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a b s t r a c t

To realize the basic units of fractional order controllers, it is necessary to approximate
irrational differintegrators. Many methods deal with analog approximation. But not many
results exist for discrete approximation. In this case, approximations are most times poor
in some frequency range, or the quality of the approximation is good in a narrow frequency
interval. This paper proposes an indirect discretization method that takes advantage from
the particle swarm optimization (PSO) to approximate fractional order operators. The
method employs an heuristic procedure to optimize the interlacing of zero–pole pairs on
the real axis. Then, a discretization rule is applied to obtain the discrete approximation.
Simulation results show that the frequency response obtained by PSO improves the
approximation offered by other efficient and recent indirect discretization techniques.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Noninteger (fractional) order differential or integral operators sν , with ν ∈ R and often 0 < |ν| < 1, are irrational Laplace
domain operators that derive from fractional calculus and are the basic units in the so-called fractional order controllers
(FOC) or fractional order PID controllers (FOPID) or PIλDµ controllers [1]. These controllers became quite popular because
they enhance design freedom by λ and µ and may achieve more robust behavior to gain and load variations and higher
closed-loop performance than standard PID controllers, especially if the plant is modeled as a noninteger order system but
even for integer order systems [2,3]. If one considers the extensive use of PID in industrial control loops [4], then it is easy to
imagine the benefit and impact of FOC [1,5,6]. Then, many contributions exist in the literature to design and tune FOC, some
inspired by popular approaches like the symmetrical optimum method for controlling servo systems [7]. But to realize the
designed FOC, it is necessary to approximate the infinite dimensional operators sν , also called differintegrators. In particular,
efficient approximations are necessary for digital implementation [8].

The literature reports some contributions in the field of discrete approximations for digital implementation of FOC.
Often good accuracy is achieved in narrow frequency ranges only. Some methods are based on finite impulse response
(FIR) filters [9,10], some other on infinite impulse response (IIR) filters [11,12]. Here we consider IIR filters because,
in general, rational approximations provide faster convergence and wider domain of convergence than polynomial
approximations [13].

We may distinguish between direct and indirect discretization approaches [14]. The direct approach is based on using
a generating function, say s = ψ(z−1), that depends on the sampling period T , and on truncating power series expansions
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(PSE) or continued fraction expansions (CFE). For example, the PSE of the Euler’s operator s =
1−z−1

T leads to a discretization

formula [15]. Using Tustin’s operator s =
2
T

1−z−1

1+z−1 provides other approximations [14,16,17]. The indirect approach follows
two steps [18]: in the first one, a frequency-domain fitting is applied to obtain an analog s-domain approximation; in
the second step, the fit s-transfer function is discretized by using a proper operator (e.g. Tustin, Euler, Al-Alaoui). See, for
example, themethod developed in [19] or in [8] for a digital realization robust to truncation errors due to finite word length.

For a useful control application, the developed approximationsmust be characterized by stable poles, λ1, λ2, . . . , λN , and
minimum-phase zeros, µ1, µ2, . . . , µN . In addition, many approximations verify an interlacing property, i.e. simple poles
and zeros alternate along the real axis. This property holds true for many approximations both in the continuous s-domain
and in the discrete z-domain [8]. In continuous approximations, interlacing occurs either because it is an ‘‘a priori choice’’
leading to a fractional slope of the Bode magnitude diagram of the open-loop gain [20], or because the peculiar CFE leads to
interlaced zeros and poles. In particular, some classes of CFE approximations are equivalent to the Stieltjes’s expansion [21],
expressed in the Pringsheim notation as follows [22]:

f S(s) = 1 +
1|

|α1 s
+

1|
|β2

+ · · · +
1|

|α2N−1 s
+

1|
|β2N

(1)

that enjoys the zero–pole interlacing and received a formal proof for this property [23].
Therefore, we may think that the quality of the approximation depends on the mutual position of the interlaced zeros

and poles. Hence, our idea is to apply an indirect discretization and optimize the location of zero–pole pairs on the real
axis so that the frequency response of the approximation has a small deviation from the fractional differintegrator sν , in a
frequency range of interest and for a limited amount N of zero–pole pairs. In this way the magnitude plot is very close to a
linear plot with a slope of 20 ν dB/decade determined by the fractional order ν, and the phase plot is nearly flat and close to
π
2 ν in the considered frequency range. The value ofN is determined by a trade-off between accuracy of the approximation in
the frequency range of interest and simplicity of realization. Namely, the higher the desired reduction in the approximation
error, the higher the required value of N and the higher the implementation cost.

