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Abstract: Surface Plasmon Polaritons are collective oscillations of electrons occurring at the interface
between a metal and a dielectric. The propagation phenomena in plasmonic nanostructures is
not fully understood and the interdependence between propagation and metal thickness requires
further investigation. We propose an ad-hoc neural network topology assisting the study of the said
propagation when several parameters, such as wavelengths, propagation length and metal thickness
are considered. This approach is novel and can be considered a first attempt at fully automating
such a numerical computation. For the proposed neural network topology, an advanced training
procedure has been devised in order to shun the possibility of accumulating errors. The provided
results can be useful, e.g., to improve the efficiency of photocells, for photon harvesting, and for
improving the accuracy of models for solid state devices.

Keywords: nanotechnologies; photonics; nanoplasmonics; neural networks; high performance
computing

1. Introduction

In recent years, the development of nanoplasmonic has been a topic of increasing interest with
significant applications, such as, e.g., surface enhanced Raman spectroscopy, photovoltaic devices
optimisation, optical filters, photonic band gap structures, biological and chemical sensing [1–5].
This recent progress has been obtained thanks to the advances in nanofabrication technology.
Plasmonic nanoparticles are of great interest for light trapping in thin-film silicon solar cells, hence
for the manipulation of light confined to small length scales. Therefore, the areas of propagating
electromagnetic modes on metallic dielectric interfaces, resonances between the electron gas and
surrounding dielectrics, and the interaction of light with metals, are widely studied [6]. In such
a field, optical systems made of a metal-dielectric interface are liable to electromagnetic modes
called Surface Plasmon Polaritons (SPPs) and make it possible to control light having wavelengths
below 100 nm [7–9]. SPPs are collective oscillations of electrons occurring at the interface between
a metal and a dielectric when a photon couples to the free electron gas of the metal. Some papers
have appeared in the literature to describe the simulations and analyses of the excitation and
propagation of SPPs on sinusoidal metallic gratings in conical mounting and the bending in metallic
nanowires [7,10]. Several papers in the literature have proposed correlation models for SPPs
propagation length and excitation wavelength, e.g., [11] describes a correlation model in terms of
center-to-center pitch among waveguide relative maxima. However, such proposed models are
typically used in triple interfaces (dielectric-metal-dielectric or metal-dielectric-metal. Hence, more
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studies and investigations are needed due to the actual poor understanding of the propagation
phenomena in the plasmonic nanostructures, especially concerning asymmetrical systems such as
dielectric-metal structures [12,13].

In this paper, we examine the propagation of SPPs due to the combination of the molybdenum
nanostructure in the presence of a dielectric exposed to an electric field and photon fluxes with
energies spanning a wavelength range 400 to 700 nm. Therefore, we propose a novel neural
network (NN) topology, dubbed Nested Neural Network Architecture (NNNA), assisting us to
study the inner relation between SPPs exciting wavelength, metal thickness and SPP wavelength and
propagation length at a metal flat interface separating dielectric medium. As a result, by employing
such a suitable NNNA topology we can determine the interdependence between SPP propagation
and metal thickness. Due to the high sensitivity level of the neural model to data oscillations a
novel NN training procedure has been devised in order to avoid polarisations and miscorrections
of some NN weights. Moreover, since such a training procedure could be computationally expensive
and take a long time, a parallel version using an OpenMP environment, with shared memory, has
been developed and optimised to obtain maximum advantage from the available parallel hardware.
A big amount of data has been put into proper use for the investigated NN topology. Such data
have been made available by solving 3D Maxwell equations with the relative boundary conditions.
For the resolution of the electromagnetic field and for the investigations of SPPs characteristics in a
simple plasmonic structure, we have been developed numerical calculations and simulations to solve
Maxwell’s equation with the Finite Element Method (FEM). This has been performed by using the
commercial software packages COMSOL Multiphysics (v 4.3b, COMSOL Inc., Burlington, MA, USA).

In our simulation, we used a 3D geometry (see Figure 1) to represent the two media (metal
and dielectric) and solved the full wave 3D Maxwell equations (using the above said software
packages). Then, we have computed the propagation length LSPP and plasmon wavelength λSPP for
different thickness conditions. The external surface of the plasmonic structure has been modeled by
means of perfectly matched layer boundary conditions and taking into account the monochromaticity
conditions for the exciting photon flux. The energy of such photons has been selected within an
excitation wavelength, named λ0, in the range of 400 to 700 nm, therefore compatible with the
visible light spectrum. As reported in Figure 2, in our simulation we considered several excitation
wavelengths (λ0) and thicknesses (t). For each pair of values λ0 and t, we have computed the
corresponding surface polaritons’ wave propagating from the dielectric-metal interface and decaying
into the metal.

