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Neural network modeling for small datasets can be justified from a theoretical point of view according to
some of Bartlett’s results showing that the generalization performance of a multilayer perceptron (MLP)
depends more on the L1 norm ‖c‖1 of the weights between the hidden layer and the output layer rather
than on the total number of weights. In this article we investigate some geometrical properties of MLPs
and drawing on linear projection theory, we propose an equivalent number of degrees of freedom to be
used in neural model selection criteria like the Akaike information criterion and the Bayes information
criterion and in the unbiased estimation of the error variance. This measure proves to be much smaller
than the total number of parameters of the network usually adopted, and it does not depend on the number
of input variables. Moreover, this concept is compatible with Bartlett’s results and with similar ideas long
associated with projection-based models and kernel models. Some numerical studies involving both real
and simulated datasets are presented and discussed.
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1. INTRODUCTION

An important issue in statistical modeling is related to so
called indirect measures or virtual sensors. This involves the
prediction of variables that are quite expensive to measure (e.g.,
the viscosity or the concentration of certain chemical species,
some mechanical features) using other variables that are more
easily measured, like, for example, the temperature or the pres-
sure (see De Veaux and Ungar 1996). Such problems often
involve some difficulties: (1) The available datasets are small
(e.g., typical chemical datasets have only 30–100 observations);
(2) the input–output relation to be estimated is nonlinear; and
(3) there are many predictor variables, but, because linearity
cannot be assumed, it is quite difficult to reduce the dimension-
ality of the problem by choosing a good subset of predictors or
suitable underlying features.

Assume that we are provided with a dataset of N pairs
(xn, yn) of m-dimensional input vectors xn and scalar target val-
ues yn. In many applications the scientific law underlying the
relationship between the response variable and the predictors
is (at least partially) known, and the experimental data can be
used to test the model assumptions and to estimate the adaptive
parameters; such models are called first-principle models. Here
we focus on the opposite case, that is, on applications in which
the underlying first principle is unknown or the system is too
complex to be mathematically described, so that the data are
used to extract knowledge and afterward to derive some prac-
tical and useful models (see Cherkassky and Mulier 1998). In
this context, neural networks may be attractive.

It may happen that the size N of the available sample is small
compared with the number of weights of the neural network
[e.g., a single hidden-layer multilayer perception (MLP) with
p nodes in the hidden layer has W = p(m + 2) + 1 weights],
so that the resulting neural model is considered overparame-
terized. In the literature, this problem has been approached in
different ways. One strategy is based on the regularization tech-
nique called jittering, which consists of adding artificial noise
to the input during training; training with jitter is a form of

smoothing related to kernel regression and other regularization
methods, such as ridge regression (see, e.g., An 1996; Azencott,
Doutriaux, and Younes 1993). Another possibility is to reduce
the dimension m of the input space using suitable preprocessing
techniques; this strategy is very useful when the dimension m
of the input space is quite large (see, e.g., Yuan and Fine 1998).

Here we consider a third approach, based on overparame-
terized networks, which has been pursued in the literature by
some authors. For instance, De Veaux, Schumi, Schweinsberg,
and Ungar (1998) worked on a one-hidden layer perceptron
with more than 200 weights trained with 61 data units concern-
ing measurements taken from a polymer pilot plant; Lawrence,
Giles, and Tsoi (1996, 1997) provided many simulations with
overparameterized MLPs, concluding that oversized networks
can result in low training and generalization errors. These
neural models can be justified from a theoretical point of view
according to some results published by Bartlett (1998) showing
that the generalization performance of an MLP depends more
on the L1 norm ‖c‖1 of the weights between the hidden layer
and the output layer rather than on the total number of weights.
These results suggest caution when transferring some basic sta-
tistical paradigms into the neural framework. Indeed, they seem
to contradict the usual assumption in statistical modeling ac-
cording to which the number of parameters should be (much)
smaller than the number of observations used for their estima-
tion. This contradiction is particularly apparent when the neural
model is selected according to some goodness-of-fit statistic,
like, for example, the Akaike information criterion (AIC), the
Bayesian information criterion (BIC/SBC), or the final predic-
tion error (FPE) (see Sec. 2 for details). Indeed, even if the un-
derlying theories do not hold for neural models, they are quite
simple to compute, and they are often considered crude esti-
mates of the generalization error. Actually, in these model se-
lection criteria the number K of degrees of freedom is set equal

© 2005 American Statistical Association and
the American Society for Quality

TECHNOMETRICS, AUGUST 2005, VOL. 47, NO. 3
DOI 10.1198/004017005000000058

297



298 SALVATORE INGRASSIA AND ISABELLA MORLINI

to the number W of weights, so they are useless when W > N;
in this case, for example, both the FPE and the unbiased esti-
mate of variance (UEV) assume negative values, and this does
not make sense.

