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Abstract. This paper describes the verification of Se-
cure Electronic Transaction (SET), an e-commerce pro-
tocol by VISA and MasterCard. The main tasks are to
comprehend the written documentation, to produce an
accurate formal model, to identify specific protocol goals,
and, finally, to prove them. The main obstacles are the
protocol’s complexity (due in part to its use of digital
envelopes) and its unusual goals involving partial infor-
mation sharing. Our verification efforts show that the
protocol does not completely satisfy its goals, although
the flaws are minor. The primary outcome of the project
is experience with verification of enormous and compli-
cated protocols. This paper summarizes the project – the
details appear elsewhere [11–13] – focusing on the issues
and the conclusions.
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1 Introduction

Recent years have seen substantial progress in the for-
mal verification of security protocols. Detailed analysis
of cryptographic primitives, verification of Internet stan-
dards, and substantial progress in the automation of
model-checking and theorem-proving procedures for se-
curity verification have boosted a field that outsiders
believe is populated only by “Yet-Another-Look-at-
Needham–Schroeder” papers.
Protocol verification techniques fall into several cat-

egories. A general-purpose model checker can verify
protocols, as pioneered by Lowe and colleagues at Ox-
ford [23, 40]. A general-purpose proof tool can also be
effective, as in Paulson and colleagues’ work based on
higher-order logic and the tool Isabelle [9, 33], and in

Schneider’s work based on process algebras and the tool
PVS [41].
Additionally, there exist several specialized protocol

analysis tools. Most perform an exhaustive search in the
spirit of model checking. For instance, we can use Athena
by Song [43] which is based on the strand space model,
the process algebra model-checking tool developed by Fo-
cardi and Gorrieri [38], tools based on rewriting proposed
by Rusinowitch and his group [19, 21], systems that use
reduction to planning via satisfiability such as the AVISS
tool [3, 4] or via logic programming as proposed by Car-
lucci and Massacci [18]. Among the model-checking tools,
the most interesting uses on-the-fly model checking with
infinite-state automata [3, 7, 8]. Among the specialized
tools having deductive capabilities, the best is Meadows’
NRL [29]. Also, Brackin has used a higher-order imple-
mentation of BAN logics for the specification of protocols
and can verify authentication properties [16]. Cohen’s
TAPS processes the protocol specification and verifies the
desired properties using a resolution theorem prover [20].
Computer-assisted methods based on static analysis have
only recently been developed as in the work by Blanchet
et al. [1, 15]. For additional sources the reader may con-
sult Meadows’s recent and fairly exhaustive survey [30].
Formal proof is preferable for establishing properties,

while model checking is best for finding attacks. Exhaus-
tive search is only feasible if the model is kept as small as
possible, for example by minimizing the number of per-
mitted executions. If the assumptions are too strong, the
absence of an attack does not guarantee correctness. In-
teractive proof tools are not automatic, but they offer
flexibility in expressing specifications and proofs. Models
need not be finite and can therefore be more realistic.
Many practical industrial protocols have been for-

mally verified using interactive or semi-interactive proof
tools. Protocols like Kerberos IV [14], the Internet Key
Exchange protocol [29], the Cybercash protocol [24] and
the TLS/SSL protocol [34] have all yielded to automatic



18 G. Bella et al.: An overview of the verification of SET

or semi-automatic tools. One particular protocol has
proved to be particularly resistant to verification: the
SET (Secure Electronic Transaction) protocol by VISA
and Mastercard.
SET [26–28] has been proposed by a consortium of

credit card companies and software corporations to se-
cure e-commerce transactions. When a customer makes
a purchase, the SET protocol guarantees authenticity of
the transaction while keeping the customer’s account de-
tails secret from the merchant and his choice of goods
secret from the bank. Its appeal to researchers working in
verification is the possibility of demonstrating that one’s
own verification technology is mature enough to cope
with the demands of a huge, complex, industrial protocol.
Indeed, many researchers have worked on the prob-

lem: for instance, Meadows and Syverson [31] have pro-
posed a language for describing SET specifications but
have not actually verified the protocol. Kessler and Neu-
mann [22] have extended an existing belief logic with
predicates and rules to reason about accountability. Al-
though accountability is not a stated goal of SET, it is
clearly desirable. Kessler and Neumann concentrate upon
the merchant’s ability to prove to a third party that the
order information originated with the cardholder. Using
the calculus of the logic, they conclude by pen and paper
that the goal is met, so the cardholder cannot repudiate
the transaction. Stoller [44] has proposed a theoretical
framework for the bounded analysis of e-commerce proto-
cols but has only considered an overly simplified descrip-
tion of the payment protocol of SET. Hui and Lowe [24]
have proposed a general theory to transform a complex
protocol into a simpler protocol while preserving any
faults. However, they have limited their actual analysis to
the Cybercash protocol. The claim “we plan to apply our
verification technology to SET” was a frequent conclusion
to talks and papers at the end of the millennium. Yet, the
protocol has resisted most verification attempts.
Why is SET such a challenge for formal verification?