METAL

DIELECTRIC

                        PROBE

Figure 1. Implemented geometry in COMSOL (left), and geometry that models Surface Plasmon
Polaritons (SPP) propagation from a metal-dielectric interface (right).
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Figure 2. The simulation survey coverage in the features space concerning the excitation
wavelength λ0 and the adopted tickness t.

In the following we will first give, in Section 2, an introduction to SPPs. Section 3 describes
how the initial data have been computed. Section 4 explains the proposed novel neural network
architecture that models the correlation between each scenario (in terms of excitation wavelength
and thickness) to the related SPPs wavelength λSPP and propagation length LSPP. Section 5 describes
our parallel procedure for training. Finally, Section 6 draws our conclusions.

2. Brief Introduction to Surface Plasmon Polaritons (SPPs)

SPPs can only be generated along metal-dielectric interfaces over a wide range of frequencies
and evanescently decay in the perpendicular direction of the metal-dielectric interface. Recently, the
light absorption by solar cells patterned with metallic nanoparticles has been investigated; however,
we consider light-excited SPPs at the metal surface proposing an investigation that can be used to
efficiently capture light in solar energy conversion cells [2].

At ultraviolet and visible frequencies, the noble metals (Au, Ag, etc.) acquire a behaviour similar
to that of a dielectric, and allow the propagation of electromagnetic (EM) waves with a significant
penetration within the metal, where the losses of energy are strongly related to the electronic
structure. The scattering properties can be represented by a complex dielectric constant. The losses in
the conductor are due to collisions between the free electrons and interband transitions. The optical
properties can be explained by the plasma model, where a number of free electrons move against
the fixed ions (Drude model). The electrons oscillate in response to the applied electromagnetic field
with a characteristic collision frequency and a certain relaxation time, determining the frequency
dependence of the dielectric constant [14].

It was observed that the dielectric constant evaluated as a relative complex for the noble metals
with the high negative real part value of the dielectric constant, would assure the existence of the
plasmons. The negative real part of the dielectric constant of various metals such as Au, Ag and Mb
decreases with the increase of wavelength, while the imaginary part is increased as shown in Figure 3.

The simplest geometry that can generate SPPs is that of a single and flat interface
(see Figure 1 (left)) between a dielectric with a real dielectric constant εd > 0 and an adjacent metal
described by means of a dielectric function εm(ω), where Re[εm(ω)] < 0.
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Figure 3. The real part (left) and the imaginary part (right) of the dielectric constant of various noble
metals, such as Au, Ag and Mb.

The following reports the mathematical equations that describe the propagation of SPPs in both
the dielectric (d) and the metal (m). Of course, such equations have same mathematical form, however
they differ in the constants describing the medium:

Hd =
(

0, Hyd, 0
)

ei(kxd x+kzd z−ωt)

Ed = (Exd, 0, Ezd) ei(kxd x+kzd z−ωt)

Hm =
(
0, Hym, 0

)
ei(kxm x−kzm z−ωt)

Em = (Exm, 0, Ezm) ei(kxm x−kzm z−ωt)

(1)

with boundary condition at z = 0, we obtain the following equivalencies:

Exm = Exd
Hym = Hyd

εm Ezm = εd Ezd

(2)

and finally, as implied, we have the Snell equation:

kxm = kxd (3)

In this discussion, we have assumed that the interface is normal to the z-axis and SPPs propagate
along the x direction (i.e., ky = 0), the SPP wave vector kx (or β) is related to the optical frequency ω

through the dispersion relation:

kx = k0

√
εd εm

εd + εm
(4)

We take ω to be real and allow kx to be complex, since our main interest is in stationary
monochromatic SPP fields in a finite area, where:

k0 =
ω

c
(5)

is the wave vector in free space, and λ0 = c
ω is the wavelength in vacuum. For metals, the permittivity

is complex, which leads to kx being complex. The imaginary part of kx defines the SPP’s damping as
it propagates along the surface. The real part of kx is related to the plasmon’s wavelength, λSPP, as:

λSPP =
2π

Re[kx]
(6)

The SPPs propagation length, LSPP, is defined as:

LSPP =
1

Im[kx]
(7)
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In conclusion of this brief review of SPPs, we report the expression of the electric field of
plasmon wave:

ESPP = E±0 ei(kx x±kzz−ωt) (8)

where kx = k
′
x + ik

′′
x, k

′
x = 2π

λSPP
.

