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We consider linear hyperbolic equations of the form

utt =
n∑

i=1

uxi xi +
n∑

i=1

Xi(x1, . . . , xn, t)uxi + T (x1, . . . , xn, t)ut + U (x1, . . . , xn, t)u.

We derive equivalence transformations which are used to obtain differential invariants for
the cases n = 2 and n = 3. Motivated by these results, we present the general results for
the n-dimensional case. It appears (at least for n = 2) that this class of hyperbolic equations
admits differential invariants of order one, but not of order two. We employ the derived
invariants to construct interesting mappings between equivalent equations.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The theory of invariant quantities for families of equations appeared in the beginning of the theory of partial differential
equations. The linear wave equation uxy = 0 for vibrating strings, was formulated and solved by d’Alembert in 1747. In
1769/1770 Euler [1] and later, in 1773, Laplace [2] derived the invariant quantities

h = ax + ab − c, k = by + ab − c (1)

which are known today as the Laplace invariants, for the linear hyperbolic equation

uxy + a(x, y)ux + b(x, y)u y + c(x, y)u = 0. (2)

An equation of the form (2) can be mapped (by a point transformation) into uxy = 0 if and only if h = k = 0. Furthermore
an equation of the form (2) can be factorized if and only if h = 0 or k = 0. For an interesting and historical review of Laplace
invariants one can refer to [3].

Differential invariants of the Lie groups of continuous transformations can be used in wide fields: classification of in-
variant differential equations and variational problems arising in the construction of physical theories, solution methods for
ordinary and partial differential equations, equivalence problems for geometric structures. First it was noted by S. Lie [4],
who proved that every invariant system of differential equations [5], and every variational problem [6], could be directly ex-
pressed in terms of differential invariants. Lie also showed [5] how differential invariants play an important role to integrate
ordinary differential equations and succeeded in completely classifying all the differential invariants for all possible finite-
dimensional Lie groups of point transformations in the case of one independent and one dependent variable. Tresse [7]
and Ovsiannikov [8] generalized the Lie’s preliminary results on invariant differentiations and existence of finite bases of
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differential invariants. The general theory of differential invariants of Lie groups together with algorithms of construction of
differential invariants can be found in [8,9].

Recently Ibragimov [10–12] developed a simple method for constructing invariants of families of differential equations.
The method is based in the theory of equivalence groups in the infinitesimal form. Basically, the method consists of two
steps: Classification of equivalence groups and then use these groups (and extended groups) to derive the desired differential
invariants. Ibragimov [13] used his method to solve the Laplace problem. That is, to derive all invariants for the linear
hyperbolic equations (2). To achieve this, he constructed a basis for the invariants and then using this basis and invariant
differentiation all invariants, of any order, can be derived. The idea of Ibragimov was adopted by a number of authors who
derived differential invariants for ordinary differential equations, linear and non-linear partial differential equations [14–21].

In the present work we derive the equivalence transformations for the two-dimensional linear hyperbolic equations

utt = uxx + u yy + X(t, x, y)ux + Y (t, x, y)u y + T (t, x, y)ut + U (t, x, y)u (3)

and the three-dimensional linear hyperbolic equations

utt = uxx + u yy + uzz + X(t, x, y, z)ux + Y (t, x, y, z)u y + Z(t, x, y, z)uz + T (t, x, y, z)ut + U (t, x, y, z)u (4)

and, in the spirit of Ibragimov’s work, we construct differential invariants with the employment of the derived equivalence
transformations. Motivated by the results, we present the general results for the n-dimensional case. It appears (at least for
n = 2) that this class of hyperbolic equations admits differential of order one, but not of order two.

The linear hyperbolic equations have considerable interest in Mathematical Physics and Biology [22–25]. They have a
number of applications, for example, in population dynamics, tides and waves, chemical reactors, flame and combustion
problems and problems in transonic aerodynamics.

In the next section we determine the equivalence transformations for the class of Eqs. (3). In Section 3, the derived equiv-
alence transformations are employed to obtain differential invariants. In Section 4, we obtain equivalence transformations
and differential invariants for (4). Motivated by the results in Sections 2, 3 and 4, we present in Section 5 the corresponding
results for the n-dimensional class of hyperbolic equations. In Section 6, we use differential invariants to derive certain
mappings that connect equations of the class (3). These mappings can easily be generalized to n-dimensional case. Some
final remarks are given in the conclusion. For completeness, we present the corresponding results for the one-dimensional
equation in Appendix A [3].