The first obstacle is its documentation [25–28], which fills
over 1000 pages. However, the main obstacle is the pro-
tocol itself. Protocols proposed in scientific journals are
typically short, straight-line programs: they seldom go
beyond two levels of encryption and generate few secrets.
Even more sophisticated protocols such as Optimistic
Fair Exchange [5] or Group Protocols [6] can be described
in a few pages and have been successfully verified [36, 42].
Internet protocols such as IKE and TLS use cryptogra-
phy rather sparingly compared to SET. SET has many
features that make its verification unusual and hard.
The complex structure of SET makes it a benchmark

for security protocol design and verification. Whether
SET is a success or not, it is undoubtedly a real-world
protocol, arising from industry. Such a gigantic proto-
col cannot be convincingly verified without tool support.
However, tools require formal models. Even the task of
designing an adequate formal model may be too much for
human intuition.

We succeeded in analysing an abstract, but still highly
complex, version of SET: the registration phases [12] and
the purchase phase [11]. The difficulty consisted in digest-
ing the specification and scaling up. This is a major result:
our method scales to a level of complexity where intuition
falters. Unfortunately, we discovered that the method,
based on human interaction with a semi-automatic but
powerful prover, has reached a point where the complexity
of the proofs and the sheer size of the intermediate proper-
ties will require further advances to scale further.
The paper begins by outlining the SET protocol

(Sect. 2). It briefly introduces the inductive approach and
Isabelle (Sect. 3). It outlines our proofs of the registration
phase (Sect. 5) and the purchase phase (Sect. 6) of SET.
Finally, there are some general conclusions (Sect. 7).

2 The SET protocol

People today pay for online purchases by sending their
credit card details to the merchant. A protocol such as
SSL or TLS keeps the card details safe from eavesdrop-
pers but does nothing to protect merchants from dishon-
est customers, or vice versa. SET addresses this situation
by requiring cardholders and merchants to register before
they may engage in transactions. A cardholder registers
by contacting a certificate authority, supplying personal
account details and his proposed signature verification
key (the public half). Registration allows the authorities
to vet an applicant, who if approved receives a certificate
confirming that his public key has been registered. All
orders and confirmations bear digital signatures, which
provide authentication and could potentially help to re-
solve disputes.
A SET purchase involves three parties: the card-

holder C, the merchant N , and the payment gateway
PG (loosely speaking a bank). The cardholder shares the
order informationOI with the merchant but not with the
payment gateway. He shares the payment information PI
with the bank but not with the merchant. A SET dual sig-
nature accomplishes this partial sharing of information:
the cardholder makes separate hashes of the order infor-
mation and the payment information and signs the pair
of hashes. Every other party receives the hash of the with-
held information and the signature of the pair. Each party
can confirm that the hashes in their possession agree with
the hash signed by the cardholder. In addition, card-
holder and merchant compute equivalent hashes for the
payment gateway to compare. He confirms their agree-
ment on the details withheld from him. Figure 1 shows an
abstract dual signature.
All parties are protected. Merchants do not normally

have access to credit card numbers. Moreover, the mere
possession of credit card details does not enable a crim-
inal to make a SET purchase: he needs the cardholder’s
signature key and a secret number that the cardholder
receives upon registration. (Some optional features of
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C −→M :OI,Hash(PI), {PI}pubKPG ,
{Hash(OI),Hash(PI)}signKC

M −→ PG : Hash(OI), {PI}pubKPG ,
{Hash(OI),Hash(PI)}signKC

Fig. 1. A dual signature

SET – presumably demanded by commercial interests –
weaken these properties. Amerchant can be authorized to
receive credit card numbers and has the option of accept-
ing payments without digital signatures.)
SET is a family of protocols. The five main ones are

cardholder registration, merchant registration, purchase
request, payment authorization, and payment capture.
There aremany additionalminor protocols, for example to
handle errors. SET is enormously more complicated than
SSL, which merely negotiates session keys between the
cardholder’s andmerchant’s Internet service providers.
Let us briefly review SET’s interesting features:

– Security bootstrapping is unusual: the initiator pos-
sesses no digital proof of identity and authenticates
himself by filling in a registration form whose format
is not specified. Authentication takes place outside the
protocol, when the cardholder’s bank examines the
completed form.
– The protocol uses multiple nested encryptions and
several message fields. These require abbreviations,
make the manual unwinding of the specifications im-
possible and restrict analysis to tools supporting equa-
tional reasoning.
– SET uses digital envelopes. A digital envelope con-
sists of two parts: one, encrypted using a public key,
contains a fresh symmetric keyK and identifying in-
formation; the other, encrypted using K, conveys the
full message text. Digital envelopes keep public-key
encryption to a minimum, but the symmetric keys
complicate the reasoning. It hampers the usual model-
checking technique to limit the state space (limiting
different keys and nonces to a handful) as it would not
even allow a single execution to complete, let alone
two or more parallel ones.
– The goal of the protocol is to protect the information
about merchandise from the bank and the information
about credit from the merchant while authenticating
the entire transaction. The partial sharing of informa-
tion among the three peers leads to unusual protocol
goals.
– SET has many alternative protocol paths that make it
impossible to single out the few key roles used either
by manual analysis (as in the strand space model) or
by model checkers to restrict the search space.

Are these features or bugs? Though some security
experts may claim that SET is a monster designed by
a committee, others will note that many of these features
are valuable. Alternative protocol paths are necessary in
practice in order to allow diversity. Security-aware cus-

tomers may have pre-registered with a financial institu-
tion and thus secured their credit cards from the mer-
chant’s eyes. Other customers may decide to trust the
merchant and thus be content with a transaction secured
against the outside world. From a merchant’s perspec-
tive, all customers should be able to conclude a purchase,
whether they have bothered to pre-register or not.
This paper is intended to summarize our work on

the SET protocol: the issues, the results and the lessons
learned. Detailed descriptions of the verification are pub-
lished elsewhere [11–13].