In contrast, in the smoothing literature, notions of degrees of
freedom different from the number of adaptive parameters in
the final model, have a long history, and are well established.
For example, for a linear smoothing operator S, where ŷ = Sy
is the smooth of y, Hastie and Tibshirani (1990, sec. 3.5) gave
three definitions of degrees of freedom useful for different pur-
poses. In the generalized cross validation (GCV) criterion the
model complexity is measured by the trace of the smoothing
matrix S; Friedman (1991) and many of the discussants of his
article proposed various definitions of degrees of freedom for
multivariate adaptive regression splines. They motivated their
definitions in a parametric framework. Recently, Ye (1998) and
Hodges and Sargent (2001) extended the necessity of finding
new notions of degrees of freedom, different from the number
of adaptive parameters, to all richly parameterized models and
to complex hierarchical procedures. The generalized degrees of
freedom proposed by Ye (1998) is completely general in that
it is applicable to all complex modeling procedures. However,
it is costly to compute, because it requires Monte Carlo simu-
lations. Hodges and Sargent’s degrees of freedom are defined
for models that can be reexpressed as linear models, in the for-
mal sense that the left side is known and the right side consists
of known linear combinations of unknown parameters. Both of
these notions arise from a parametric framework.

In this article we focus on nonlinear projection methods of
the form

fp(x) =
p∑

k=1

ckτ(a′
kx + bk) + c0, (1)

where a1, . . . ,ap ∈ R
m, b1, . . . ,bp, c0, c1, . . . , cp ∈ R, and τ is

a sigmoidal function. However, the obtained results can be
extended to other kinds of neural models, like radial basis
function and projection pursuit regression models (see Hastie,
Tibshirani, and Friedman 2001), where the function τ has a dif-
ferent nonlinear form. These are additive models, but in the de-
rived features τ(a′

kx + bk) rather than in the inputs themselves.
We move from a nonparametric point of view, exclusively

drawing on geometrical considerations. We extend some geo-
metrical properties of the MLP reported by Ingrassia (1999) and
generalize preliminary results given by Ingrassia and Morlini
(2002, 2004), showing that the input-to-hidden weights and the
hidden-to-output weights in an MLP play different roles. Draw-
ing on the projection theory of linear models, here we introduce
the equivalent number of degrees of freedom (edf ), K, which is
equal to the trace of a suitable projection matrix. For model se-
lection purposes, according to indices like AIC and BIC, this
quantity can be set equal to the number of neurons p + 1 in
the hidden layer [in eq. (1) the constant c0 can be considered
a weight between the output and a hidden neuron with value set
to 1]—that is, the dimension of the projection space intrinsi-
cally found by the mapping function—whereas to estimate the
error variance, sometimes better approximations of K (which
also depend on the adopted regularization technique) should be
considered.

Finally, using both real and simulated datasets, we present
some empirical studies linking the number of neurons in the
hidden layer to the L1 norm ‖c‖1. However, as shown in our
examples, it is unstable across different simulations for large
networks as well. Besides, as outlined by Bartlett (1998), for
the size of the weights between the hidden layer and the out-
put layer to be an appropriate measure of the mapping function
complexity, the gradient descent algorithm must reach a suit-
able minimum of the error function. This is not always verified
in practice, especially with small training datasets. The simu-
lation examples show that the estimates of the error variance
using such an edf K behaves quite well, whereas the error vari-
ances estimates based on the total number of weights W are far
from the true value or may assume even negative values.

The article is organized as follows. In the next section we re-
view the generalization performance of a neural model in the
context of Bartlett’s results and state the purpose for which we
want to define the degrees of freedom of an MLP and simi-
lar projection methods. In Section 3 we prove some geometric
properties of the sigmoidal functions that motivate our notion of
degrees of freedom. In Section 4 we introduce our definition of
equivalent degrees of freedom for multilayer perceptrons and
other projection methods; we also provide relationships with
other approaches. In Section 5 we present simulations relating
the constant ‖c‖1 to the number of hidden units and compare
the error variance estimates computed with different measures
of degrees of freedom. Finally, in Section 6 we give some con-
cluding remarks.

