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E-mail: tsaousi.christina@ucy.ac.cy, tracina@dmi.unict.it, christod@ucy.ac.cy

Abstract. We consider a class of variable-coefficient mKdV equations. We derive the equiva-
lence transformations in the infinitesimal form and we employ them to construct differential
invariants of the respective equivalence algebra. Operators of invariant differentiation are also
constructed. Applications, similar to Laplace invariants, are presented.

1. Introduction
Laplace [1] in his general theory of integration of linear hyperbolic partial differential equations

uxy + a(x, y)ux + b(x, y)uy + c(x, y)u = 0 (1)

derived the quantities
h = ax + ab− c, k = by + ab− c

known as Laplace invariants. The expressions h and k do not change under the linear
transformation of the dependent variable,

u′ = φ(x, y)u. (2)

These invariants are useful in various problems, for example in the group classification of
differential equations [2] and the solution of initial value problems for hyperbolic equations
by Riemann’s method [3].

We recall the following simple but fundamental applications of the Laplace invariants:

1. A hyperbolic equation of the form (1) can be transformed into uxy = 0 by means of (2) iff
h = k = 0.

2. A hyperbolic equation of the form (1) can be transformed into uxy + c(x, y)u = 0 by means
of (2) iff h = k.

3. A hyperbolic equation of the form (1) can be transformed into uxy + cu = 0, c =const, by
means of (2) iff h = k = f(x)g(y).

4. A hyperbolic equation of the form (1) can be factorized iff h = 0 or k = 0. That is, if
L = ∂x∂y + a(x, y)∂x + b(x, y)∂y + c(x, y) then

L = [∂x + α(x, y)][∂y + β(x, y)] iff h = 0
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and
L = [∂y + β(x, y)][∂x + α(x, y)] iff k = 0.

The proofs of the above statements can be found in [4, 5].
The differential invariants of the Lie groups of continuous transformations play important

role in mathematical modelling, non-linear science and differential geometry. First it was noted
by S. Lie [6], who showed that every invariant system of differential equations [7], and every
variational problem [8], could be directly expressed in terms of differential invariants. Lie
also demonstrated [7], how differential invariants can be used to integrate ordinary differential
equations, and succeeded in completely classifying all the differential invariants for all possible
finite-dimensional Lie groups of point transformations in the case of one independent and one
dependent variable. Lie’s preliminary results on invariant differentiations and existence of finite
bases of differential invariants were generalized by Tresse [9] and Ovsiannikov [11]. The general
theory of differential invariants of Lie groups including algorithms of construction of differential
invariants can be found in [10,11].

A simple method for constructing differential invariants of families of linear and nonlinear
differential equations admitting infinite equivalence transformation groups was developed by
Ibragimov [14] (see also [15]). This method was adopted by various scientists and it was then
applied to several linear and nonlinear equations with interesting results. [4,16–32]. For example,
Ibragimov [16] gave a solution to the Laplace problem which consists of finding all invariants
of the hyperbolic equations (1). Namely, in addition to Ovsiannikov’s invariants [2], he found
three new invariants together with invariant differentiations and he constructed a basis of all
invariants. The Laplace problem was also proved by Mahomed and coauthors [33].

We point out that other approaches also exist. See for example, ref [34, 35]. For instance,
Yehorchenko [34] introduced a method where the initial basis operators contains no arbitrary
functions. In this method we search for differential operators of any specific finite order and
hence, we deal with finite dimensional algebra. The arbitrary functions are expanded into Taylor
series,

A(t) =
∞∑

m=0

amt
m, At(t) =

∞∑
m=1

mamt
m−1, etc.

More detail of this approach can be found in [34].
Here we apply Ibragimov’s method for the general class of variable-coefficient mKdV

equations

ut + f(t)u2ux + g(t)uxxx + h(t)u+ (p(t) + q(t)x)ux + k(t)uux + l(t) = 0, (3)

where all the parameters are smooth functions of t and f(t)g(t) 6= 0. We derive the equivalence
transformations which are employed to construct differential invariants. Certain applications,
similar to Laplace invariants, are presented. Finally, we construct an operator of invariant
differentiation.