3 Isabelle and inductive protocol verification

We used the Isabelle theorem prover with the inductive
approach to protocol verification, building on previous
experience on a wide range of protocols, including indus-
trial ones such as Kerberos [14] and TLS [34].
Isabelle/HOL [32] is an interactive proof tool for

higher-order logic. Isabelle provides a simplifier, a predi-
cate calculus theorem prover, a choice of proof languages,
and automatic generation of LaTeX documents. Isabelle’s
support for inductive definitions is particularly strong,
both in its specification language and in its prover au-
tomation. However, other tools for higher-order logic
could be suitable, provided they fully support conditional
equational reasoning.
The inductive approach [33] verifies protocols using

the standard techniques of operational semantics. An in-
ductive definition defines the possible executions of a sys-
tem consisting of the honest protocol participants and
an active attacker, the Spy. An execution comprises any
number of attempted protocol runs and is a trace of mes-
sage transmissions and other events.
Authentication and agreement are expressed using

safety properties over traces and proved by induction
over traces. We typically prove that any trace containing
a particular event xmust also contain some other event y.
Secrecy properties are hardest to prove. If we are con-

cerned with the secrecy of a certain keyK, then we must
prove K �=K ′ for each key K ′ that might be compro-
mised. Every encrypted message produces a case split,
since we must prove that K is secure whether or not the
encrypting key is secure. Protocols with many steps or
many options can generate a huge number of cases. De-
spite the difficulties, we can use established techniques
and tools to prove secrecy.
Most protocols, even esoteric ones like non-repudiation

and fair exchange protocols, involve the standard cast of
characters: Alice, Bob, possibly Charlie, and a trusted
third party. SET is different: it has cardholders, mer-
chants, payment gateways and a hierarchy of certificate
authorities. Still, changing Isabelle’s theory of protocols
to use SET’s cast of characters was easy.
The model includes a set of honest agents, whose long-

term keys can never become compromised. (Arguably,
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our model is too optimistic.) For typical protocols, where
long-term keys are never transmitted, proving that they
remain secure is trivial. The Spy controls another set of
agents, with full access to their internal states. The Spy
also controls the network and retains every transmitted
message. Session keys may become compromised, for ex-
ample if they are sent to compromised agents.
A standard theory of messages and their constructors

underlies these inductive models. Messages in our model
form a recursive datatype (equivalently, a free algebra).
A nonce can never equal an agent name or a session key,
for instance. Such assumptions are more realistic than
one might expect: different kinds of items are likely to
have different lengths and even a different bit-wise en-
coding. Concatenation of messages may seem to be in-
herently associative. However, the ISO-DER encoding of
a sequence of six random numbers has a bit-wise encoding
different from the concatenation of a pair of sequences of
three numbers.
Encryption is injective in our theory. Only one key

can decrypt a ciphertext, which can yield only one plain-
text. This assumption is plainly false for low-level appli-
cations of encryption, where using the wrong key yields
a plaintext of random bits. However, it is correct pro-
vided “each encrypted message contains sufficient redun-
dancy to allow a principal who decrypts it to verify that
he has used the right key”, to quote Burrows et al. [17,
p. 237]. Most research on protocol verification relies on
this assumption.
Our model does not allow reasoning about exclusive-

OR (XOR for short). XOR breaks down our representa-
tion of messages as a free algebra, since it satisfies several
equations such as associativity, commutativity and self-
cancellation. Intuitively, the problem is that the XOR
of two messages can potentially yield a message of any
form, though such a possibility is highly unlikely in prac-
tice. One needs substantial logical complications to make
the highly unlikely formally impossible while keeping the
rather unlikely still possible.

– XORing two compromised 1024-bit private keys should
not yield an uncompromised key.
– In contrast, XORing together a long chain of pairwise
XORed nonces (each of the form Ni⊕Ni+1), should
reveal an initially uncompromised nonce N0 because
of the cancellation law.

An appealing theory of XOR has not been proposed so
far in the literature, and its invention would not be justi-
fied in this case. Fortunately, SET uses XOR only in one
place: at the end of cardholder registration, to compute
the so-called PANSecret. Rather than proving the secrecy
of the PANSecret, we prove the secrecy of the two random
numbers used in its calculation, substantially yielding the
same desired effect. Proving the secrecy of the PANSecret
would require additional assumptions in order to exclude
the possibility that the XOR could yield a compromised

secret. Still, as discussed in Sect. 5.4 below, SET’s use of
XOR introduces a vulnerability.