To improve the approximation, we here use Particle SwarmOptimization (PSO) that shows good convergence properties,
reduced computational cost, and the ability to solve non-linear problemswithmultidimensional search spaces [24–27]. PSO
is a stochastic evolutionary process imitating the behavior of a swarmof insects. Each particle is randomly defined in a search
interval and represents a different solution for the set of zeros and poles that characterize the approximation. However,
interlacing is enforced. The solutions stem from updating a population of particles in successive generations. In particular,
PSO minimizes an objective function J that is a measure of the approximation error. It starts with a random population
which is then updated by considering the best values of J obtained by each particle and the best values of J obtained by the
swarm. A constriction factor improves the performance of the algorithm [28]. To test the accuracy of the optimized discrete
approximation, its frequency response is compared with the ones corresponding to other effective indirect discretization
methods.

2. Two indirect approximation methods

This section revisits two indirect approximation methods that were proposed, analyzed, and discussed in [29,30,19].
These methods are used as term of comparison with the PSO-based method. The first indirect method comes from the
classical Thiele’s continued fraction (CF), and originates an approximation that is well-known in the control engineering
field as Matsuda’s approach [31]. The second method is based on another form of the Thiele’s CF and was introduced
by Maione [29] in approximating sν . Since both methods guarantee a good continuous approximation, it is reasonable to
discretize the obtained approximation by one of the available discretization operators (Tustin, backward Euler, Al-Alaoui,
etc.) to obtain a good approximation for digital implementation of sν . Then,we briefly recall the twomethods in the following
subsections.

2.1. The first Thiele’s CF: Matsuda’s method

Matsuda’s method approximates the differintegrator s±ν , with 0 < ν < 1, by fitting a rational fraction to a set of
magnitude values of ω±ν . These values are obtained in assigned distinct and equally logarithmic spaced support points ωk,
k = 0, 1, . . . , 2N , that are chosen in the approximation interval. Then, the inverse divided differencesmethod produces a CFE
of the differintegrator. In particular, for a differentiator, putting ϕ0[ω] = ων and starting with ϕ1[ω0, ω] =

ω−ω0
ϕ0[ω]−ϕ0[ω0]

, an
iterative procedure generates the successive inverse divided differences [13]:

ϕk[ω0, . . . , ωk−1, ω] =
ω − ωk−1

ϕk−1[ω0, . . . , ωk−2, ω] − ϕk−1[ω0, . . . , ωk−1]
(2)

for k = 2, . . . , 2N . If we start with ϕ0[ω] = ϕ0[ω0] +
ω−ω0
ϕ1[ω0,ω]

and we rearrange (2), we obtain:

ϕk−1[ω0, . . . , ωk−2, ω] = ϕk−1[ω0, . . . , ωk−1] +
ω − ωk−1

ϕk[ω0, . . . , ωk−1, ω]
(3)
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Table 1
Zeros and poles of the first Thiele’s CF-based continuous approximation of s0.5 .