2. Equivalence transformations
Equivalence transformations play an important part in the theory of invariants. Derivation
of equivalence transformations for the class of equations under consideration is the first step
towards to the target which is the determination of differential invariants. The set of all
equivalence transformations of a given family of differential equations forms a group which
is called the equivalence group. There exist two methods for calculation of equivalence
transformations, the direct which was used first by Lie [7] and the Lie infinitesimal method
which was introduced by Ovsyannikov [11]. Although, the direct method involves considerable
computational difficulties, it has the benefit of finding the most general equivalence group and
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also unfolds all form-preserving [12] (also known as admissible [13]) transformations admitted by
this class of equations. For recent applications of the direct method one can refer, for example, to
references [36–39]. More detailed description and examples of both methods can be found in [40].
The method that we employ here to determine differential invariants requires the equivalence
transformations to be in the infinitesimal form. Hence, we use the infinitesimal method to
derive the desired equivalence transformations. We search for the equivalence operator X in the
following form:

X = ξ1 ∂

∂t
+ ξ2 ∂

∂x
+ η

∂

∂u
+

7∑
i=1

µi
∂

∂ζi
,

where ζi correspond to the functions f, g, . . . , l. The functions ξ1, ξ2 and η depend on x, t and u,
while µi depend on x, t, u, f , g, h, p, q, k and l. Without presenting any detailed analysis, we
find that

ξ1 = A(t), ξ2 = B(t)x+ Γ(t), η = Θ(t)u+ Ψ(t),

µ1 = (B − 2Θ−At)f, µ2 = (3B −At)g, µ3 = −Ath−Θt,

µ4 = (B −At)p− Γq −Ψk + Γt, µ5 = −Atq +Bt,

µ6 = −2Ψf + (B −Θ−At)k, µ7 = −Ψh+ (Θ−At)l −Ψt.

That is, the class (3) admits an infinite-dimensional continuous group E of equivalence
transformations generated by Lie algebra LE spanned by the operators:

XA = A
∂

∂t
−Atf

∂

∂f
−Atg

∂

∂g
−Ath

∂

∂h
−Atp

∂

∂p
−Atq

∂

∂q
−Atk

∂

∂k
−Atl

∂

∂l
,

XB = xB
∂

∂x
+Bf

∂

∂f
+ 3Bg

∂

∂g
+Bp

∂

∂p
+Bt

∂

∂q
+Bk

∂

∂k
,

XΓ = Γ
∂

∂x
+ (Γt − Γq)

∂

∂p
,

XΘ = uΘ
∂

∂u
− 2Θf

∂

∂f
−Θt

∂

∂h
−Θk

∂

∂k
+ Θl

∂

∂l
,

XΨ = Ψ
∂

∂u
−Ψk

∂

∂p
− 2Ψf

∂

∂k
− (Ψh+ Ψt)

∂

∂l
.

The direct method leads to the following equivalence transformations for the class (3) [41]:

t̃ = α(t), x̃ = β(t)x+ γ(t), ũ = θ(t)u+ ψ(t), (4)

where α, β, γ, θ and ψ run through the set of smooth functions of t, αtβθ 6= 0. The arbitrary
elements of (3) are transformed by the formulas

f̃ =
β

αtθ2
f, g̃ =

β3

αt
g, h̃ =

1

αt

(
h− θt

θ

)
,

p̃ =
1

αt

(
βp− γq + β

ψ2

θ2
f − βψ

θ
k + γt − γ

βt
β

)
, q̃ =

1

αt

(
q +

βt
β

)
,

k̃ =
β

αtθ

(
k − 2

ψ

θ
f

)
, l̃ =

1

αt

(
θl − ψh− ψt + ψ

θt
θ

)
.
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3. Differential invariants
A function of the form