4 Modelling issues

Researchers compete to produce the fastest automatic
tools. However, the main obstacle to protocol verifica-
tion lies in digesting the documentation and producing
a formal model. Understanding hundreds of pages of text
is a massive undertaking. Meticulous care is essential to
avoid defining an incorrect model.
The main SET documents are the Business Descrip-

tion [26], the Programmer’s Guide [28], and the For-
mal Protocol Definition [27]. SET is defined using Ab-
stract Syntax Notation One (ASN.1).1 The Program-
mer’s Guide presents each message format as a figure
based on the underlying ASN.1 definition, augmented
with a detailed English description of how to process each
message. The Formal Protocol Definition consists of the
Programmer’s Guide with the ASN.1 notation inserted
and the English text removed. Since the ASN.1 adds lit-
tle to the figures, the formal protocol definition essen-
tially consists of syntax without semantics. It describes
the message formats but says nothing about how mes-
sages are processed. For that information, we had to rely
on the Programmer’s Guide.
The enormous size and complexity of the SET mes-

sage formats demanded simplification. As we have dis-
cussed elsewhere [10, 13], this was not always straight-
forward, forcing us to decide what constituted SET’s
core feature set. We eliminated payment by installments
(since it can be modelled by repeated transactions) and
modelled only authorized transactions (so unauthorized
transactions were modelled by silent denial). Other re-
searchers can make other choices.
Attacks against protocols often arise from unclear as-

sumptions about the operating environment rather than
from actual protocol flaws. Experts can dispute whether
the formal model accurately reflects the real world and
thus whether the attack is realistic. Consider Lowe’s fa-
mous attack [23] against the Needham–Schroeder public-
key protocol: Alice talks to Charlie, who happens to be
dishonest and proceeds to fool Bob. In this scenario,
Charlie is a dishonest insider. However, Needham and
Schroeder designed the protocol to protect insiders from
outsiders with the express assumption that honest insid-
ers will only talk to other equally honest insiders.
SET has a much more complex environment, and

parts of its operation are specifically left “out of band”.
Our formal model has to make reasonable assumptions
about these parts, which are sketched in the SET Exter-
nal Interface Guide [25]. It also must specify which insid-
ers can be compromised and innumerable other details. It
also has to define the protocol goals since the documenta-
tion outlines them only in general management terms.

1 http://www.asn1.org
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5 Verifying the registration protocols

The cardholder registration protocol (Fig. 2) comprises
three message exchanges between the cardholder and
a certificate authority. In the first exchange, the card-
holder requests registration and is given the certificate
authority’s public keys. In the second exchange, the card-
holder supplies his credit card number, called the PAN,
or Primary Account Number; he receives an application
form suitable for the bank that issued his credit card.
In the third exchange, the cardholder returns the com-
pleted application form; in addition, he delivers his pub-
lic signature key and supplies a 20-byte secret number
(the CardSecret). Finally, the cardholder receives a cer-
tificate that contains his public signature key and another
20-byte secret number, the PANSecret. The registration
protocol for merchants is simpler: it has only two message
exchanges and involves no credit card number.
Conceptually, cardholder registration is straightfor-

ward. Its chief peculiarities are that the cardholder is au-
thenticated by the registration form containing the PAN,
not by the knowledge of a secret key, and that long-term
keys can be created on the fly. The first point is critical
for modelling and is discussed elsewhere [13]. The second
point makes verification difficult.

5.1 Dynamic creation of long-term keys

Typical modelling of a public/private key pair associates
each half to the agent holding it: there is a function map-
ping each agent’s name to his public key. Thus each agent
has precisely one public key, and therefore one private
key. This greatly simplifies all secrecy proofs.

– If the agent has only one key and he is not compro-
mised, his private key is by definition not compro-

Fig. 2. Cardholder registration

mised at the beginning of the protocol. If the private
key is never sent in a message – and this is true of most
protocols – it will never be compromised. If the agent
is compromised, his keys are lost from the start. This
modelling of key compromise avoids certain case splits
in secrecy proofs.
– If the agent is not compromised, then the Spy cannot
read messages encrypted using his public key. We can
focus on the remaining trace and apply the inductive
hypothesis.

A similar phenomenon takes place in model-checking ap-
proaches. There is no search involved in asymmetric cryp-
tography when key pairs are assigned to agents from the
outset.
If agents have more than one private key and can gen-

erate public/private key pairs on the fly, it is necessary
to have a complex background theory on keys which for-
mally states all obvious properties.

– If agents can generate keys on the fly, one should not
be able to generate existing keys by chance, a public
half of a key should not be be equal to a secret half of
another asymmetric key or to a symmetric key, there
should be an infinite supply of keys, etc.
– In proofs, each time a public key is used we can no
longer look at the agent and conclude whether or not
the encrypted message is compromised. Case splits
would arise: one particular key could be compromised,
or a cardholder could use a key that is not compro-
mised before step i but becomes compromised soon af-
terwards. Also, a cardholder could, but is not obliged
to, register a fresh key each time, and a cardholder
using stale keys would generate additional case splits.

This uncertainty makes proofs hard and model checking
impossible.
Indeed, in our first model of the cardholder registra-

tion protocol presented at ESORICS [13], we modelled
these possibilities successfully. In the version described in
the JSAC paper [12], we have reverted to the standard
modelling approach, where one key pair for signature and
one for encryption are syntactically associated to each
agent, because it is more readable.