3. Input Data for Our Nested Neural Network Architecture (NNNA)

In this paper we investigate a metal-dielectric interface composed of Molybdenum.
This structure reduces the computational effort for the investigations on the relation between
dispersion and thickness of metal. Even though, this relation is unaffected by the complexity of
the structure.

Initially, in order to generate SPPs, we used an electromagnetic plane wave TM-polarised with
angle of incidence equal to 45 degrees. The metal-dielectric interface was excited by a probe-antenna,
with a size of 1320 nm by 6.6 nm, inserted through a glass film with a refractive index of 1.5 to
induce the electric field in the metal/air interface. By solving the full wave 3D Maxwell equations in
the simple geometry shown in Figure 1 (left), which separates metal and dielectric, using the finite
element method-based software package COMSOL Multiphysics, we have obtained the LSPP and
λSPP data values for several thickness values. The perfectly matched layer boundary condition was
chosen for the external surface of the plasmon structure.

The values of LSPP and λSPP were computed for different values of excitation wavelength λ0 in
the visible range (spanning from 400 to 700 nm) and for the following thickness values t of the metal:
36, 42, 48, 54, 60, 72, 84, 96 and 128 nm (see Figure 2). The produced data were used to train and then
test a neural network architecture modelling two functions λSPP(λ0, t) and LSPP(λSPP, λ0, t), where
λ0 and t represent the excitation wavelength and the metal tickness, respectively. As previously
stated, λSPP and LSPP represent the propagation wavelength and length of the generated SPPs,
respectively. Note that LSPP depends on λSPP, therefore the latter should be computed before the
related LSPP. However, the implemented NNNA is able to handle the intrinsic LSPP dependence on
λSPP, therefore we have trained our NN to receive pairs (λ0, t) as input, and return pairs (λSPP, LSPP)

as output.
After the training procedure, our NNNA has been tested by asking to produce the resulting

λSPP and LSPP when given inputs differing from the training set. The results of the NN have then
been compared with the result given by the COMSOL simulations. The initial dataset computed by
COMSOL consisted of 279 pairs (λ0, t). Such a dataset has been shuffled randomly to avoid possible
polarisation issues, then the resulting data points have been organised as a 1D input sequence.

In order to test our NNNA on the overall input space, we have organised the experiment in
three phases, each dealing with its own set of input data. In each phase, firstly our NN starts from an
untrained state and is given two thirds of the data derived by COMSOL as training set. The training
phase lets our NN learn the respective input-output relations. Secondly, the trained NNNA is given
the other one third of data, which was not used for training. Therefore, the NN gives results on
data never seen before. Finally, for the last third of data an error is computed by comparing the
NN results and the actual values given by COMSOL. The test goes on, for each phase repeating the
said three steps, by having for each phase a different two third partition of data for training, and the
remaining one third of data for test. Therefore, we have performed a blind cross validation on the
overall input-output space, each time using data that were not fed to our NN during the training
sequence on the same phase.

4. The Proposed Neural Network Architecture

The nature of the problem at hand presents several challenges that could tamper with both the
performances and the precision of the results when trying to model such phenomena. The SPPs
propagation length LSPP and wavelength λSPP depend on each other, i.e., the propagation length
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intrinsically depends on the relative polariton’s wavelength λ. Therefore, the models for predictions
of such values starting from t and λ0 are non trivial, therefore we decided to cope with the intrinsic
complexity of the model by using a Neural Network based approach to obtain a data-driven
parametrical model [15–20].

In this work we propose a Nested Neural Network Architecture (NNNA) as a basis of our
approach, due to its ability to cope with data interdependency problems such as the one at hand.
The proposed NNNA is depicted in Figure 4 and consists of several stages, shown as rectangles.
Overall, this architecture performs parallel asynchronous predictions of both LSPP and λSPP by letting
the stages inherent the prediction of λSPP, i.e., H11 and H12, to precede the respective stages inherent
the prediction of LSPP, i.e., H21 and H22, as can be seen by the interconnecting arrows.

This configuration achieves better performances when compared to a solution using two
separate neural networks: the first to model and predict λSPP, and the second to obtain LSPP by
taking as input the result obtained from the first neural network. For such a configuration, the two
separate neural networks should be trained individually, then performance degradation would arise
due to error composition among the two networks.

H11 H12

H21 H22

OI

Figure 4. The proposed Nested Neural Network Architecture (NNNA).