Zeros of GT1(s) −0.0191 −0.2593 −1.5483 −11.1689
Poles of GT1(s) −0.0895 −0.6459 −3.8566 −52.4416

hence the classical Thiele’s CF:

FT1(ω) = ων = d0 +
ω − ω0|

|d1
+
ω − ω1|

|d2
+ · · · +

ω − ωk|

|dk+1
+ · · · (4)

where d0 = ϕ0[ω0] = ων0 , d1 = ϕ1[ω0, ω1], . . . , d2N = ϕ2N [ω0, ω1, . . . , ω2N−1, ω2N ]. If s replaces ω in (4) and truncation is
made to d2N , the convergent of FT1(s) leads to a rational transfer function GT1(s) that approximates sν so that, for s = iωwith
i =

√
−1 imaginary unit, |GT1(iω)| = (ωk)

ν at the sample points ωk, k = 0, 1, . . . , 2N (i.e. the magnitude approximation
error is zero at these points).

Computational problems of inverse divided differences are determined by the ordering of sample points [32] and suggest
us to use the so-called reciprocal differences. If Ω is the approximation interval, the reciprocal differences for ων , for every
ω ∈ Ω , are defined by ρ0[ω0] = ϕ0[ω0] = ων0 , ρ1[ω0, ω1] = ϕ1[ω0, ω1], and by:

ρk[ω0, . . . , ωk] = ρk−2[ω0, . . . , ωk−2] +
ωk − ωk−1

ρk−1[ω0, . . . , ωk−2, ωk] − ρk−1[ω0, . . . , ωk−2, ωk−1]
(5)

for k ≥ 2 and for ω0, . . . , ωk ∈ Ω . The reciprocal differences can be then used to compute the partial denominators in (4):

dk = ϕk[ω0, . . . , ωk] = ρk[ω0, . . . , ωk−1, ωk] − ρk−2[ω0, . . . , ωk−2]. (6)

Then, considering FT1(s) and truncating (4) to d2N yields the convergent:

GT1(s) =
PT1(s)
QT1(s)

=
pT1N,0 s

N
+ · · · + pT1N,N−1 s + pT1N,N

qT1N,0 sN + · · · + qT1N,N−1 s + qT1N,N
(7)

where the numerator and denominator polynomials PT1(s) and QT1(s) have the same degree N , then the same number of
zeros and poles, and can be recurrently computed as first determined and shown in [29,21,19].

Example 1. Consider ν = 0.5, then s0.5, Ω = [0.1, 10] rad/s and N = 4. We use the following logarithmic distributed
sample angular frequencies (in rad/s): {0.1000, 0.1778, 0.3162, 0.5623, 1.0000, 1.7783, 3.1623, 5.6234, 10.0000}. FT1(s)
has following partial denominators: d0 = 0.3162, d1 = 0.7379, d2 = 0.9840, d3 = 1.3122, d4 = 1.7499, d5 = 2.3335,
d6 = 3.1118, d7 = 4.1497, d8 = 5.5336. Then, the fourth-order approximant of FT1(s) is:

GT1(s) =
s4 + 12.9956 s3 + 20.8376 s2 + 4.8765 s + 0.0855
0.0855 s4 + 4.8764 s3 + 20.8373 s2 + 12.9955 s + 1

.

The convergent has the zero–pole map of Table 1. Note the interlacing between minimum-phase zeros and stable poles.
Moreover, the convergent yields the frequency response in Figs. 1 and 2 (see dashed curves). The zoom in Fig. 3 shows that
a very good accuracy is obtained by the magnitude approximation in the frequency rangeΩ , whereas deviations are more
significant in the phase behavior, as shown in Fig. 4.

2.2. The second Thiele’s CF

A second form of Thiele’s CFwas first used for the approximation of sν byMaione [29]. It is based on reciprocal differences
and on a simple idea that slightly modifies the approach of the classical Thiele’s CF. Namely, the previous approach is based
on making the difference between the magnitude of the approximation, i.e. |GT1(iω)|, and the magnitude of the fractional
operator, i.e.ων , vanish at the 2N +1 sample points. Now, we instead require that this difference and its first 2N derivatives
vanish at a unique sample point ω0, to which all the sample points tend to coincide. Then, we obtain the following CFE:

FT2(s) = c0 +
s − ω0|

|c1
+

s − ω0|

|c2
+ · · · +

s − ω0|

|ck+1
+ · · · (8)

where ck = ϱk(ω0) − ϱk−2(ω0). Coefficients ck can be successively calculated by starting with the initial values ϱ−2(ω) =