5.2 Key dependency chains

Another obstacle to verification – especially proving se-
crecy – is SET’s heavy use of digital envelopes. Digital
envelopes can generate a trace where in message 1 there
is a key encrypting a key for message 2, and so forth. To
prove the secrecy of the last key, one must prove the se-
crecy of all dynamically created keys in the chain.
In most formal analysis of key distribution protocols,

the initial public keys are assigned to agents from the out-
set. The final step of actually encoding data with the dis-
tributed session key is never modelled, as one just proves
that the session key remains secret. So a dependency
chain of length two in the real protocol is actually cut
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down to no chain in the modelled protocol. Yahalom [35]
and Kerberos [14] have a (modelled) dependency chain of
length one: one session key encrypts just one secret. Also,
protocols such as IKE have a short dependency chain:
the public and private keys used during phase 1 are just
used to encrypt the session key which will be used during
phase 2 of the protocol.
The explicit modelling of digital envelopes and the us-

age of digital envelopes to transmit dynamically created
secrets produce long formal dependency chains. With
SET, the dependency chain has length two, or three if
signing keys are generated dynamically. It may not sound
like much of an increase, but the jump from zero or at
most one to two or three requires new proof techniques.
This is a major problem because digital envelopes are
ubiquitous in any practical protocol that uses public key
cryptography to ensure secrecy. Indeed, if one sees a spe-
cification of a protocol that uses public-key cryptography
for encryption but does not use digital envelopes, it is
probably because it abstracts them away, not because
they are not there.
To cope with arbitrary dependency chains, we gen-

eralized the technique used for Yahalom [35] and Ker-
beros [14]. We defined a transitive relation specifying
where in a given trace the loss of one key leads to the loss
of another: when the first key was used to encrypt the sec-
ond key in somemessages sent during that trace of events.
This creates a dependency relation between the second
key and the first key. Then, we proved some lemmas that
rule out dependencies or bound what can be lost.

– The simplest dependencies that can be ruled out are
those depending on the cardholder’s public key. No
key depends on the cardholder’s secret key because no
key is ever encrypted with the cardholder’s public key.
– The secrecy of a key never used in a trace cannot de-
pend on the secrecy of another key previously used in
the trace. Also, if unused keys are lost to the Spy, then
they must be held by compromised agents.

It is also possible to give a protocol-independent treat-
ment of dependency chains. The generic Isabelle theory
of protocol messages defines a relation yielding the keys
necessary to decrypt some message belonging to a given
set of messages. The definition is independent of any par-
ticular protocol. After extending the message theory with
SET constructs, we have used the notion extensively in
the proofs about SET.
However, the proofs for protocols as complex as SET

often have many intermediate subgoals that span many
pages. If we define the key dependency chain specific-
ally for the protocol under verification, then we can avoid
some case splits by construction. We define the relation
to refer to the specific protocol steps that produce the de-
pendency chain. The other protocol steps, no matter how
complicated, are ruled out by construction.
This treatment of the relation is practical and still

safe, since the proofs will reveal any errors. If our rela-

tion omits some dependency, then our lemma bounding
the possible losses will be useless for proving other secrecy
theorems. Moreover, the case of the secrecy theorem that
we are unable to prove will indicate which dependency
was missed.
In the current model of cardholder registration, the

chain links only three items: two symmetric keys and one
nonce. If asymmetric keys can be generated on the fly, the
chain can become longer and the bounding lemmas more
complex. Having both on-the-fly generation of asymmet-
ric keys and digital envelopes adds more than the sum of
their complexities.

5.3 Modelling the fifth message of registration

Let us consider these points more precisely. Here is the
fifth message, Cardholder Certificate Request :

5. C→ CA : CryptKC3(m, S),

CryptpubEKCA(KC3,PAN,CardSecret)

wherem = C, NC3, KC2, pubSKC

and S = CryptpriSKC(Hash(m,PAN,CardSecret))

The cardholder chooses an asymmetric signature key
pair. He gives the public key, pubSKC, and the number
CardSecret to the certificate authority. This message is
a digital envelope, sealed using the key KC3; it contains
another key, KC2, which the certificate authority uses for
encrypting the Cardholder Certificate:

6. CA→ C : CryptKC2
(SignCA (C,NC3,CA,NonceCCA),

CertCA(pubSKC,PANSecret),

CertRCA(pubSKCA)))

where PANSecret = CardSecret⊕NonceCCA

The certificate authority returns a certificate for the card-
holder’s public signature key. The certificate also includes
the cryptographic hash of PANSecret. This 20-byte num-
ber is the XOR of the CardSecret and NonceCCA:
a nonce chosen by the certificate authority. The purpose
of these nonces is twofold: CardSecret will be used by the
cardholder to confirm purchases on top of the digital sig-
nature (the hash of CardSecret must be added for each
payment instruction), and PANSecret as a whole will
be used to generate the cardholder’s name in the X.509
certificate format. The name of the public-key holder
in the certificate will not be C but Hash(PANSecret,
PAN).

Remark. The secrets KC3, KC2, NonceCCA form a de-
pendency chain, requiring the new proof technique men-
tioned above. Removing the digital envelopes here would
shorten the dependency chain – as would disposing with
NonceCCA, as we recommend below.
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Figure 3 presents the Isabelle specification of mes-
sage 5. It is hard to read, but comparing it with the in-
formal notation above conveys an idea of the syntax. The
inductive definition consists of one rule for each protocol
message, which extends a given trace. (Note that # is Is-
abelle syntax for the list “cons” operator. In the rule for
message 5, the current trace is called evs5.) One of the
rule’s preconditions is that CardSecret must be fresh:

Nonce CardSecret /∈ used evs5

The nonce NC3 and the two symmetric keys (KC2 and
KC3 ) must also be fresh. Other preconditions check that
the cardholder has sent an appropriate instance of mes-
sage 3 to the certificate authority and has received a well-
formed reply. If the preconditions are satisfied, then C can
generate the corresponding instance of message 5.