2. Equivalence transformations for (3)

Equivalence transformations play the central part in the theory of invariants. The set of all equivalence transformations
of a given family of differential equations forms a group which is called the equivalence group. There exist two methods
for calculation of equivalence transformations, the direct which was used first by Lie [26] and the Lie infinitesimal method
which was introduced by Ovsiannikov [8]. Although, the direct method involves considerable computational difficulties, it
has the benefit of finding the most general equivalence group. For recent applications of the direct method one can refer,
for example, to references [27–29]. More detailed description and examples of both methods can be found in [3]. Here we
use the infinitesimal method to derive the desired equivalence transformations.

We call an equivalence transformation of Eqs. (3) an invertible point transformation belonging to the class

t′ = α(t, x, y, u), x′ = β(t, x, y, u), y′ = γ (t, x, y, u), u′ = ω(t, x, y, u)

which preserves the order of Eqs. (3) as well as the properties of linearity and homogeneity. In general, the trans-
formed equations have different coefficients X ′, Y ′, T ′ and U ′ . The functions α,β,γ and ω are such that ∂(α,β,γ ,ω)/

∂(t, x, y, u) �= 0. If one wants to find the functions α,β,γ and ω, the direct method needs to be employed. It turns out that
it is a very difficult task. We therefore use the infinitesimal method.

In order to find continuous group of equivalence transformations for Eqs. (3) by means of the Lie infinitesimal invariance
criterion, we search for the equivalent operator in the following form:

Γ = ξ1
∂

∂t
+ ξ2

∂

∂x
+ ξ3

∂

∂ y
+ η

∂

∂u
+ μ1

∂

∂ X
+ μ2

∂

∂Y
+ μ3

∂

∂T
+ μ4

∂

∂U
(5)

where ξi = ξi(t, x, y, u) (i = 1,2,3), η = η(t, x, y, u) and μi = μi(t, x, y, u, X, Y , T , U ) (i = 1,2,3,4). We invoke the deter-
mining equation:

Γ (2)
(
utt − uxx − u yy − X(t, x, y)ux − Y (t, x, y)u y − T (t, x, y)ut − U (t, x, y)u = 0

)∣∣
Eq. (3)

= 0,

where Γ (2) is the second extension of Γ . For details of how the operator Γ can be extended, one can refer to [8,11].
The above expression is a multivariable polynomial in variables the derivatives of u, X , Y , T and U . The coefficients of
the different powers of these variables must be zero, giving a list of determining equations. These equations enable the
equivalence transformations to be derived and ultimately impose restrictions on the functional forms of the infinitesimals
ξi(t, x, y, u), η(t, x, y, u) and μi(t, x, y, u, T , X, Y , U ).
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We find that the family of Eqs. (3) admits an infinite continuous group E of equivalence transformations generated by
the Lie algebra LE spanned by the operators

Γ1 = ∂

∂t
, Γ2 = ∂

∂x
, Γ3 = ∂

∂ y
, Γ4 = x

∂

∂t
+ t

∂

∂x
+ T

∂

∂ X
+ X

∂

∂T
,

Γ5 = y
∂

∂t
+ t

∂

∂ y
+ T

∂

∂Y
+ Y

∂

∂T
, Γ6 = y

∂

∂x
− x

∂

∂ y
+ Y

∂

∂ X
− X

∂

∂Y
,

Γ7 = t
∂

∂t
+ x

∂

∂x
+ y

∂

∂ y
− X

∂

∂ X
− Y

∂

∂Y
− T

∂

∂T
− 2U

∂

∂U
,

Γ8 = 1

2

(
t2 + x2 + y2) ∂

∂t
+ xt

∂

∂x
+ ty

∂

∂ y
+ (xT − t X)

∂

∂ X
+ (yT − tY )

∂

∂Y
+ (xX + yY − tT + 1)

∂

∂T
− 2tU

∂

∂U
,

Γ9 = xt
∂

∂t
+ 1

2

(
t2 + x2 − y2) ∂

∂x
+ xy

∂

∂ y
− (xX + yY − tT + 1)

∂

∂ X
+ (y X − xY )

∂

∂Y
+ (t X − xT )

∂

∂T
− 2xU

∂

∂U
,

Γ10 = ty
∂

∂t
+ xy

∂

∂x
+ 1

2

(
t2 − x2 + y2) ∂

∂ y
+ (xY − y X)

∂

∂ X
− (xX + yY − tT + 1)

∂

∂Y
+ (tY − yT )

∂

∂T
− 2yU

∂

∂U
,

Γα = αu
∂

∂u
− 2αx

∂

∂ X
− 2αy

∂

∂Y
+ 2αt

∂

∂T
+ (αtt − αxx − αyy − αx X − αy Y − αt T )

∂

∂U
,

where α = α(t, x, y) is an arbitrary function. In order to construct the one-parameter continuous Lie group which corre-
sponds to each of the above infinitesimal generators, one needs to employ Lie’s first fundamental theorem. We consider
these equivalence transformations in the next section to derive invariants for the class of Eqs. (3).