2. EVALUATION OF THE PERFORMANCE OF THE
NETWORK WITH SMALL DATASETS

2.1 The Problem

Let (X,Y) be a pair of a random vector X and a random vari-
able Y with joint probability distribution p(x, y), where X is the
m-dimensional input vector with values in some space X ⊆ R

m

and Y is a response variable with values in Y ⊆ R. Through-
out this article we assume that the input–output relation can
be written as Y = φ(x) + ε, where ε is a random variable
with mean 0 and finite variance. The unknown functional de-
pendency φ(x) = E[Y|x] is estimated by means of the func-
tion fp(x) realized by an MLP with m inputs, p neurons in the
hidden layer, and one neuron in the output,

fp(x) =
p∑

k=1

ckτ(a′
kx + bk) + c0, (2)

where τ(·) is a sigmoidal function-like τ(z) = tanh(z) or
τ(z) = (1 + e−z)−1—and a1, . . . ,ap ∈ R

m, b1, . . . ,bp,
c0, c1, . . . , cp ∈ R. We denote by A the p × m matrix with rows
a′

1, . . . ,a′
p, and we set b = (b1, . . . ,bp) and c = (c1, . . . , cp).

Because such quantities are called weights, we denote them
by w, so that w ∈ R

p(m+2)+1, and sometimes we write f (x,w).
Let Fp be the set of all functions of type (2) for a fixed p,

Fp =
{

fp(x) =
p∑

k=1

ckτ(a′
kx + bk) + c0 :

a1, . . . ,ap ∈ R
m,b1, . . . ,bp, c0, c1, . . . , cp ∈ R

}

,
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for 1 ≤ p ≤ N. (We discuss the upper bound N on p in Sec. 3.) In
what follows we suppress the index p in fp and Fp for simplicity
of notation. The problem is to find the function f (0) = f (w(0))

in the set F such that the generalization error (also called the
expected risk),

E( f ) =
∫

[ y − f (x)]2p(x, y)dx dy, (3)

where the integral is over X ×Y , attains its minimum, that is,

f (0) = arg min
f∈F

E( f ), (4)

and w(0) denotes the weights of f (0). In practice, the dis-
tribution p(x, y) is unknown, but we have a sample, D =
{(x1, y1), . . . , (xN, yN)}, of N iid realizations of (X,Y), so that
we can compute the empirical error or the empirical risk,

Ê( f ,D) =
∑

(xn,yn)∈D
( yn − f (xn))

2. (5)

Let f (0)

D = f (ŵ(0)) denote the function of F that minimizes Ê(·),
f (0)

D = arg min
f∈F

Ê( f ), (6)

where the ŵ(0) are the weights of f (0)

D .
The problem is to explore the linkage between the empiri-

cal error (5) and the true statistical performance of the network,
namely the generalization error (3); in other words, to inves-
tigate the conditions that may ensure that f (0)

D is a reasonable
estimate of f (0). Usually the sample D is partitioned in three
independent datasets: a learning set (or training set) L, a val-
idation set V , and a test set T . The error (5) is referred to as
the learning error (or training error) Ê( f ,L), the validation
error Ê( f ,V), or the test error Ê( f ,T ), the first computed us-
ing the learning set L, the second computed with the validation
set V , and the last computed using the test set T . The learning
error L is a set of examples used to fit the parameters of the
model. The validation set and the test set play different roles;
the set V is a set of examples used to tune the parameters of a
model (e.g., to choose the number of hidden units in a neural
network), and the set T is a set of examples used only to assess
the performance of a fully specified model (see, e.g., Ripley
1996; Hastie et al. 2001). However, very often the sample D is
split into only two different groups, the learning set L and the
test set T .

