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Nonlinear Modelling of Fuel Cell Systems for Vehicles
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In this work a nonlinear dynamical model of a fuel cell stack is developed by means of artificial neural
networks. The model presented is a black-box model, based on a set of easily measurable exogenous
inputs like pressures and temperatures at the stack and is able to predict the output voltage of the fuel
cell stack. The model obtained is being exploited as a component of complex control systems able to
manage the energy flows between fuel cell stack, battery pack, auxiliary systems and electric engine in
a zero-emission vehicle prototype.
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1 Introduction

More and more interest is devoted to the develop-
ment of low pollution vehicles. In particular a lot
of studies and implementations of fuel-cell-based
vehicles are being developed. In its simplest form,
a fuel-cell-based engine is fed with a stream of hy-
drogen, which reacts with air oxygen in a device
called fuel cell stack [1, 2], producing electric en-
ergy which can be exploited by an electric engine.

The simplest fuel cell consists of two electrodes,
separated by a polymeric membrane, in contact
with an electrolyte, which is usually water. A
catalyst, generally platinum, is usually placed on
the interface surfaces. In a cell, the following re-
actions occur, for anode and cathode terminals,
respectively:

2H2 −→ 4H+ + 4e− (1)
O2 + 4e− + 4H+ −→ 2H2O (2)

It is well known that the power produced by a
single fuel cell is too low to be directly supplied

to an automotive system. Therefore, for effec-
tive applications, it is necessary to connect sev-
eral cells in series to obtain a stack and surround
it with auxiliary components, like pumps, valves,
fuel storage systems, etc., which frequently make
up a large proportion of the engineering of the
whole Fuel Cell System (FCS). In particular, for
automotive applications, the use of batteries in
association with a fuel cell stack can reduce the
overall cost of the system. This kind of config-
uration, called battery hybrid system, allows the
fuel cell stack to work quite close to its maximum
power at all times. When the power requirement
is low, then the surplus electrical energy is stored
in a rechargeable battery. On the other hand,
in correspondence of peaks of power requirement,
power provided by the stack is increased by en-
ergy stored in the batteries pack. In this way,
the fuel cell stack has to be designed for average
power requirement, leading to a less expensive
system.

One of the main issues of the control activity
in a hybrid FCS is the management of the power
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fluxes between the fuel cell stack, batteries pack,
auxiliary systems and electric engine, according
to the power requirement of the driver. The de-
velopment of reliable models of fuel cell stacks
is therefore of fundamental importance for both
control and prediction purposes. To this aim,
models must be simple enough, with good per-
formance both in static and dynamic operational
conditions, and based on simple, easily measur-
able inputs. So, macroscopic models able to de-
scribe the behaviour of the stack as a whole on
the basis of simple exogenous inputs are strongly
needed for control purposes rather than models
describing the stack at cell-level based on electro-
chemical relationships.

In this work, a real fuel cell stack is modeled
by means of artificial neural networks (ANN).
Models are trained and tested with real data col-
lected on an experimental setup. Different kinds
of model are presented and results will be com-
pared. The work is structured as follows. Next
section will deal with the description of FCS sys-
tems for automotive applications. Section 3 will
deal with neural-network-based modelling of the
stack, by exploiting both the physical laws de-
scribing the stack, and data collected in an ex-
perimental setup. Finally, results are presented
and commented in section 4, followed by our con-
clusions.

2 Fuel cell systems for automo-
tive applications

A simplified scheme of a FCS for automotive ap-
plications is illustrated in Fig. 2.

As previously stated, a FCS consists of a gen-
eration system surrounded by auxiliary systems
and control systems. The generation system con-
sists of a stack of fuel cells, fed by hydrogen,
which can be either stocked in a pressurised cylin-
der, or produced on board by a reformer [3].
The reformer, in its most common implementa-
tion, transforms methanol in hydrogen. Energy
flux coming as output from the stack, after pass-
ing through an adequate converter, is divided
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FIG. 1. A FCS for automotive applications

between the electrical engine, which provide lo-
comotion power, and an energy storage system,
which consists of a battery pack. Energy fluxes
between stack, engine, and battery is regulated
by a control system devoted to the conversion and
storage apparatus. Other low-level controllers are
devoted to the control of the stack and the re-
former. Furthermore, all the controllers should
be supervised by a high-level supervisor. For any
control purpose, an accurate dynamical model of
the stack is obviously needed.

A stack of fuel cell is an array of simple cells
connected in series through bipolar plates. In
each cell reactions (1) and (2) occur. As a con-
sequence of the series connection, overall output
voltage is the sum of the single cell output volt-
ages, whereas the current remains the same in
all the cells. A hydrogen stream, injected on the
inlet of the stack, flows through the whole stack
cells. The stack is also fed with air and water to
let the reactions occur.

As a spatially extended system, the behaviour
of the stack can be rigorously described by sev-
eral Partial Differential Equations (PDEs). As an
example, the membrane can be described by the
following set of PDEs:

∇ · (i) = 0 (3)
∇ · (NO2) = 0 (4)
∇ · (NH2) = 0 (5)
∇ · (V ) = 0 (6)
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where i is the current density, NO2 and NH2 are
the oxygen and hydrogen fluxes, respectively, and
V is the water velocity.

Similar PDE sets describe anode and cathode
gas diffusion, and anode and cathode catalyst
evolution. The behaviour of the stack can be
obviously modelled by solving all the PDE sets
described above. Nevertheless, practical appli-
cations can hardly rely on such an approach for
a twofold reason. Firstly, computational com-
plexity would make a real time approach hard
for on-board control purposes. Secondly, PDEs
mentioned above manipulate physical quantities
which are difficult to measure. Therefore, an al-
ternative approach is needed.