3. Invariants for (3)

We call a function

J (t, x, y, u, X, Y , T , U , Xi, Yi, Ti, Ui, . . .), i = t, x, y,

an invariant of the family of hyperbolic equations (3) if it is differential invariant under the equivalence group Γ1, . . . ,Γ10
and Γα . The function J is called semi-invariant if it is invariant only under the generator Γα . The order of the invariant is
equal to the order of the highest derivative that appears in the form of J . If no derivatives appear, we say that we have
invariants of zero order.

Note 1. The Laplace invariants h and k are semi-invariants, while the quantity h
k is an invariant of first order for the linear

hyperbolic equations (2).

Any system of equations Ei(t, x, y, u, X, Y , T , U , Xi, Yi, Ti, Ui, . . .) = 0 that satisfies the condition

Γ
(s)

k (Ei)|E1=0,E2=0,... = 0, i = 1,2, . . . ,

is called an invariant system. If

Γ
(s)

k (E j)|E j=0 = 0, j = 1,2, . . . ,

then E j = 0 is called an invariant equation.

Note 2. Equations h = 0 and k = 0, where h and k are the Laplace invariants, are invariant equations for the linear hyperbolic
equations (2).

Here we consider the problem of finding differential invariants of the class of Eqs. (3). First, we seek for differential
invariants of zero order, i.e. invariants of the form

J = J (t, x, y, u, X, Y , T , U ).

We apply the invariant test

Γi( J ) = 0, i = 1,2, . . . ,10,α.

It is straightforward to show that J = constant . Hence, the family of Eqs. (3) does not admit differential invariants of zero
order.

Next we consider the problem of existence of differential invariants of the form

J (t, x, y, u, X, Y , T , U , Xi, Yi, Ti, Ui), i = t, x, y.
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We need to derive the once-extended generators of Γ j , j = 1,2, . . . ,10,α, using the following formulas:

Γ
(1)
j = Γ j + σ k

i
∂

∂ f k
i

, i = 1,2,3, k = 1,2,3,4, j = 1,2, . . . ,10,α.

Here we use the local notation f 1 = X , f 2 = Y , f 3 = T , f 4 = U , f k
1 = f k

t , f k
2 = f k

x , f k
3 = f k

y and

σ k
i = D̃i(μk) − f k

1 D̃i(ξ1) − f k
2 D̃i(ξ2) − f k

3 D̃i(ξ3), i = 1,2,3, k = 1,2,3,4,

where D̃ j ( j = 1,2,3) denote the total derivatives with respect to t , x and y, respectively.
We first calculate semi-invariants of first order by considering the invariant criterion

Γ
(1)
α ( J ) = 0. (6)

Eq. (6) is a polynomial in the derivatives of α(t, x, y). Using the fact that α(t, x, y) is arbitrary, we set the coefficients of the
derivatives of it equal to zero. This leads to a system of linear first order partial differential equations. First we note that
Γ

(1)
i = Γi , i = 1,2,3, and therefore, Γ

(1)
i ( J ) = 0 implies Jt = J x = J y = 0. Furthermore the coefficients of α, αxxy , αxxt , αxyy

in (6) give Ju = J U y = J Ut = J Ux = 0. Hence,

J = J (X, Y , T , U , Xt , Xx, X y, Yt , Yx, Yt , Tt , Tx, T y).