5.4 Security of the PANSecret

We did not discover any attacks against cardholder reg-
istration. However, we did discover a modification that
would improve the protocol. Under reasonable assump-
tions, the PAN, PANSecret and other sensitive infor-
mation remain secure. Among the reasonable assump-
tions is that certificate authorities are not compromised.
(Though this might be argued about a financial insti-
tution as such, it might be false about the institution’s
outsourced software!) Here is a flaw: the PANSecret is
computed as the XOR of CardSecret and NonceCCA,
which gives the certificate authority full control over its
value. One would like to be able to trust the certificate

[[evs5 ∈ set_cr; C = Cardholder k;

Nonce NC3 /∈ used evs5; Nonce CardSecret /∈ used evs5;
NC3 �= CardSecret;
Key KC2 /∈ used evs5; KC2 ∈ symKeys;
Key KC3 /∈ used evs5; KC3 ∈ symKeys; KC2 �=KC3;
Gets C {|sign (invKey SKi) {|Agent C, Nonce NC2, Nonce NCA|},

cert (CA i) EKi onlyEnc (priSK RCA),

cert (CA i) SKi onlySig (priSK RCA)|}
∈ set evs5;

Says C (CA i)

{|Crypt KC1 {|Agent C, Nonce NC2, Hash (Pan (pan C))|},
Crypt EKi {|Key KC1, Pan (pan C),

Hash {|Agent C, Nonce NC2|}|}|}
∈ set evs5]]

=⇒ Says C (CA i)

{|Crypt KC3
{|Agent C, Nonce NC3, Key KC2, Key (pubSK C),
Crypt (priSK C)

(Hash {|Agent C, Nonce NC3, Key KC2,
Key(pubSK C), Pan(pan C), Nonce CardSecret|})|},

Crypt EKi {|Key KC3, Pan (pan C), Nonce CardSecret|}|}
# evs5 ∈ set_cr

Fig. 3. Cardholder registration in Isabelle (message 5)

authorities, but banks have issued insecure personal in-
formation numbers.

“One small upper-crust private bank belied its ex-
clusive image by giving all its customers the same
PIN. This was a simple programming error; but
in another, more down-market institution, a pro-
grammer deliberately arranged things so that only
three different PINs were issued, with the idea that
this would provide his personal pension fund” [2,
p. 35].

The remedy is trivial: compute the PANSecret by hash-
ing instead of XOR. Another remedy is to leave its choice
entirely to the cardholder’s computer – after all, it ex-
ists for the cardholder’s protection. If two nonces are
needed, one (PANSecret) disclosed to the payment gate-
way and another (CardSecret) disclosed only to a certifi-
cate authority, then let the cardholder generate both of
them.
This modification would eliminate NonceCCA, and

with it the need to encrypt message 6, which would con-
tain only public-key certificates. We could dispense with
the key KC2 and eliminate the dependency chain KC3,
KC2, NonceCCA. These changes would make the proto-
col simpler and more secure against a compromised cer-
tificate authority.

6 Verifying the purchase protocols

A SET purchase can involve three protocols: purchase
request, payment authorization, and payment capture.



24 G. Bella et al.: An overview of the verification of SET

The first two of these often behave as a single proto-
col, which is how we model them. (We have not inves-
tigated payment capture.) The protocol is too complex
to present here in full. Even the means of identifying the
transaction is complicated. The cardholder and merchant
may each have an identifying number; sometimes a third
number is chosen. The choice of method is actually left
open by SET designers. These options are clearly derived
from the world of paper transactions (“Our ref: . . . ”,
“Your ref: . . . ”, “Invoice num: . . . ”, etc.) and make busi-
ness sense in a commercial context.
From the point of view of verification, this lack of

clarity is not acceptable. To prove any result about the
authenticity, integrity or secrecy of the transaction de-
tails at the end of the protocol, we must clearly iden-
tify the transaction at the beginning of the protocol. For
sake of simplicity, we discard all but one of the identifica-
tion options: we use the merchant’s transaction identifier.
This option – sanctioned in the SET External Interface
Guide [25] – corresponds to a widespread practice for
tracking orders: browser cookies.
The essential parameters of any transaction are the

order description (presumably a text string) and the pur-
chase amount, which is part of the overall payment in-
structions. The cardholder forms a dual signature on
the order information and payment information, as out-
lined in Sect. 2, and sends it to the merchant. The mer-
chant forwards the payment information, under his sig-
nature, to the payment gateway. Only the payment gate-
way can read the account details, which include the PAN
and the PANSecret. If they are acceptable, he replies
to the merchant, who confirms the transaction with the
cardholder.
Other details of our model include an event to model

the initial shopping agreement, which lies outside SET.
Our model also includes the possibility of unsigned pur-
chases. These allow unregistered cardholders to use SET
using a credit card number alone and offer little protec-
tion to merchants. SET perhaps offers this option in order
to provide an upgrade path from SSL.
An example illustrates the complexity of the dual sig-

nature. Message 3 is the actual purchase request from the
cardholder to the merchant:

3. C→M : PIDualSign,OIDualSign

Here, the cardholder C has computed

HOD = Hash(OrderDesc,PurchAmt)
PIHead = LID_M,XID,HOD,PurchAmt,M,

Hash(XID,CardSecret)
OIData = XID,Chall_C,HOD,Chall_M
PANData = PAN,PANSecret
PIData = PIHead,PANData
PIDualSign= SignpriSKC(Hash(PIData),Hash(OIData)),

CryptpubEKP (PIHead,Hash(OIData),PANData)
OIDualSign= OIData,Hash(PIData)