The main idea underlying the approach is to re-
alize a black-box model of the whole stack which
manipulates measurable quantities and is compu-
tationally affordable. The dynamical model re-
alised in this work include a set of inputs which
has been selected by taking into account the Nerst
equation [1], which is a static equation providing
the output voltage of a single cell. Nerst equation
comes in different forms. If the pressures of the
reactants and products are in bar, and the water
product is in the form of steam, then the equation
is formalised as:

E = E0 +
RT

2F
ln


PH2P

1
2

O2

PH2O


 (7)

where:

• E0 is the EMF at standard pressure;

• R is the ’universal’ gas constant,
8.314 JK−1mol−1

• T is the temperature;

• PH2 ,PO2 ,PH2O are the partial pressures of
hydrogen, oxygen, and water steam, respec-
tively.

The output voltage expressed by Nernst equa-
tion is subject to losses of different nature; in par-
ticular:

• Activation losses, caused by the slowness of
the reaction taking place on the surface of
the electrodes;

• Fuel crossover and internal currents, result-
ing from the waste of fuel passing through
the electrolyte, and electron conduction
through the electrolyte;

• Ohmic losses on electrodes, interconnec-
tions, and electrolyte;

• Mass transport losses, resulting from the
change in concentration of the reactants at
the surface of the electrodes as the fuel is
used.

0 0.5 1 1.5 2 2.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

sample

P
H

2

FIG. 2. Pre-processed learning data set for variable
PH2 .

3 Modelling the fuel cell stack

Taking into account the Nernst equation (7), a
suitable set of inputs has been selected in order
to build a black-box model. A first set of inputs
which has been considered is the following:

• hydrogen pressure, PH2 ;

• oxygen pressure, PO2 ;

• water pressure, PH2O;
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FIG. 3. Pre-processed learning data set for variable
PAir.

• stack temperature, T .

The experimental setup perform several ac-
quisitions, but not all the quantities mentioned
above are available. Therefore, the following as-
sumptions have been made and a new set of in-
puts has been built:

• hydrogen pressure PH2 is directly available;

• oxygen pressure PO2 is not directly available.
As oxygen is provided to the stack as an air
stream, air pressure in the stack PAir is in-
stead used;

• water pressure PH2O is assumed to be con-
stant as water flows through the stack in liq-
uid phase. Consequently, PH2O, is not con-
sidered as an input in the design of the dy-
namic black-box model.

• stack temperature T is not directly available;
this is estimated through the temperature of
the outlet stack water.

The aim of this work is to build a dynamical
model able to predict the trend of the output volt-
age of the stack on the basis of the information
cited above. It is worth to notice that all the

quantities involved are easily and cheaply mea-
surable with common acquisition systems.
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FIG. 4. Pre-processed learning data set for variable
T .
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FIG. 5. Pre-processed learning data set for variable I.

The general form of a time-discrete nonlinear
model able to predict the output voltage of the
stack is the following:

V (k + 1) = f (PH2(k), . . . , PH2(k − l),

PAir(k), . . . , PAir(k −m), T (k), . . . , T (k − n))
(8)
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FIG. 6. Pre-processed learning data set for variable
V .
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FIG. 7. Modelling error.

where function f is unknown and k is the discrete
time index.

Nevertheless, the stack output voltage strongly
depends on its load, which is the electric engine,
whose characteristic change at a fast rate accord-
ing to driver requirements and road condition.

The strategy adopted to obtain a reliable
model is to consider the output current as a fur-
ther input to the model, leading to the following
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FIG. 8. Histogram of the modelling error.

equation:

V (k + 1) = f (PH2(k), . . . , PH2(k − l),

PAir(k), . . . , PAir(k −m), T (k), . . . , T (k − n),

I(k), . . . , I(k − o))
(9)

In this work, the unknown function f is iden-
tified by means of Artificial Neural Networks [4],
as will be described in the following. In partic-
ular, a Multi-Layer Perceptron (MLP) has been
adopted.

A suitable set of experimental data has been
collected in order to cover a large domain of op-
erational conditions and build both a training and
a checking data set. Data have been acquired at a
sampling frequency of 10Hz and suitably filtered
via a spectral analysis. In particular, air pres-
sure needed a strong filtering action. The learn-
ing data set, consisting of about 48000 samples,
in which variables have been already filtered and
normalised, is reported in Figs. 3–6.

Several models with a different number of re-
gression for each variable have been tested. An
extensive trial-and-error phase has led to a model
characterized by 3 regressions for each input and
30 neurons in the hidden layer. The network ob-
tained has therefore 12 inputs, 30 hidden neu-

Nonlinear Phenomena in Complex Systems Vol. 6, No. 3, 2003



R.Caponetto et al.: Nonlinear Modelling of Fuel Cell Systems. . . 751

rons and 1 output. Figs.7–8 illustrate a compari-
son between actual and predicted output voltage,
the prediction error performed by the model, and
its histogram, respectively. The normalized MSE
performed on the whole training set is 6.27 ·10−5.
Both the MSE and the error histogram reveal
good modelling performance, and the model is
computationally affordable to be implemented for
real time control.

4 Conclusion

In this work a stack of fuel cells has been modelled
with a black-box approach. In particular, for non-
linear modelling purposes, a Multi-Layer Percep-
tron has been adopted. The model obtained does
not rely on a single-cell modelling, instead provid-
ing a macro-model of the whole stack. The result-
ing dynamic model relies on inputs which are eas-
ily measurable quantities, like reactant pressures
and stack temperature. The results obtained are
satisfactory, and allow to build a model suitable
to be integrated on a more complex control sys-
tem able to manage on board a vehicle the power

fluxes between fuel cell stack, engine, and batter-
ies.
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