Now coefficients of αx , αy , αt , αxx , αxy , αxt , αyy , αyt and αtt in (6) give

2 J X + X J U = 0,

2 J Y + Y J U = 0,

2 J T − T J U = 0,

2 J Xx + J U = 0,

J X y + J Yx = 0,

J Xt − J Tx = 0,

2 J Y y + J U = 0,

J Yt − J T y = 0,

2 J Tt + J U = 0.

Solving this system we obtain four independent integrals which form the set of semi-invariants of first order for the class
of Eqs. (3):

J1 = Yx − X y, J2 = Xt + Tx, J3 = Yt + T y, J4 = X2 + Y 2 − T 2 + 2Xx + 2Y y + 2Tt − 4U . (7)

Now, we apply the full equivalence group to derive the desired invariants, which are expected to be certain functions of
the semi-invariants. That is, in addition to (6), we apply the invariance criterion

Γ
(1)
j ( J ) = 0, j = 4,5, . . . ,10,

we obtain a list of seven equations which are tabulated in Appendix B. Using the semi-invariants (7), this latter system
simplifies to

E4: J1 J J3 + J3 J J1 = 0,

E5: J1 J J2 + J2 J J1 = 0,

E6: J3 J J2 − J2 J J3 = 0,

E7: J1 J J1 + J2 J J2 + J3 J J3 + J4 J J4 = 0,

E8: 2t E7 + xE4 − yE5 = 0,

E9: t E4 + 2xE7 + yE6 = 0,

E10: t E5 + xE6 − 2yE7 = 0.

Solving the system that contains equations E4, E5 and E7, we obtain

J = J 2
2 + J 2

3 − J 2
1

J 2
4

.
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This solution also satisfies the remaining equations, E6, E8, E9 and E10. Hence we have derived the differential invariant of
first order

J = (Xt + Tx)
2 + (Yt + T y)

2 − (Yx − X y)
2

(X2 + Y 2 − T 2 + 2Xx + 2Y y + 2Tt − 4U )2
. (8)

This result re-confirms that the family of Eqs. (3) does not admit differential invariants of zero order. Furthermore we obtain
the invariant system

Xt + Tx = 0, Yt + T y = 0, Yx − X y = 0 (9)

and the invariant equation

X2 + Y 2 − T 2 + 2Xx + 2Y y + 2Tt − 4U = 0. (10)

That is,

Γ
(1)
j (Xt + Tx)|(9) = 0, Γ

(1)
j (Yt + T y)|(9) = 0, Γ

(1)
j (Yx − X y)|(9) = 0

and

Γ
(1)
j

(
X2 + Y 2 − T 2 + 2Xx + 2Y y + 2Tt − 4U

)∣∣
(10)

= 0.

We point out that the calculation of invariant equations or/and systems is executed simultaneously with the calculation of
the differential invariants. Here, the above invariant criteria only satisfied by the system (9) and by Eq. (10).

Now, in order to derive differential invariants of second order we need to consider the invariant criterion

Γ
(2)

i ( J ) = 0, i = 1,2, . . . ,10,α,

where Γ
(2)

i is the second order extension of Γi . Without presenting any calculations we state that we only re-obtained the
differential invariant (8). That is, there do not exist differential invariants of second order. The absence of differential invari-
ants of second order can be shown via calculations of ranks of sub-matrices of the matrix whose entries are coefficients of
the operators.

4. Equivalence transformations and invariants for (4)

We employ the same procedure used in the previous sections, to derive equivalence transformations and then differential
invariants for the class (4).

We use Lie infinitesimal method for calculating the equivalence transformations of the class of Eqs. (4). We find that
Eqs. (4) admit an infinite continuous group E of equivalence transformations generated by the Lie algebra LE spanned by
the operators:

Γ1 = ∂

∂t
, Γ2 = ∂

∂x
, Γ3 = ∂

∂ y
, Γ4 = ∂

∂z
,

Γ5 = t
∂

∂t
+ x

∂

∂x
+ y

∂

∂ y
+ z

∂

∂z
− X

∂

∂ X
− Y

∂

∂Y
− T

∂

∂T
− Z

∂

∂ Z
− 2U

∂

∂U
,

Γ6 = x
∂

∂t
+ t

∂

∂x
+ T

∂

∂ X
+ X

∂

∂T
, Γ7 = y

∂

∂t
+ t

∂

∂ y
+ T

∂

∂Y
+ Y

∂

∂T
,

Γ8 = z
∂

∂t
+ t

∂

∂z
+ Z

∂

∂T
+ T

∂

∂ Z
, Γ9 = −y

∂

∂x
+ x

∂

∂ y
− Y

∂

∂ X
+ X

∂

∂Y
,

Γ10 = z
∂

∂ y
− y

∂

∂z
+ Z

∂

∂Y
− Y

∂

∂ Z
, Γ11 = z

∂

∂x
− x

∂

∂z
+ Z

∂

∂ X
− X

∂

∂ Z
,

Γ12 = 1

2

(
t2 + x2 + y2 + z2) ∂

∂t
+ tx

∂

∂x
+ ty

∂

∂ y
+ tz

∂

∂z
+ (xT − t X)

