) (LY

weak,0

if and only if

(5) o(X,X*) —lim2™ =0, i=1,2,...
and
(6) M = sup Hff(n)HLfveak(X) < o0.

Proof. It is obvious that (4) = (5) + (6). Next we want to show that
(5) + (6) = (4).

For each fixed z* = (2*); € L (X*) and each & > 0, there exists,
from Proposition 2, an m € N such that

12 (i > M)l Lo (xy < €/2M.
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From (5) there exists an ng € N such that for each n > no,
(@) <e/2m, i=1,2,... m.

Thus, for each n > ng,

> eitet? \

<Z\x My 4+ 12, 2% (i > m))|

(22| =

> xf(x&-’”)]

1=m-+1

< E/2 12 ooy - 177> m)ll ey
<e/24+ M- -¢/2M =«.

Therefore (4) follows. O

Similarly, we have

Lemma 8. Let z*(") = (x:(n)) € Lweak( *) for each n € N. Then

(7) o(L2,

weak

(X*), LP(X)) = limz*™ =0

n

if and only if

(8) o(X*,X)—limz;™ =0, i=12,...
and
(9) M = sup IIfE*(”’IILfvfeak(X*) < 0.

Theorem 9. Let X be a Banach space and 1 < p < co. Then
LP[0,1]®X, the projective tensor product of LP[0,1] and X, is a
Grothendieck space if and only if X is a Grothendieck space and each
continuous linear operator from LP[0,1] to X* is compact.
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Proof. By Propositions 2, 3 and 4, it is enough to show that LP({X)
is a Grothendieck pace if and only if X is a Grothendieck space and
L (X*)=1F (X™).

weak weak,0

Now suppose that X is a Grothendieck space and L? , (X*) =

weak

Lgeaho(X*). By Propositions 5 and 6,
(10) (LP(X))" = LE W (X7),  (LP(X))™ = LP(X™).

Let z*(") = (x:("))i er”

P (X*) be such that 7% converges to 0
weak™ in (LP(X))*, i.e.,

o(LP, (X*), LP(X)) — lim (") = 0.
By Lemma 8,
o(X*, X) - 117511xj(") =0, i=12,...
and

sup ||z* < 0.
n

(n) ||L€v;ak(x*)

Since X is a Grothendieck space,

o(X*, X*) —lima}™ =0, i=1,2,....

Note that z*(") € Lf\:eak(X*) =17

weak,0

(X*). By Lemma 7,

U(Lpl

weak,0

(X*), LP(X*)) — limz*(™ = 0.

n

It follows from (10) that 2*(™) converges to 0 weakly in (LP(X))*, and
hence, LP(X) is a Grothendieck space.

On the other hand, suppose that LP(X) is a Grothendieck space. It
is obvious that X is a Grothendieck space. Next we want to show that
L (X*) = Lf:veak O(X*)

weak

Let z* = (z7); € ¥ (X™*). For each k € N, define

weak

#0 _(0,..0,55,0,0,..)
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Then z*®) € L¥ _ (X*) for each k € N. Next we want to show that the

series >, 7 is subserles convergent series in Lweak(X*) = (LP(X))*.
For each fixed subsequence n; < ng < --- and each m € N, define
_ * * *
z ( 7mn17 7xn2a 7xn;€7 )
and
m
—x(n * * *
E () — (oo e Ty sy 5 0,0,000).

By Proposition 1, z € Lweak(X*),E(m) € Lfveak( *) for each m € N
and
m=1,2

g Ly oo

B Al e

By Lemma 8,

o(LY

weak

(X*), LP(X)) —lim 2™ = z.

m

Thus the partial sum ;" | #*("*) converges to z weak* in (LP(X))*.
Since LP(X) is a Grothendieck space, the partial sum 3 ;. 7*("*)
converges to z weakly in (LP(X))*. Hence we have shown that the
series >, 7*) is weakly subseries convergent in (LP(X))*. Tt follows
from the Orlicz-Pettis theorem, cf. [7, p. 24], that the series 3, #*(*) is
subseries convergent in (LP(X))*, and hence, convergent in (LP(X))*.