I(x, t, u, ζi(t), ζit(t), ζitt(t), . . . )

which remains invariant under the equivalence group E is called differential invariant of order s
of equation (3), where s denotes the maximal order derivative of ζi(t). If no derivatives appear,
then it is called differential invariant of order zero. An equation

E(x, t, u, ζi(t), ζit(t), ζitt(t), . . . ) = 0

that satisfies the conditions

X
(s)
k (E)

∣∣∣
E=0

= 0, k = A, B, Γ, Θ, Ψ,

is called an invariant equation of order s.
In order to determine the differential invariants of order s, we need to calculate the

prolongations of the operator X. The procedure for determining the prolongations can be
found in [15]. We do not find invariant of zero order. However we find the following invariant
equations of zero order:

f = 0, g = 0.

Although we have taken the functions f(t) and g(t) to be nonzero, the above equations state
that there do not exist point transformations which map an equation of the class (3) into an
equation of the same class with either f(t) = 0 or g(t) = 0.

Next step is to derive differential invariants of first order. We introduce the quantities

A1 = fkt − kft + fhk − 2lf2, A2 = 2ghf − 2fqg − gft + fgt.

We find that the class of equations (3) admits one differential invariant of first order

I(1) =
A1g

7/6

A2
4/3f1/6

and two invariant equations

A1 = 0, A2 = 0.

For the differential invariants of second order we introduce the quantities

A3 = 8h2gf2 − 8hfgft − 10hf2qg + 6hf2gt + 2gq2f2 + 5gqfft + 3gf2
t

− 3qgtf
2 − ffttg + 2f2ght − 2f2gqt + f2gtt − 3ftgtf,

A4 = −3kf2
t + 3ftfkt + 5ftfhk − 2ftf

2l + ftfkq − qf2hk + 2qf3l − qf2kt

− 3h2kf2 + 6lhf3 − 4hktf
2 + ffttk − f2kht + 2f3lt − f2ktt.

We find two differential invariants of second order

I
(2)
1 =

gA3

A2
2 , I

(2)
2 =

g13/6A4

f1/6A2
7/3

and two invariant equations

A3 = 0, A4 = 0.
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4. Applications
Similar to the applications of Laplace invariants that stated in the Introduction, we have the
following results.

Theorem 1. Equation (3) can be transformed into

ut + uxxx + c1u
2ux + c2uux = 0

if and only if A1 = A2 = 0. That is, if and only if invariant equations are satisfied.
Equation (3) can be transformed into

ut + uxxx + c1u
2ux + φ(t)uux = 0

if and only if A2 = 0 and A1 6= 0.
Equation (3) can be transformed into

ut + φ(t)uxxx + u2ux + c1uux = 0

if and only if A1 = 0 and A2 6= 0.
Equation (3) can be transformed into

ut + uxxx + φ(t)u2ux + c1uux = 0

if and only if A1 − c1A2 = 0 and h = 2q.

The first part of the Theorem 1 is also presented in the work [41]. Below we present the
mappings that connect equation (3) with each one of the four equations that appear in the
Theorem 1.

The equation
ũt̃ + ũx̃x̃x̃ + c1ũ

2ũx̃ + c2ũũx̃ = 0

is connected with equation (3) under the mapping

t̃ =

∫ √
f3

c3
1g

e−3
∫
hdtdt,

x̃ =

√
f

c1g
e−

∫
hdtx+

∫ {
1

4
√
c5

1fg
e−3

∫
hdt
[
c2

1

(
k2 − 4fp

)
e2

∫
hdt − c2

2f
2
]}

dt,

ũ = e
∫
hdtu+

k

2f
e
∫
hdt − c2

2c1
,

where the invariant equations A1 = 0, A2 = 0 must hold. We point out that c2 can be taken
equal to zero.