∂

∂ X
+ (yT − tY )

∂

∂Y

+ (zT − t Z)
∂

∂ Z
+ (xX + yY − tT + zZ + 2)

∂

∂T
− 2tU

∂

∂U
,

Γ13 = tx
∂

∂t
+ 1

2

(
t2 + x2 − y2 − z2) ∂

∂x
+ xy

∂

∂ y
+ xz

∂

∂z
− (xX + yY − tT + zZ + 2)

∂

∂ X
+ (y X − xY )

∂

∂Y

+ (zX − xZ)
∂

∂ Z
+ (t X − xT )

∂

∂T
− 2xU

∂

∂U
,

Γ14 = ty
∂

∂t
+ xy

∂

∂x
+ 1

2

(
t2 − x2 + y2 − z2) ∂

∂ y
+ yz

∂

∂z
+ (xY − y X)

∂

∂ X
− (xX + yY − tT + zZ + 2)

∂

∂Y
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+ (zY − y Z)
∂

∂ Z
+ (tY − yT )

∂

∂T
− 2yU

∂

∂U
,

Γ15 = tz
∂

∂t
+ xz

∂

∂x
+ yz

∂

∂ y
+ 1

2

(
t2 − x2 − y2 + z2) ∂

∂z
+ (xZ − zX)

∂

∂ X
+ (y Z − zY )

∂

∂Y
+ (t Z − zT )

∂

∂T

− (xX + yY − tT + zZ + 2)
∂

∂ Z
− 2zU

∂

∂U
,

Γα = αu
∂

∂u
− 2αx

∂

∂ X
− 2αy

∂

∂Y
− 2αz

∂

∂ Z
+ 2αt

∂

∂T
+ (αtt − αxx − αyy − αzz − αx X − αy Y − αt T − αz Z)

∂

∂U
,

where α = α(x, t, y, z).
The invariant criterion Γ

(1)
α ( J ) = 0 leads to seven semi-invariants:

J1 = Yx − X y, J2 = Xt + Tx, J3 = Yt + T y,

J4 = Zx − Xz, J5 = T z + Zt , J6 = Z y − Y z,

J7 = X2 + Y 2 + Z 2 − T 2 + 2Xx + 2Y y + 2Zz + 2Tt − 4U .

Now using the complete equivalence group we find that the family of Eqs. (4) admits two functionally independent differ-
ential invariants of first order:

J = (Tx + Xt)
2 + (T y + Yt)

2 + (T z + Zt)
2 − (Yx − X y)

2 − (Zx − Xz)
2 − (Z y − Y z)

2

(X2 + Y 2 + Z 2 − T 2 + 2Xx + 2Y y + 2Zz + 2Tt − 4U )2
,

I = (Tx + Xt)(Y z − Z y) − (T y + Yt)(Xz − Zx) + (T z + Zt)(X y − Yx)

(X2 + Y 2 + Z 2 − T 2 + 2Xx + 2Y y + 2Zz + 2Tt − 4U )2
.

We note that, as expected, these two invariants are specific functions of the semi-invariants. In addition, the calculation of
the two invariants produces an invariant system with six equations:

Xt + Tx = 0, T z + Zt = 0, Yt + T y = 0, Yx − X y = 0, Zx − Xz = 0, Z y − Y z = 0 (11)

and the invariant equation

X2 + Y 2 + Z 2 − T 2 + 2Xx + 2Y y + 2Zz + 2Tt − 4U = 0. (12)

In other words, system (11) is the only one which satisfies the invariant criterion

Γ
(1)
j (Xt + Tx)|(11) = 0, Γ

(1)
j (T z + Zt)|(11) = 0, Γ

(1)
j (Yt + T y)|(11) = 0,

Γ
(1)
j (Yx − X y)|(11) = 0, Γ

(1)
j (Zx − Xz)|(11) = 0, Γ

(1)
j (Z y − Y z)|(11) = 0

and Eq. (12) is the only one which satisfies the invariant criterion

Γ
(1)
j

(
X2 + Y 2 + Z 2 − T 2 + 2Xx + 2Y y + 2Zz + 2Tt − 4U

)∣∣
(12)

= 0,

where Γ
(1)
j is the first order extension of generators Γ j admitted by the family of Eqs. (4).