LID_M and XID are unique (but guessable) transaction
identifiers generated by the merchant’s software; Chall_C
and Chall_M are nonces; the remaining fields are all de-
rived from PAN, PANSecret and CardSecret.
Because of the hashing, all the information appears

repeatedly. Although in the real world the hash of any
message is a short string of bytes, in the formal model
the hash of messageX is literally HashX: a construction
involvingX. The formal model of message 3 involvesmas-
sive repetition. Most digital envelopes involve hashing,
causing further repetition. Figure 4 presents this message
using Isabelle syntax.
The SET documentation does not specify what opera-

tional properties to prove. The Business Description only
offers the following requirements [26, p. 6]:

SET addresses seven major business requirements:

1. Provide confidentiality of payment information
and enable confidentiality of order information
that is transmitted along with the payment in-
formation.

2. Ensure the integrity of all transmitted data.
3. Provide authentication that a cardholder is
a legitimate user of a branded payment card
account.

4. Provide authentication that a merchant can
accept branded payment card transactions
through its relationship with an acquiring fi-
nancial institution.

We dropped requirements such as using best practice or
providing interoperability.
These high-level goals can be mapped in a variety of

ways into operation goals, and we used our reading of the
entire Business Description and the Programmer’s Guide
to define them. Here are two examples:

– Obviously, the PAN and PANSecret must remain se-
cure. Each party to a purchase must be assured that
the other parties agree on all the essential details: the
purchase amount, the transaction identifier, the order
description and the names of the other agents.
– The payment gateway must be assured that he has re-
ceived the right payment information and the order
description is correct, even though the order informa-
tion is withheld from him.

We proved most of these properties. Some proofs were
easy; few theorems had intrinsically difficult proofs. The
sheer number of theorems and supporting lemmas was
an obstacle – many results had separate versions for
signed and unsigned purchases. The complexity of theo-
rem statements, caused by the complicated SET message
formats, was an obstacle. Not knowing precisely what to
prove was a major obstacle: if we had problems proving
an assertion, we had to decide whether to weaken it some-
how, to look harder in the SET documentation for some
omitted field, or try harder with the proof itself.
When the merchant sees a dual signature in a pur-

chase request, he is assured that it originated with the
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[[evsPReqS ∈ set_pur; C = Cardholder k; CardSecret k �= 0;
Key KC2 /∈ used evsPReqS; KC2 ∈ symKeys;
Transaction = {|AgentM, Agent C, NumberOrderDesc,NumberPurchAmt|};
HOD = Hash{|Number OrderDesc, Number PurchAmt|};
OIData = {|NumberLID_M, NumberXID, Nonce Chall_C, HOD, NonceChall_M|};
PIHead = {|NumberLID_M, NumberXID, HOD, Number PurchAmt,Agent M,

Hash{|Number XID, Nonce (CardSecret k)|}|};
PANData = {|Pan (pan C), Nonce (PANSecret k)|};
PIData = {|PIHead, PANData|};
PIDualSign = {|sign (priSK C) {|Hash PIData, Hash OIData|},

EXcrypt KC2 EKj {|PIHead, Hash OIData|} PANData|};
OIDualSign = {|OIData, Hash PIData|};
Gets C (sign (priSK M){|Number LID_M, Number XID,

Nonce Chall_C, Nonce Chall_M,

cert P EKj onlyEnc (priSK RCA)|})
∈ set evsPReqS;

Says C M {|Number LID_M, Nonce Chall_C|} ∈ set evsPReqS;
Notes C {|Number LID_M, Transaction|} ∈ set evsPReqS]]
=⇒ Says C M {|PIDualSign, OIDualSign|} # evsPReqS ∈ set_pur

Fig. 4. The signed purchase request message

cardholder. The formal proof, like the intuitive one, ar-
gues that only the cardholder knows his private signature
key. The proof uses induction, as usual, and applies three
easily proved technical lemmas. This theorem is import-
ant: by verifying the dual signature, specifically the trans-
action identifier XID, the merchant can be assured that
he and the cardholder agree on the details of the purchase.
The theorem described above is a typical agreement

guarantee. The agreement guarantees between other
pairs of agents are also easy to prove. The total effort, due
to the obstacles mentioned above, is considerable.
Secrecy properties are typically harder to prove than

other properties, and this is also true for SET. Unless
equational rewriting is set up carefully, the subgoals will
blow up exponentially. It is sometimes convenient to un-
fold definitions, allowing the simplifier to prove some sub-
goals automatically. However, if we unfold everything, the
remaining subgoals will be unreadable.
Lemmas of a peculiar form must be proved by induc-

tion. Fortunately, the necessary techniques appear to be
similar for all protocols. We proved the secrecy of the ses-
sion keys used in the digital envelopes and of nonces such
as PANSecret. Secrecy of the PAN involves two theorems,
depending upon whether the purchase request is signed or
unsigned. We did not have to introduce new relations, as
we did for cardholder registration.
A concern that emerged from our proof efforts is that

many guarantees for cardholders and payment gateways
depend upon the assumption that merchants are not com-
promised. This is due, not to a lack of effort on our side,
but to an apparently unrelated feature of the design: the
payment gateway is chosen by the merchant alone during
the SET initiation process. His public and private keys
are often used but his name is not confirmed (for example
in a digital signature) either by the cardholder or by the