The equation
ũt̃ + ũx̃x̃x̃ + c1ũ

2ũx̃ + φ(t̃)ũũx̃ = 0

is connected with equation (3) under the mapping

t̃ =

∫
g

c
3/2
1

e−3
∫
qdtdt,

x̃ =
1
√
c1

e−
∫
qdtx+

∫
g
√
c1f

e−3
∫
qdt

[
k

√
f

g
e
∫
qdt

∫
l

√
f

g
e
∫
qdtdt

− pf

g
e2

∫
qdt − f

(∫
l

√
f

g
e
∫
qdtdt

)2]
dt,

ũ =

√
f

g
e
∫
qdtu+

∫
l

√
f

g
e
∫
qdtdt,
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where the invariant equation A2 = 0 must hold and

φ =
c1

f

(
k

√
f

g
e
∫
qdt − 2f

∫
l

√
f

g
e
∫
qdtdt

)
.

The equation
ũt̃ + φ(t̃)ũx̃x̃x̃ + ũ2ũx̃ + c1ũũx̃ = 0

is connected with equation (3) under the mapping

t̃ =

∫
fe−

∫
(q+2h)dtdt,

x̃ = e−
∫
qdtx+

∫
1

4f
e−

∫
(q+2h)dt

[(
k2 − 4fp

)
e2

∫
hdt − c2

1f
2
]
dt,

ũ = e
∫
hdtu+

k

2f
e
∫
hdt − c1

2
,

where the invariant equation A1 = 0 must hold and

φ =
g

f
e2

∫
(h−q)dt.

The equation
ũt̃ + ũx̃x̃x̃ + φ(t̃)ũ2ũx̃ + c1ũũx̃ = 0

is connected with equation (3) where h = 2q under the mapping

t̃ =

∫
ge−3

∫
qdtdt,

x̃ = e−
∫
qdtx+

∫
1

4f
e−

∫
qdt
(
k2 − c2

1g
2 − 4fp

)
dt,

ũ = e2
∫
qdtu+

k − c1g

2f
e2

∫
qdt,

provided A1 − c1A2 = 0 and

φ =
f

g
e−2

∫
qdt.

Here c1 6= 0, otherwise the result is the same as in the previous case with c1 = 0 and h = 2q.

5. Operators of invariant differentiation
Here we find an operator ofinvariant differentiation that transform each invariant of equation (3)
into invariants of higher-order of the same equation. Since arbitrary elements are functions of t
we look for an operator of invariant differentiation of the form

D = ψDt,

where ψ = ψ(t, x, u, f, g, . . . , l, ft, . . . , lt, . . . ) and can be found by solving the differential
equations

X
(n)
A (ψ) = Atψ, X

(n)
B (ψ) = 0, X

(n)
Γ (ψ) = 0, X

(n)
Θ (ψ) = 0, X

(n)
Ψ (ψ) = 0.
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For zero order we find ψ = 0, for first order

ψ =
fg

A2
H
(
I(1)
)
,

and for second order

ψ =
fg

A2
H
(
I(1), I

(2)
1 , I

(2)
2

)
.

Since the function H is arbitrary, we can take it, without of generality, H = 1. Hence,

D =
fg

A2
Dt.

Now, if we apply the invariant differentiation to I(1) we obtain

D(I(1)) =
fg

A2
Dt

(
I(1)
)

= I
(2)
2 + 7

6I
(1) − 4

3I
(1)I

(2)
1

and therefore,

I
(2)
2 = D

(
I(1)
)
− 7

6I
(1) + 4

3I
(1)I

(2)
1 .

This means that we have one new differential invariant of second order, while the second can
be obtained with the application of the invariant differentiation to the differential invariant of
first order. Further calculations showed that the class of equations (3) admits two differential
invariants of third order and two of fourth order. It appears that the class (3) has a basis of

two differential invariants:
{
I(1), I

(2)
1

}
. Any other differential invariant of higher order can be

obtained with the employment of the invariant differentiation. However this result needs to be
proved and consequently, it will be a task for the near future.
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