We note that the results are similar to the two-dimensional equations (3), with the exception that the three-dimensional
equations (4) admit two differential invariants.

5. On n-dimensional hyperbolic equations

Motivated by the results of the previous sections, we can generalize them to n dimensions. We consider the linear
hyperbolic equation

utt =
n∑

i=1

uxi xi +
n∑

i=1

Xi(x1, x2, . . . , xn, t)uxi + T (x1, x2, . . . , xn, t)ut + U (x1, x2, . . . , xn, t)u, n � 2. (13)

We tabulate the results in the following two theorems.

Theorem 1. Eqs. (13) admit an infinite continuous group E of equivalence transformations generated by the Lie algebra LE spanned
by the operators
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Γ1i = ∂

∂xi
, i = 1,2, . . . ,n, Γ1n+1 = ∂

∂t
,

Γ2 = t
∂

∂t
+

n∑
i=1

xi
∂

∂xi
−

n∑
i=1

Xi
∂

∂ Xi
− T

∂

∂T
− 2U

∂

∂U
,

Γ3i j = xi
∂

∂x j
− x j

∂

∂xi
+ Xi

∂

∂ X j
− X j

∂

∂ Xi
, i = 1,2, . . . ,n − 1, j = i + 1, . . .n,

Γ4i = xi
∂

∂t
+ t

∂

∂xi
+ T

∂

∂ Xi
+ Xi

∂

∂T
, i = 1,2, . . . ,n,

Γ5i = xit
∂

∂t
+ 1

2

(
t2 + x2

i −
n∑

j=1, j �=i

x2
j

)
∂

∂xi
+

n∑
j=1, j �=i

xi x j
∂

∂x j
+

n∑
j=1, j �=i

(x j Xi − xi X j)
∂

∂ X j
+ (t Xi − xi T )

∂

∂T

−
(

n∑
j=1

x j X j − tT + n − 1

)
∂

∂ Xi
− 2xi U

∂

∂U
, i = 1,2, . . . ,n,

Γ5n+1 = 1

2

(
n∑

i=1

x2
i + t

)
∂

∂t
+

n∑
i=1

txi
∂

∂xi
+

n∑
i=1

(xi T − t Xi)
∂

∂ Xi
+

(
n∑

i=1

xi Xi − tT + n − 1

)
∂

∂T
− 2tU

∂

∂U
,

Γα = αu
∂

∂u
− 2

n∑
i=1

αxi

∂

∂ Xi
+ 2αt

∂

∂T
+

(
αtt −

n∑
i=1

αxi xi −
n∑

i=1

αxi Xi − αt T

)
∂

∂U

where α = α(t, x1, x2, . . . , xn) is an arbitrary function.

Theorem 2. Eqs. (13) admit the invariant of first order, namely,

J =
∑n

i=1(Txi + Xit )
2 − ∑n−1

i=1

∑n
j=i+1(Xix j

− X jxi
)2

(
∑n

i=1 X2
i − T 2 + 2

∑n
i=1 Xixi

+ 2Tt − 4U )2
.

We point out that Theorem 2 refers to one differential invariant. We know that for n = 3, two differential invariants
exist. A related conjecture is presented in the conclusions.

The invariant criterion Γ
(1)
α ( J ) = 0 leads to 1

2 n(n + 1) + 1 semi-invariants:

J i = Txi + Xit , i = 1,2, . . . ,n,

J i j = Xix j
− X jxi

, i = 1,2, . . . ,n − 1, j = i + 1, . . . ,n,

J 1
2 n(n+1)+1 =

n∑
i=1

X2
i − T 2 + 2

n∑
i=1

Xixi
+ 2Tt − 4U .

Furthermore we point out that the 1
2 n(n + 1) equations

Txi + Xit = 0, i = 1,2, . . . ,n, Xix j
− X jxi

= 0, i = 1,2, . . . ,n − 1, j = i + 1, . . . ,n,

form an invariant system and

n∑
i=1

X2
i − T 2 + 2

n∑
i=1

Xixi
+ 2Tt − 4U = 0

is an invariant equation. Semi-invariants, invariant system and invariant equation generalize naturally with no exceptions.

6. Applications

Two given partial differential equations are called equivalent if one can be transformed into the other by a change
of variables. The equivalence problem consists of two parts: deciding if there exists equivalence and then determining a
transformation that connects the partial differential equations. The motivation for considering this problem is to translate a
known solution of a partial differential equation to solutions of others which are equivalent to this one.