merchant at any later stage. Thus, the payment gateway
cannot be certain that the cardholder intended him to
take part in the transaction. Message 3 involves six copies
of the field XID (transaction identifier) and nine copies of
the field PurchAmt (purchase amount), but it never men-
tions the identity of the intended payment gateway.
If the merchant is dishonest, there cannot be any guar-

antee that the right payment gateway has been selected.
Furthermore, it is impossible to prove the agreement be-
tween the name and key of the payment gateway used
by the cardholder and the name and key of the payment
gateway authorizing the transaction. Although the fail-
ure of this property is disappointing, it does not appear
to allow a significant attack within the protocol. It could
only be exploited by a rogue payment gateway, who could
induce an anomalous execution on another gateway.
This might generate unexpected behaviour. For in-

stance, a rogue merchant could collude with a rogue pay-
ment gateway to harvest credit card numbers. The rogue
payment gateway would then use a good payment gate-
way to authorize the transaction to disguise its misdeeds.
This “attack” looks unrealistic, since a payment gateway
is certified as such by a credit card institution. Cardhold-
ers have to trust it, just as they trust the credit card
company itself. Adding the name of the payment gateway
to the messages signed by the customer improves security
only slightly.
Thus, we reject the dualistic view that every protocol

is either correct or vulnerable to attack. Anomalous ex-
ecutions that do little harm within the protocol cannot
be called attacks. It is only after considering the envi-
ronment in which the protocol operates and the trust
relationships between the real embodiment of the proto-
col agents that anomalous executions could be classified
as flaws of either protocol or documentation.
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Digital envelopes complicate the statements of many
guarantees. Agreement among principals obviously refers
to important fields such as the order description and
purchase amount. While we certainly hope the two par-
ties will agree on which session key was used in a digital
envelope, that property does not seem to be essential.
We decided not to prove agreement on session keys be-
cause the value of this result did not justify the effort
needed to prove it. Loosely speaking, we have proved
that the keys on all locks (symmetric keys in digital
envelopes) remained secret, that the contents of the
luggage remained secret and unchanged, and that the
sender was authentic. We have not proved that the lug-
gage arrived with the same locks with which it was
packed.

7 Conclusions

Our study demonstrates that enormous protocols such
as SET are amenable to formal analysis. Such work is
challenging, however. Understanding the documentation
and defining a formal model can take months. Unfor-
tunately, we did not record how much time we devoted
to the various tasks and have to rely on memory. Piero
Tramontano, a M.Eng. student at that time, devoted
about 7 man-months to understanding SET under our
supervision. While he concentrated on cardholder regis-
tration, much of this time was devoted to understand-
ing the fundamentals of SET in general [10]. Completing
the cardholder registration proofs required the depen-
dency relation described in Sect. 5.2 and took perhaps
2 weeks. Merchant registration is simpler than cardholder
registration and may have needed 2 weeks for its mod-
elling and verification. For the purchase phase, we may
have devoted 11 weeks. These numbers are very approx-
imate. Modelling took longer than proof: the unsatis-
factory status of some proved results sometimes led to
changes in the model or lengthy examination of the SET
documentation.
The proofs are still difficult. Isabelle may present the

user with subgoals that are hundreds of lines long. Di-
agnosing a failed proof requires meticulous examination
of huge and unintuitive formulae, where all abbrevia-
tions have been fully expanded. Such monstrosities im-
pose a heavy burden on the computer, too. A simplifi-
cation step can take 10 or 20 s on a 1.8-GHz processor.
The bar chart shows the runtime required to execute the
proofs for several protocols on a 1.8-GHz machine. There
are three SET protocols (dark shading) and three others
(light shading). These data are suggestive rather than
compelling because minor changes to a proof script can
cause major changes to the runtime. It suggests that mer-
chant registration is very simple. Cardholder registration
requires more effort, partly because it is longer and partly
because it demands more secrecy proofs. The purchase
protocol is by far the most difficult one.

It is not clear whether model checking could cope with
this protocol’s complexity. Specialized verification tools
are more powerful than Isabelle, but they are less flexible.
Even using Isabelle, the burden on the human verifier is
too high to be increased further.
The single greatest advance would be a method of

abstraction allowing constructions such as the digital en-
velope to be verified independently. We could then model
these constructions abstractly in protocol specifications.
In the case of SET, we could replace all digital envelopes
by their abstract version. Assertions would become more
concise; proofs would become much simpler. Unfortu-
nately, abstraction in the context of security is ill under-
stood and can mask grave flaws [39].
The other advance depends on protocol designers:

they should provide a formal protocol definition worthy of
the name. It should precisely specify several things:

1. A version of the message flow comprising the security
features only,

2. A clear separation of features necessary to patch real-
word cryptography (such as salt, which thwarts dictio-
nary attacks) from abstract primitives (such as perfect
hashing, encryption and signature),

3. The protocol’s precise objectives, expressed as opera-
tional guarantees to each party,

4. The protocol’s operating environment, including the
threat model.

We are not saying that formal verification should be used
during the design (though it might be desirable even-
tually), nor that the formal protocol definition should
employ a logical formalism (designers would disagree on
which one to use). We merely insist that the protocol doc-
umentation should clearly specify the items mentioned
above. The implementers and maintenance staff would
also benefit from a clear and precise specification. At
present, we are forced to reverse engineer the protocol’s
core design from its documentation, and we have to guess
what the protocol is supposed to achieve.
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