Therefore,

o0

z*(k) =0.

lim [|Z* (i > n) = lim
" " (LP(X))*

e o

k=n-+1

Thus z* € L”, (X™). O

weak,0

Lemma 10. Let 2™ = (z (n)) € LP(X) for each n € N. Then

(11) o(LP(X), L7 (X*)) —limz™ =0
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s equivalent to

(12) o(X,X*) —limz™ =0, i=1,2, ...
and

(13) M = sup H:f(")\|Lp<X> < 00

if and only if LY | (X*) = Laeak70(X*),

Proof Suppose that L (X*) = ¥ (X*). Note that, for

weak weak,0
each 7* € Ly | (X*) = LY . o(X7), limy, |[2°(0 > n)| x) T 0.

Similarly as the proof of Lemma 7, we can show that (11) < (12)+(13).
Now suppose that (11) < (12) + (13). We want to show that

LY (X%) = LV o(X*). If there exists an 7° = (z7); € LV, (X*)
but z* & LZ\,)V/e,dl<7()()(*‘)7 then from Proposition 5,
hfln lz*(i > n)”Lfvleak(X*) = hTILHSUP{ ;ﬁf(ﬂ%) S (wi)i € BLP(X)}
#£0.
Thus there are ¢g > 0, z(F) = (xl(k))i € Broxy, k= 1,2,... and a
subsequence n; < ng < --- such that
Z zf(zl(k))’ >ep, k=1,2,....
i:nk
Let 2 = (0,... ,O,xgli),xg?ﬂ,...). Then z*) € By x) for each

k € N. Moreover, it is easy to see that
o(X,X*) - 11]£nz§’“> =0, i=12....
By hypothesis,

weak

o(LP(X), L. (X*)) — lim 2 = 0.
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But for each k € N,

.00 = | 3wl > e
i=ng
This contradiction shows that Ly, . (X*) = L, o(X*). O

Similarly we have

Lemma 11. Let &™) = (x:(n))i € LY (X*) for each n € N. Then
(14) o(LP(X*),LP . (X)) —limz*"™ =0

weak,0 P,

if and only if

(15) o(X*, X)—limz;™ =0, i=1,2,...
and
(16) M = sup 12| Lo (x00y < 0.

Theorem 12. Let X be a Banach space and 1 < p, p' < oo such that
1/p+1/p" = 1. Then LP[0,1]®X, the injective tensor product of LP[0,1]
and X, is a Grothendieck space if and only if X is a Grothendieck space
and each continuous linear operator from v [0,1] to X** is compact.

Proof. By Propositions 3 and 4, it is enough to show that L? (X)

weak,0
is a Grothendieck space if and only if X is a Grothendieck space and

LY i (X7) = LY, 1 o(X ™). By Propositions 5 and 6,
(17) L{J)veak,O(X)* =LP <X*>’ Lfveak,O(X)** = Lgveak(X**)'

Now suppose that X is a Grothendieck space and LP . (X**) =

weak
L ok 0(X*). Let ) = (x:("))i € LP (X*) such that z*(") converges
to 0 weak* in LY ., o(X)*, i.e.,

o(LP (X*),LP . (X)) —limz*"™ = 0.

weak,0 poy
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By Lemma 11,
o(X* X)—limaz;™ =0, i=12,...

and
sup |25 (x+y < 00.
n

Since X is a Grothendieck space,
o(X*, X)) —lima;™ =0, i=1,2,....

Note that L . (X**) =L

weak,0

(X**). By Lemma 10,

o (LY (X*), IP _ (X*)) —limz*™ = 0.
It follows from (17) that z*(™) converges to 0 weakly in L? (X)x,

weak,0
and, hence, LY ., (X) is a Grothendieck space.

On the other hand, suppose that L? (X) is a Grothendieck space.

weak,0
It is obvious that X is a Grothendieck space. Next we want to show
that Lfveak(X**) = L;:veak,O(X**)'

Let z*(") = (.Z';—k(n))i € LP' (X*) for each n € N such that

(18) o(X*, X)) — 11£nxj<") =0, i=12,...
and

(19) sup 12| L ) < 00

By Lemma 11,

F(LP(X*), P e o(X)) — lim 75" = 0.
It follows from (17) that z*(™) converges to 0 weak* in L (X)*.

weak,0
Since L? (X) is a Grothendieck space, #*(") converges to 0 weakly

weak,0
in Ly, 0(X)% ie., from (17) again
(20) o(LY (X*), IP _ (X*)) —limz*"™ = 0.

n
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Thus we have shown that (18) + (19) < (20). By Lemma 10,
LP (X**) L;D (X**) O

weak weak,0
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