In general, the equivalence problem is considered to be solved when a complete set of invariants has been found. In
practice, using invariants to solve the equivalence problem for a given class of partial differential equations may require
substantial computational effort. However any set of invariants can provide necessary conditions for deriving equivalent
equations.
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Here we consider the problem of finding those forms of the class (3) that can be mapped to an equation of the same
class with constant coefficients. That is, we determine the forms of the functions X(t, x, y), Y (t, x, y), T (t, x, y) and U (t, x, y)

such that Eqs. (3) are mapped into

utt = uxx + u yy + c1ux + c2u y + c3ut + c4u, (14)

where c1, . . . , c4 are constants. Firstly, we note that the mapping

t′ = at, x′ = ε1ax, y′ = ε2ay, u′ = e
1
2 (c1x+c2 y−c3t)u

where a is an arbitrary constant, ε1 = ±1, ε2 = ±1, transforms

u′
t′t′ = u′

x′x′ + u′
y′ y′ + 4c4 − c2

1 − c2
2 + c2

3

4a2
u′

into (14). Hence, choosing the appropriate value of the parameter a, Eq. (14) is equivalent with

u′
t′t′ = u′

x′x′ + u′
y′ y′ + u′. (15)

Therefore we can, equivalently, consider the problem of finding those forms of the class (3) that can be mapped into (15)
instead of those forms that can be mapped into (14).

In the special case c4 = 1
4 (c2

1 + c2
2 − c2

3), Eq. (14) can be mapped into the two-dimensional linear wave equation

u′
t′t′ = u′

x′x′ + u′
y′ y′ . (16)

We point out that Eqs. (15) and (16) are inequivalent. Hence, there is merit to consider additionally the problem of finding
those forms of the class (3) that can be mapped into (16).

Note 3. For equivalent Eqs. (14) and (15) the differential invariant J in Eq. (8) is equal to zero. Eqs. (14) and (16) satisfy the
invariant system (9) and the invariant equation (10) only if the condition c4 = 1

4 (c2
1 + c2

2 − c2
3) holds for Eqs. (14).

We state the results of this section in the following theorem. The proof can be carried out using first that equivalent
equations have the same invariants or/and satisfy the invariant equations. This fact provides necessary conditions for con-
necting two equations. The second step is to find a point transformation that connects these equations (or special cases).
Details of how such transformations are constructed can be found in [27,28].

Theorem 3. (i) An equation of the class (3) can be mapped into the two-dimensional linear wave equation (16) by the point transfor-
mation which is a member of the equivalence transformations admitted by the class (3), if and only if it is of the form

utt = uxx + u yy − Fx(t, x, y)ux − F y(t, x, y)u y + Ft(t, x, y)ut

+ 1

4

[
F 2

x + F 2
y − F 2

t − 2(Fxx + F yy − Ftt)
]
u, (17)

where F (t, x, y) is an arbitrary function. It can be shown that (17) and (16) are connected by

t′ = t, x′ = ε1x, y′ = ε2 y, u′ = e− 1
2 F u, (18)

where ε1 = ±1, ε2 = ±1.
(ii) An equation of the class (3) can be mapped into the constant coefficient equation (15) by the point transformation (18) if and

only if it is of the form

utt = uxx + u yy − Fx(t, x, y)ux − F y(t, x, y)u y + Ft(t, x, y)ut

+ 1

4

[
F 2

x + F 2
y − F 2

t − 2(Fxx + F yy − Ftt) + 4c2]u. (19)

Note 4. Eqs. (16) and (17) satisfy the invariant system (9) and invariant equation (10). Eqs. (15) and (19) are such that the
invariant (8) vanishes. This is the starting point for proving the above theorem.

Note 5. The results derived in this section can easily be generalized to n-dimensional equations of the class (13).
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7. Conclusions

In the present paper we have derived differential invariants of an n-dimensional family of linear hyperbolic equations.
To achieve this goal we had to classify the equivalence group for this family of equations. For the case n = 2 we obtained
differential invariants of first order, but not of the second order. As it was expected, invariant differentiated operators cannot
be formulated. Additionally, for the case n = 2 one invariant exists, but for the case n = 3 two invariants exist.

We conclude with the one conjuncture and one question.

Conjecture. The family of n-dimensional linear hyperbolic equations (13) admits two differential invariants of first order if n = 3. For
any other value of n it admits one differential invariant.