Previously, we had implemented an ad-hoc nested cascade network architecture and for it we
had an accurate validation system that checks the performance status by considering the mean
squared error, and the error introduced on the Fourier spectrum of the predicted signal [10,21].
The latter check was necessary in order to remove the possible artefacts introduced on the neural
model used to predict LSPP by taking the results of the predictive neural model for λSPP. However,
such a procedure is very expensive in terms of computational performance and overall elapsed time.
Due to the interdependency of λSPP and LSPP, then, we have devised the proposed NNNA due to the
possibility to train the neural system as an overall predictor for both λSPP and LSPP.

For the adopted NNNA, we can see that λSPP and LSPP are being produced by two different
pipelines, and while the first pipeline, producing λSPP, is autonomous, the second pipeline receives
data from the first one. By using the data jointly for the two pipelines, giving them the same input,
the second pipeline can output the correct value of LSPP.

Figure 4 shows that the input layer I and the output layer O are distinct from other layers.
Moreover, the hidden layers are organised as a shifted matrix, where the layers on the first row
(namely H11 and H12) are involved on the prediction of λSPP, and the layers on the second row
(namely H21 and H22) are involved on the prediction of LSPP.

As stated before, in order to predict LSPP, the correspondent layers need to have input from
the layers predicting λSPP, therefore H21 and H22 are delayed by one time step with respect to H11

and H12. This is the reason behind the polygonal shape of the adopted neural network topology,
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which basically derives from a pair of Feed Forward Neural Networks (FFNNs) [22], with modified
inputs and delayed time steps, each one dedicated to one prediction pipeline.

On the other hand, while the first pipeline I → H11 → H12 → O is a standard FFNN, the second
pipeline I → H21 → H22 → O consists in a modified version of a FFNN where the input sources for
H21 and H22 are twofold: the layer H21 receives inputs both from the input layer I and the hidden
layer H11, the layer H22 receives inputs from H21 and H12.

The internal composition detail of each layer for the proposed nested neural network
architecture, as well as the activation functions and number of inputs is given in Table 1.

Table 1. The internal composition of the proposed nested neural networks architecture.

Layer I H11 H12 H21 H22 O

Neurons 2 10 7 12 7 2
Inputs - 2 10 12 17 14
Function - tansig logsig tansig logsig linear

5. Training Procedure on OpenMP

The neural network architecture proposed above has introduced a sequential validation phase
for the results of the first neural module. Validation has to be performed before the first module
results can be sent as input for the second module. Unfortunately, such sequential operations make
the training process expensive in terms of CPU time. In order to shorten training time we have
developed a parallel implementation of the same neural network architecture, using OpenMP, that
manages to obtain asynchronous training and validation.

Generally, when parallelising an application using OpenMP, processes are forked, joined and
synchronised (e.g., by means of a barrier). Such mechanisms, however, introduce a runtime overhead,
e.g., when the processes having produced and communicated their results have to wait until the
synchronisation barrier is over. This is often the case when the computation times of processes are
not perfectly balanced [23–27]. Therefore, our parallel version aims at reducing such an overhead by
avoiding, as much as possible, the fork-join-barrier constructs, and by introducing instead processes
that produce and consume data. The main reason for using OpenMP is that, by means of a shared
memory, communication overhead among processes can be avoided, however, on the other hand,
shared memory requires a complex handling of semaphores and locks before accessing some parts
of the memory itself. We have handled the synchronisation concern in such a way that overhead is
minimised [28].

Mainly, the proposed parallel solution is based on the continuous execution of different processes
to care for the different phases of training for the above NNNA. In our experiments a multi-core
processor has been used, however any kind of shared memory system supporting OpenMP directives
can be employed. The first process is responsible to train the pipeline I → H11 → H12 → O and this
process will be started at the beginning. The second process is responsible for training the pipeline
I → H21 → H22 → O, taking some input from the previous pipeline, and will be started after the
first process has performed a given number of training epochs (see the following). The code of the
second process has been developed so that it cannot change the weights of the connection between
H12 → O. The third process is responsible to train the stages H12 → O and H22 → O, hence to make
the output converge according to the given input I and the subsequent transformations by the other
layers. Such a process is started after the second process has performed a given number of training
epochs (see the following). Once the third process ends, the training continues with another iteration
that starts with the first process, then the second, etc.