ϱ−1(ω) = 0, ϱ0(ω) = ων , and ϱ1(ω) = (ω1−ν)/ν, and by using, form ≥ 1, the relations [29]:

ϱ2m(ω) = ϱ0(ω)

m
i=1

i + ν

i − ν
(9)

ϱ2m+1(ω) = (m + 1) ϱ1(ω)
m
i=1

i + 1 − ν

i + ν
. (10)
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Table 2
Zeros and poles of the second Thiele’s CF-based continuous approximation of s0.5 .

Zeros of GT2(s) −0.0311 −0.3333 −1.4203 −7.5486
Poles of GT2(s) −0.1325 −0.7041 −3.0000 −32.1634
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Fig. 1. Bode magnitude diagrams of the continuous approximations GT1(iω), GT2(iω), and GP (iω).

Truncation of FT2(s) to c2N gives the convergent that can be expressed as a rational transfer function:

GT2(s) =
PT2(s)
QT2(s)

=
pT2N,0 s

N
+ · · · + pT2N,N−1 s + pT2N,N

qT2N,0 sN + · · · + qT2N,N−1 s + qT2N,N
(11)

where the numerator and denominator polynomials PT2(s) and QT2(s) have the same degree N and can be recurrently
computed [29,30,19].

Example 2. Consider again the approximation of s0.5 inΩ = [0.1, 10] rad/s, with N = 4. If in (8) it is ω0 = 1 rad/s (i.e., if
ω0 is placed at the center of the frequency interval Ω), then: c0 = 1, c1 = c2 = c3 = c4 = c5 = c6 = c7 = c8 = 2. The
convergent GT2(s) giving the approximation as a ratio of fourth-order polynomials is:

GT2(s) =
s4 + 9.3333 s3 + 14.0000 s2 + 4.0000 s + 0.1111
0.1111 s4 + 4.0000 s3 + 14.0000 s2 + 9.3333 s + 1

.

The convergent has the zero–pole map of Table 2. Note again the interlacing between minimum-phase zeros and stable
poles. The frequency response is depicted in Figs. 1 and 2 (see dash-dotted curves). The magnitude approximation has no
significant deviation from the fractional operator (see zoom in Fig. 3). Instead, if we look at the phase diagram in Fig. 4, we
may observe that the second Thiele’s approximation performs better than the first around ω0, even if the first gives good
results in awider frequency range. This is obvious since the first convergent gives a null error in (2N+1) sample frequencies,
whereas the second convergent makes the error and its first 2N derivatives zero in ω0.

3. The particle swarm optimization method for approximation

The idea of PSO is to mimic the behavior of swarms of insects, ant colonies, schools of fishes, and similar biological
organizations in reaching a solution minimizing a pre-defined objective function J . Each particle alone is not capable to find
the solution, but the group as a whole may solve even complex problems. The solution is determined by the population
of particles that agree on a common objective that each particle alone cannot achieve. Each particle behaves by applying
simple rules derived from its own intelligence and, above all, from the swarm intelligence, based on the local information
that is exchanged between particles. PSO minimizes the error index J by updating randomly generated populations on the
basis of the best results obtained by the particles and the entire swarm.

The optimization algorithm is iterative and each iteration evolves through successive phases, called generations. A
stochastic evolutionary mechanism updates the results of each generation on the basis of the ‘‘position’’ and ‘‘velocity’’
variables, characterizing all particles in the swarm. Namely, given the (fixed) size of the population Npop, i.e. the number
of particles in the swarm, the transition from one generation to the next requires the variation of position and velocity
of each particle that takes into account the best position of the particle through past generations (i.e. the personal best
position) and the best position of the entire swarm (i.e. the global best position). The initial population of the first generation
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Fig. 2. Bode phase diagrams of the continuous approximations GT1(iω), GT2(iω), and GP (iω).
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Fig. 3. Zoom of the magnitude diagrams of the continuous approximations.