The conjecture is supported by the fact that it agrees with n = 2, n = 3 and by the fact that it is valid for a number of
other tested cases.

Question. For what values of n does the family of n-dimensional linear hyperbolic equations (13) admit differential invari-
ants of second order?
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Appendix A

We consider the one-dimensional hyperbolic equation

utt = uxx + X(t, x)ux + T (t, x)ut + U (t, x)u. (A.1)

From the elementary study of partial differential equations, it is known that canonical variables connect the linear hyperbolic
equations (2) and (A.1). Therefore the results of (2) [12,13] can be mapped into the results of (A.1) using the canonical
variables. In fact, this procedure was carried out in [3]. However for completeness we present the results for the one-
dimensional hyperbolic equation (A.1).

Equivalence transformations. The family of linear hyperbolic equations (A.1) has an infinite equivalence group E . The
corresponding Lie algebra LE is spanned by the operators

Γφ = −φ
∂

∂t
+ φ

∂

∂x
− φ′(X + T )

∂

∂ X
− φ′(X + T )

∂

∂T
− 2φ′U ∂

∂U
,

Γψ = ψ
∂

∂t
+ ψ

∂

∂x
− ψ ′(X − T )

∂

∂ X
+ ψ ′(X − T )

∂

∂T
− 2ψ ′U ∂

∂U
,

Γα = αu
∂

∂u
− 2αx

∂

∂ X
+ 2αt

∂

∂T
+ (αtt − αxx − αx X − αt T )

∂

∂U
,

where φ = φ(x − t), ψ = ψ(x + t), α = α(x, t) are arbitrary functions. We note that the above equivalence group is not a
special form of the equivalence group of the family of n-dimensional linear hyperbolic equations (13).

First order semi-invariants for Γα . The invariant criterion Γ
(1)
α ( J ) = 0 leads to two semi-invariants:

J1 = Xt + Tx,

J2 = X2 − T 2 + 2(Xx + Tt) − 4U .

These semi-invariants can be transformed into Laplace invariants, using canonical variables. We also point out that J1 = 0
and J2 = 0 are invariant equations.

Invariant of first order. We obtain one functionally independent differential invariant of first order

J = Xt + Tx

X2 − T 2 + 2(Xx + Tt) − 4U
,

which is a function of the semi-invariants, as expected. Unlike the equivalence transformations of (A.1), the above differential
invariant can be obtained from the general case by setting n = 1. However the family (A.1) admits differential invariants of
higher order [13].
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Appendix B

The invariance criterion

Γ
(1)
j ( J ) = 0, j = 4,5, . . . ,10,

where Γ
(1)
j is the first order extension of generators Γ j admitted by the family of Eqs. (3), produces the system

E4: T J X − Xx J Xt + Tt J Xt − Xt J Xx + Tx J Xx + T y J X y − Yx J Yt − Yt J Yx

+ X J T + Xt J Tt − Tx J Tt + Xx J Tx − Tt J Tx + X y J T y = 0,

E5: −X y J Xt − Xt J X y + T J Y − Y y J Yt + Tt J Yt + Tx J Yx − Yt J Y y + T y J Y y

+ Y J T + Yt J Tt − T y J Tt + Yx J Tx + Y y J T y − Tt J T y = 0,

E6: −Y J X − Yt J Xt − X y J Xx − Yx J Xx + Xx J X y − Y y J X y + X J Y + Xt J Y T

+ Xx J Yx − Y y J Yx + X y J Y y + Yx J Y y − T y J Tx + Tx J T y = 0,

E7: −X J X − 2Xt J Xt − 2Xx J Xx − 2X y J X y − Y J Y − 2Yt J Yt − 2Yx J Yx − 2Y y J Y y

− T J T − 2Tt J Tt − 2Tx J Tx − 2T y J T y − 2U J U = 0,

E8: t E7 + xE4 + yE5 − X J Xt + T J Xx − Y J Yt + T J Y y + J T − T J Tt + X J Tx + Y J T y = 0,

E9: t E4 + xE7 + yE6 − J X + T J Xt − X J Xx − Y J X y − Y J Yx + X J Y y + X J Tt − T J Tx = 0,

E10: t E5 − xE6 + yE7 + Y J Xx − X J X y − J Y + T J Yt − X J Yx − Y J Y y + Y J Tt − T J T Y = 0,

where we have used that Jt = J x = J y = Ju = J U y = J Ut = J Ux = 0.
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