The proposed NNNA has been trained to predict the values of λSPP and LSPP starting from an
input vector.
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u(τ) = [λ0, t] (9)

To evaluate the performance of the NNNA two different kinds of errors were considered.
We define two local errors e1 and e2, as well as a global error eo as follows:

e1 =
∣∣∣x̃(H12) − x(H12)

∣∣∣
e2 =

∣∣∣x̃(H22) − x(H22)
∣∣∣

eo = max {e1, e2} ≥
∣∣∣x̃(O) − x(O)

∣∣∣
(10)

where x̃ indicates the expected value (as given by COMSOL simulation) and x indicates the NNNA
result. As can be clearly seen in Equation (10), the layer errors e1 and e2 have been computed as the
module of the difference vector between the expected output vector and the output layer vector.
Moreover, the global maximum error e0 has been computed as the maximum error between the
previous two errors. For each training epoch, the outputs from layers H12, H22 and O (see Figure 4)
were used to compute the errors e1, e2 and eo as in Equation (10), respectively.

The training has been organised in four different phases executed on an OpenMP environment.
The first phase provides as input to the whole NNNA a training pattern, which has been previously
generated (i.e., the results of the COMSOL simulation). A fair amount of 50 epochs has been selected
for this phase. The second phase starts once the first phase has terminated and uses a gradient descent
algorithm to adjust the neural weights of the hidden layers H11 and H12 as if they would be an
independent neural network. On the other hand, the latter training procedure takes into account
only the predicted values of λSPP excluding the evaluation of LSPP. For this second phase 10 training
epochs will be performed. Then, a third phase begins to adjust the weights of H21 and H22 basing
on the error prediction of LSPP. This third phase consists of 20 training epochs. Finally, in the fourth
phase, the output layer weights will be adjusted.

The four phases above correspond each to a specific OpenMP process. At the end of the training
epoch the global neural network performances are stored for further analysis. All the measures of
performance involved in the training process are given by the Mean Squared Error (MSE), though for
the global network performances, the formula is adjusted by using the global error eo in Equation (10).

Our effort during development has been to optimise the use of computational resources,
hence autonomous processes needing as less synchronisation as possible have been implemented as
described above. Our proposed solution manages to greatly reduce the wall-clock timeframe needed
for the training.

6. Results and Conclusions

Figure 5 shows both a performance plot for the proposed NNNA, when trained with
the adopted multithread technique on an OpenMP environment, and a comparison with a
different approach using two standard FFNNs, each one having two hidden layers, respectively
counting 10 and 7 neurons and activated by means of a tansig and a logsig function. The comparison
shows that our proposed approach outperforms the FFNN approach, and the latter presents an error
having a magnitude exceeding the predicted data values.
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Figure 5. Global performance plot of the implemented Nested Neural Network Architecture (NNNA)
(left panel), and a comparison with the performances obtained by using two separate Feed Forward
Neural Networks (FFNNs) (right panel).

Figures 6 and 7 show the prediction errors for the proposed NNNA for the modeled values of
λSPP and LSPP, respectively. The said prediction errors are computed as

EλSPP =
∣∣λ̃SPP − λSPP

∣∣
ELSPP =

∣∣L̃SPP − LSPP
∣∣ (11)

by difference between the results produced by COMSOL simulation and the results produced by our
NNNA during testing (see Section 3).

For both λSPP and LSPP the error is greatly lower than a realistic measurement a priori error.
The average RMS for the predicted λSPP is less than 7.55× 10−9 nm, while the average RMS for the
predicted λSPP is less than 3.62× 10−8 nm.
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Figure 6. The obtained results: the model error EλSPP for the prediction of λSPP computed as in
Equation (11). The (left) shows the prediction error for λSPP and the (right) shows its absolute value.
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Figure 7. The obtained results: the model error ELSPP for the prediction of LSPP computed as in
Equation (11). The (left) shows the prediction error for LSPP and the (right) shows its absolute value.

The proposed NNNA constitutes a novel approach to model the propagation of collective
electrical oscillation at the interface between a metal and a dielectric. Our architecture has been
able to model and correctly predict both the polaritons propagation wavelength λSPP and the related
propagation length LSPP, as well as to reproduce the effective dependence of LSPP on λSPP. The latter
outcome derives from both the adopted topology and the innovative training method. The NNNA
consists of a comprehensive structure similar to a pair of cascade FFNNs, however it greatly improves
the individual performances of singularly trained FNNN (see Figure 5).

This makes it possible to separately specialise each one of the two pipelines of the NNNA. While
the first pipeline has been trained to predict λSPP, the second was dedicated to the prediction of
LSPP also using the intermediate results produced by the first pipeline. Moreover, the adopted and
dedicated training procedure is both advantageous in terms of computational performances, due to
the multithread execution, and optimal for the training of the NNNA in order to model phenomena
affected by a high degree of inner dependency.

Finally, the obtained errors, shown in Figures 6 and 7, have positively validated the proposed
techniques to model polaritons’ behaviour at a metal dielectric interface.
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