is randomly generated. Moreover, in all generations of the iterated algorithm, each particle is randomly defined within
a search interval that depends on the specific problem. In this paper, we approximate the fractional order operator by
exploiting previous results of other methods. Namely, we find better values for the interlaced zeros and poles of the
rational approximation. Therefore, other methods define the search intervals for the unknown better zeros and poles. In
particular, let N be the order of the approximation, and µk,min, µk,max, λk,min, and λk,max be the minimum and maximum
values for the k-th zero and k-th pole, for k = 1, . . . ,N , of other approximations. Then, the associated search intervals
can be defined as [µk,min, µk,max] and [λk,min, λk,max]. With reference to Tables 1 and 2, we may use [−0.0311,−0.0191]
for µ1, [−0.3333,−0.2593] for µ2, [−1.5483,−1.4203] for µ3, [−11.1689,−7.5486] for µ4, [−0.1325,−0.0895] for λ1,
[−0.7041,−0.6459] for λ2, [−3.8566,−3.0000] for λ3, [−52.4416,−32.1634] for λ4. The search intervals do not overlap,
so the interlacing is guaranteed.

Based on this mechanism, the PSO algorithm stops the iterations when it achieves the optimum solution or when it
reaches the maximum number of generations in the last iteration. The algorithm shows fast convergence and stability, at
a reduced computational cost, and it is sensitive to the values of few parameters to be adjusted but not to the population
size [26,33]. In particular, the population size Npop results from a trade-off between the required computation time and
the desired speed of convergence (with a reduced approximation error). Clearly, a big swarm implies a high computational
effort, a small swarm may not or may slowly converge. Moreover, the number Gmax of generations and the number Nruns
of iterations of the algorithm determine the computation time and the accuracy of the optimization. Obviously, the three
parameters must be properly tuned.

Among the existing versions of PSO algorithms, two are popular and commonly used; the former is the standard PSO
based on a weighting factor (PSOWF); the latter is an improved version based on a constriction factor (PSOCF) [24,28]. Both
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Fig. 4. Zoom of the phase diagrams of the continuous approximations.

PSOWF and PSOCF update the position of each particle by using the past position and current velocity:

xj(g) = xj(g − 1)+ vj(g) (12)

for j = 1, . . . ,Npop and g = 1, . . . ,Gmax. The initial velocity is zero and the initial position is randomly generated from a
uniform distribution in the search intervals: xj(1) ∼ U(µk,min, µk,max) for the k-th zero and xj(1) ∼ U(λk,min, λk,max) for the
k-th pole.

The PSOWF updates velocity as follows:

vj(g) = θ vj(g − 1)+ γ1 r1 [xpbest(g)− xj(g − 1)] + γ2 r2 [xgbest(g)− xj(g − 1)] (13)

where 0 < θ < 1 is the inertial weighting factor applied to the previous velocity; 0 < γ1 < 2 is the individual learning rate;
0 < γ2 < 2 is the social learning rate; r1 ∼ U(0, 1) and r2 ∼ U(0, 1) are random numbers from a uniform distribution;
xpbest(g) is the personal best remembered individual particle position so far, and xgbest(g) is the global best remembered
swarm position of all particles until the current generation. The xpbest(g) is associated to theminimum value of the objective
function J to optimize, while the xgbest(g) results from xgbest(g) = min{xgbest(g −1), xpbest(g)}. Then, it is important to define
J . Note that θ reduces the variation of velocity, to avoid missing of optimal solutions due to fast increments. A high value of
θ helps the global exploration, a low value the local search.