Both the learning set and the test set are used to estimate the
parameters ŵ(0), because Ê( f ,L) is the function to be mini-
mized, whereas Ê( f ,T ) is the function used to control over-
fitting. As the learning (or training) process proceeds, at the
beginning both the learning and the test errors generally de-
crease, but there comes a time when the test error starts to in-
crease even though the learning error is still decreasing. It is
then judged that overfitting is occurring. The training is then
halted, and the current estimate of the weights is chosen to
be ŵ(0). This technique is called early stopping. If the test er-
ror never decreases during the learning process, then the net-
work is judged to be underparameterized, and a larger one is
recommended. Otherwise, a local minimum is reached by the
optimization algorithm, and initialization parameters should be
changed.

In virtual sensors, the total amount of data is often quite lim-
ited, and one would like to use most of the data for training
purposes to achieve a higher likelihood of selecting a good net-
work. For example, De Veaux et al. (1998) worked on a set D
of 61 observations, and they first trained the MLP with a learn-
ing set L of 50 samples to select the best architecture (the one
minimizing the test error T of the remaining 11 observations).
They subsequently trained the selected model on the basis of the
whole set D of available observations. When the data cannot be
split into three sets and the validation error cannot be computed
for estimating the generalization error, model selection criteria
are used to compare different networks. These criteria are based
on the test error but also take into account a model complexity
measure. (See Kadane and Lazar 2004 for a complete review
of these indices and their theoretical basis both in the Bayesian
and frequentist framework.) Traditionally, for general model-
ing problems, practitioners tend to measure model complexity
with the number of parameters in the final model, because of
the coincidence of this quantity and the degrees of freedom in
linear models. Still, for linear models, the number of parameters
can also be interpreted as the cost of the estimation process and
thus can be used for obtaining an unbiased estimate of the error
variance. The seminal work on model selection is based on the
parametric statistics literature and is quite vast, but it must be
noted that although model selection techniques for parametric
models have been widely used in the past 30 years, surprisingly
little work has been done on the application of these techniques
in a semiparametric or nonparametric context.

Let fK be a statistical model based on K degrees of freedom;
in the rest of the article, N denotes the size of the learning set.
In general, these model selection criteria, denoted here by �,
are an extension of the maximum likelihood and have the form

� = Ê( fK) + CK, (7)

where the term Ê( fK) = Ê( fK,L) is the empirical error of the
model fK based on the training set and CK is a complexity term
representing a penalty that grows as the number K of degrees of
freedom in the model increases. If the model fK is too simple, it
will give a large value for the criterion � because the empirical
error is large; whereas a model fK that is too complex will have
a large value for the criterion � because the complexity term is
large. Typical indices include the AIC (Akaike 1974),

AIC = log(Ê( fK)) + 2K

N
,

where N is the size of the learning set. Another criterion used
in linear regression models with least squares estimates of the
parameters is the Schwarz (1978) BIC (or SBC). The BIC/SBC
results in the selection of the model for which the following
expression is the minimum:

BIC = log(Ê( fK)) + K log(N)

N
.

Besides AIC and BIC, other selection methods for which the
algebraic expression requires normality and least squares esti-
mates of the parameters are the FPE (Akaike 1970),

FPE = 6Ê( fK)

(
1 + K/N

1 − K/N

)

, (8)
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the GCV error,

GCV = Ê( fK)

(

1 − K

N

)−2

, (9)

and the well-established UEV,

σ̂ 2 = Ê( fK)

N − K
. (10)

For these indices in neural network modeling, some proper-
ties have been investigated under key assumptions, but statis-
tical optimality has not been made clear. These statistics are
often used as crude estimates of the generalization error in non-
linear models, because correcting the statistics for nonlinear-
ity requires much computation and the fulfillment of regularity
conditions that are often violated by these models (Moody
1992). As outlined earlier, for smoothing operators, the no-
tion of degrees of freedom has a long history, and in the GCV
criterion model complexity is measured by the trace of the
smoothing matrix. In contrast, little work has been done on
neural networks and models of the form (1), and practition-
ers still measure the dimensionality of the model complex-
ity by K = W , that is, the total number W of the weights
in the model (1). Both theoretical and empirical studies (see,
e.g., Bartlett 1998; De Veaux et al. 1998; Lawrence et al.
1996, 1997) support neural network modeling in which the
number of sample data points N is (even much) smaller than
the number of the weights W in the selected model. In this case,
as W > N, both the FPE and the UEV assume negative values,
and the unbiased estimates of the error variance also may as-
sume negative values, and this does not make sense. Then the
problem is to define K when model selection criteria are applied
in neural network modeling.