In a slightly different way, the PSOCF works as follows:

vj(g) = ξ(γ1, γ2) {vj(g − 1)+ γ1 r1 [xpbest(g)− xj(g − 1)] + γ2 r2 [xgbest(g)− xj(g − 1)]} (14)

where ξ(γ1, γ2) is the constriction factor that is determined by ξ(γ1, γ2) =
2

2−γ−

√
γ 2−4γ

, with γ = γ1 + γ2 > 4. Clearly,

the parameter values are required to minimize the cost J ensuring the best rational approximant of sν .
To synthesize, to efficiently apply PSOCF, we have to choose the search interval of the solutions and fix the values of

parameters that ensure good performance of the algorithm. However, without restrictions, the algorithm could lead to high
approximation errors. Hence, we restrict the search interval by enforcing the interlacing. To this aim, we take, as reference
for each zero and each pole of the approximating transfer function GP(s), the minimum and maximum values obtained by
two forms of the Thiele’s CF. These approximation techniques gave very good results in recent papers [29,30,19]. The gain
of GP(s)

GP(s) = kPSO
N

k=1

s − µk

s − λk
(15)

results from imposing unitary gain crossover angular frequency, i.e. the same as with the fractional order operator:

|GP(i 1)| = 1 ⇒ kPSO =

 N
k=1

(1 + λ2k)

(1 + µ2
k)
. (16)

Moreover, we choose γ1 = γ2 = 2.05 (then ξ = 0.7298) that are commonly accepted values for good performance of
PSOCF. Finally, Nruns, Gmax, and Npop are fixed by trial-and-error empirical tuning.

Finally,we specify the objective function J as a function of the amplitude andphase approximation errors betweenGP(iω)
and the fractional operator (iω)0.5. In particular, if Em,l (in dB) and Ep,l (in degrees) indicate the magnitude and phase errors
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computed in a set of angular frequencies ωl, l = 1, . . . ,Ω , inside the range of interest, we define:

J = min{max{|Em,l| · P(ωl)} + max{|Ep,l| · P(ωl)}} (17)

where P(ω) penalizes errors inside the range of interest, whereas it lowlyweights errors outside this range.Wemay assume
P(ω) = 1 for 0.1 ≤ ω ≤ 10 rad/s and P(ω) = e−| log10(ω)|2 for ω ≤ 0.1 rad/s or ω ≥ 10 rad/s.

To sum up, each particle in a population of the PSOCF (i.e. each set of poles and zeros of an N-order approximating
rational transfer function) is characterized by a different frequency response, different errors, then a different value of J .
The minimum value of the error index J in all iterations of the PSOCF algorithm will identify the best solution found by the
algorithm, i.e. the best set of zeros and poles in the approximation.

Example 3. Consider the PSOCF-based approximation of s0.5 of order N = 4. We run the algorithm with Nruns = 20,
Gmax = 30, and Npop = 20. These values are obtained after several tests to minimize J , then to optimize the frequency
response. The search intervals for zeros and poles are specified as previously indicated, by using zeros and poles of GT1(s)
andGT2(s). To have an indication of the PSOCF algorithmconvergence,we compute the average value of J over all generations
in each iteration and consider the lowest average among all iterations. The iteration that yields the lowest average may be
considered, to a certain extent, as the one giving the best trend of J towards the minimum in all simulation runs. Fig. 5 plots
the behavior of J in this iteration (the reported statistics are associated to this particular iteration). The minimum value of J
in all generations of all iterations is Jmin = 0.6336. The associated set of zeros and poles gives the best solution as:

GP(s) = 9.2165
(s + 0.0325)(s + 0.3063)(s + 1.5201)(s + 9.1827)
(s + 0.1244)(s + 0.6770)(s + 3.5556)(s + 36.0483)

.

Stability, minimum-phaseness, and interlacing are again obtained. The frequency response is shown in Figs. 1 and 2 (see
solid curves). As expected, the second Thiele’s approximation is better than the first around the sample point ω0, whereas
the first performs better in a wider range because it guarantees a null magnitude approximation error in 2N + 1 sample
points. Note that the PSO approximation gives a flatter phased diagram, with reduced peak values with respect to the two
Thiele’s approximations. The absolute error is lower than 0.5◦ between 0.07 and 10 rad/s, in a bit wider frequency range
than those achieved by the other two approximations (see Fig. 4). This result is because the PSOCF reduces the error index J .