2.2 The Size of the Weights Is More Important Than
the Size of the Network

Some recent results for large networks (see Bartlett 1998)
prove that the generalization performance of an MLP depends
more on the size of the weights than on the size of the network
(namely, on the number of adaptive parameters). Here an im-
portant role is played by the quantity ‖c‖1 = ∑p

k=0 |cp|, that is,
by the sum of the values of the absolute weights between the
hidden layer and the output.

Let us introduce the concept of misclassification error with
margin γ . Let X1 and X2 be two populations in R

m and set
X = X1 ∪ X2; for each x ∈ X with y ∈ {−1,+1}, let y = +1
if x comes from X1 and y = −1 if x comes from X2. Finally,
let P denote a probability distribution on X × {−1,+1}. Let
f :X → R be a discriminant function of type (1) such that x is
assigned to X1 if f (x) > 0 and to X2 if f (x) < 0. The misclassi-
fication error probability is given by

P
{
sgn[ f (x)] �= y

}
,

where sgn(u) = 1 for u > 0 and sgn(u) = −1 for u < 0 [if
u = 0, then we assume that sgn(u) = 0]. Given (x, y), the func-
tion f correctly classifies the point x if and only if y · f (x) > 0;
more generally, the function f correctly classifies the point x
with margin γ > 0 if and only if y · f (x) ≥ γ . Given L =
{(x1, y1), . . . , (xN, yN)}, where yn = 1 if xn comes from X1 and

yn = −1 if xn comes from X2, with n = 1, . . . ,N, we introduce
the misclassification error with margin γ ,

Êγ ( f ,L) = 1

N
#{n : yn f (xn) < γ }, (11)

where #{·} denotes the number of elements in the set {·}, which
is the proportion of the number of cases that are not correctly
classified with margin γ by f . If Fp is the set of functions
like (1) and for given constant C ≥ 1 we consider only those c
for which

‖c‖1 =
p∑

k=1

|ck| ≤ C,

then we have the following results.

Theorem 1 (Bartlett 1998). Let P be a probability distribu-
tion on X × {−1,+1}, 0 < γ ≤ 1 and 0 < η ≤ 1/2. Let Fp be
the set of functions f (x) like (1) such that

∑

k |ck| ≤ C with
C ≥ 1. If the training set L is a sample of size N and has
{−1,+1}-valued targets (i.e., the true values of the response),
then with probability at least 1 − η, for each f ∈Fp,

E( f ) ≤ Êγ ( f ,L) + ε(γ,N, η), (12)

where for some α, a universal constant,

ε(γ,N, η) =
√

α

N

(
C2m

γ 2
ln

(
C

γ

)

ln2 N − lnη

)

. (13)

The quantity ε(γ,N, η) is called the confidence interval.
Equation (12) shows that the error is bounded by the sum of
the empirical error with margin γ and by a quantity depend-
ing on ‖c‖1 through C but not on the number of weights.
The proof of this theorem is based on a quantity called the
fat-shattering dimension, which was introduced by Kearns and
Schapire (1990) (see also Fine 1999).

An important consequence is that the quantity ‖c‖1 char-
acterizes the property of generalization of a neural network.
If fp1(x) and fp2(x) are two different models, with p1 < p2,
then they will have the same confidence interval ε(γ,N, η)

in (12) if ‖c(1)‖1 = ‖c(2)‖1, where c(1) and c(2) denote the
weights between the hidden layer and the output layer of
fp1 and fp2 . Thus a network f1 with a norm ‖c‖1 and a large
number of nodes (with small absolute values of the output layer
weights) can be well approximated by a network f2 with the
same norm ‖c‖1 but fewer nodes when the difference between
Êγ ( f1,L) and Êγ ( f2,L) is negligible. This approximation has
negligible consequences on classification by a positive mar-
gin γ . From a practical point of view, the foregoing results
justify the implementation of ad hoc strategies in the training al-
gorithm, called regularization methods, which try to shrink the
size of the weights. Indeed, large weights cause the sigmoids
to saturate, and this leads to quite irregular error surfaces. An
important regularization technique is the weight decay, which
adds a penalty term on the error function (5), so that the quan-
tity