4. Discretization

To obtain a discrete approximation, the final step of indirect discretization methods is to apply a transformation rule
from the s-domain to the z-domain. Here, we adopt Tustin’s rule for sake of brevity, but other mapping rules can be also
considered. Applying the discretization rule s =

2
T

1−z−1

1+z−1 to the convergents GT1(s), GT2(s), and GP(s), expressed in the form:

G(s) =
P(s)
Q (s)

=
pN,0 sN + pN,1 sN−1

+ · · · + pN,N−1 s + pN,N
qN,0 sN + qN,1 sN−1 + · · · + qN,N−1 s + qN,N

(18)

provides us with the corresponding discretized convergents:

G(z) =
P(z)
Q (z)

=
pN,0 zN + pN,1 zN−1

+ · · · + pN,N−1 z + pN,N
qN,0 zN + qN,1 zN−1 + · · · + qN,N−1 z + qN,N

(19)

where the coefficients pN,j and qN,j, with j = 0, . . . ,N , are related to the corresponding pN,j and qN,j. Namely, if we put
α0 = 2/T and α1 = −2/T , it is easy to find closed formulas. For example, for N = 4:

p4,0 = α4
0 p4,0 + α3

0 p4,1 + α2
0 p4,2 + α0 p4,3 + p4,4

p4,1 = 4α3
0 α1 p4,0 + (α3

0 + 3α2
0 α1) p4,1 + (2α2

0 + 2α0 α1) p4,2 + (3α0 + α1) p4,3 + 4 p4,4
p4,2 = 6α2

0 α
2
1 p4,0 + (3α2

0 α1 + 3α0 α
2
1) p4,1 + (α2

0 + 4α0 α1 + α2
1) p4,2 + (3α0 + 3α1) p4,3 + 6 p4,4

p4,3 = 4α0 α
3
1 p4,0 + (3α0 α

2
1 + α3

1) p4,1 + (2α0 α1 + 2α2
1) p4,2 + (α0 + 3α1) p4,3 + 4 p4,4

p4,4 = α4
1 p4,0 + α3

1 p4,1 + α2
1 p4,2 + α1 p4,3 + p4,4.

Analogous relations hold for q4,j, for j = 0, 1, 2, 3, 4.
Now,we compare the frequency responses of the discretized approximations that are obtained from the three continuous

approximations. We use a sampling period T = 0.5 s, which is a common value for practical applications in the field of
digital controlled industrial plants. Then, putting z = eiω T in GT1(z), GT2(z), and GP(z) gives the frequency responses of the
discretized approximations.

Fig. 6 shows the Bode phase diagram, the magnitude diagram is not shown because differences between discrete and
continuous approximations are negligible. All the discretized approximations provide good results until frequency π/T .
Responses of discretized approximations depart from those of the continuous approximations if the frequency increases,
roughly from 2 rad/s (see Fig. 7). All the remarks made for the continuous approximations still hold true, then we may
conclude that PSO improves the approximation, in particular the flatness of the phase diagram.
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Fig. 5. Behavior of J in the iteration with lowest average.
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Fig. 6. Bode phase diagrams of continuous and discretized approximations.
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Fig. 7. Zoom of phase diagrams of continuous and discretized approximations.
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5. Concluding remarks

In this paper, we apply PSO to optimize two analog efficient approximations of the fractional order operator sν , the
first based on the classical Thiele’s CF, the second based on a new form of Thiele’s CF. The aim is to obtain an even better
approximation, especially in the phase behavior of the frequency response. After that, the approximation is discretized
to obtain a better performance than those guaranteed by the discretizations of the two Thiele’s CF-based approximations.
Results show that the phase behavior is improved,which is very important for fractional order control applications requiring
fractal robustness to load and gain variations.Moreover, the second Thiele’s approximation gives the best results in a narrow
range around the central frequency ω0, which is expected since it is based on the vanishing of the approximation error and
of its derivatives in ω0. But the PSO guarantees flatness in a wider range.
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