Ê∗( f ;L) = Ê( f ;L) + λ
∑

w2
i (14)

is minimized during the learning process, where the sum on the
right side is over all weights of the network (see, e.g., Bishop
1995). Even if Bartlett’s results reported in this section suggest
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a penalty that depends on the absolute values of the weights
(a kind of penalty that is at the heart of Tibshirani’s LASSO;
see Tibshirani 1996), the weight decay regularization technique
seems the most used practically for both computational reasons
(it is implemented in many specialized packages) and theo-
retical justifications (from a Bayesian perspective, the mini-
mization of a cost function with a penalty that depends on the
squares of the weights correspond to the minimization of a like-
lihood with a multinormal prior distribution of the weights,
whereas a cost function depending on the absolute value of the
weight corresponds to the maximization of a likelihood with a
Laplacian prior distribution of the weights). The parameter λ

is the decay constant (or smoothing or shrinkage parameter),
and suitable values are usually obtained by trial and error, by
cross-validation, or by using GCV.

Another simple type of regularization is early stopping, dis-
cussed previously. If the starting values are small in magnitude
and the weights increase as the learning process is carried out,
then stopping the training before convergence constrains the
weights to remain small.

2.3 Discussion

One of the main consequences of Theorem 1 is that we
should not apply to the neural framework the paradigm pecu-
liar to linear models according to which the number of parame-
ters should be less (or even substantially less) than the number
of sample values. This consequence implies a deeper look at
the role of the weights in the network. We remark that the con-
fidence interval (13) is based only on quantities involving the
weights between the hidden layer and the output layer. (In con-
trast, the weights between the input layer and the hidden layer
do not appear.) This suggests that the input-to-hidden set of
weights and the hidden-to output weights play different roles.
We explore this issue further in Section 3. Besides, because the
constant ‖c‖1 is easily computable, it is interesting to analyze
its relationship to the learning error Ê( f ,L) and the test error
Ê( f ,T ). We explore this issue further in Section 5.

3. GEOMETRIC PROPERTIES OF THE
SIGMOIDAL FUNCTIONS

In this section we investigate some geometrical properties of
the MLP. First, we recall some ideas given by Ingrassia (1999)
for discrimination problems; then we prove analogous results
for regression. For simplicity, throughout this section and in the
next one, without loss of generality, we assume that b1 = · · · =
bp = 0 and c0 = 0, so that the function f (x) is given by

f (x) =
p∑

k=1

ckτ(a′
kx). (15)

In addition, we assume that the sigmoidal function τ(·) is an-
alytic; that is, it can be represented by a power series on some
interval (−r, r), where r may be +∞. The hyperbolic tangent
τ(z) = tanh(z) or the logistic function τ(z) = (1 + e−z)−1 are
examples of analytic sigmoidal functions. We point out that
the function f is a combination of certain transformations of
the input data: (a) a nonlinear projection from R

m to R
p given

by the sigmoidal function τ , that is, x → τ(a′
1x), . . . , τ (a′

px),

and (b) a linear transformation from R
p to R according to

c1, . . . , cp. The results in this section are based on the following
theorem (see, e.g., Rudin 1966).

Theorem 2. Let g be analytic and not identically 0 in the in-
terval (−r, r), with r > 0. Then the set of the 0’s of g in (−r, r)
is at most countable.

Let x1 = (x11, . . . , x1m), . . . ,xp = (xp1, . . . , xpm) be p points
of R

m, with p > m; evidently, these points are linearly depen-
dent as p > m. Let A = (aij) be a p × m matrix with val-
ues in some hypercube [−u,u]mp for some u > 0, where we
use the notation A ∈ [−u,u]mp to mean that all of the entries
of A are in [−u,u]; thus the points Ax1, . . . ,Axp are linearly
dependent, because they are obtained by a linear transforma-
tion acting on x1, . . . ,xp. However, for u = 1/m the points
τ(Ax1), . . . , τ (Axp), where

τ(Axi) =
(

τ

(
m∑

j=1

a1jxij

)

, . . . , τ

(
m∑

j=1

apjxij

))

= (
τ(a′

1xi), . . . , τ (a′
pxi)

)
, i = 1, . . . ,p,

are linearly independent for almost all matrices A ∈ [−u,u]mp,
according to the following theorem.

Theorem 3 (Ingrassia 1999). Let x1, . . . ,xp be p distinct
points in (−r, r)m with xh �= 0 (h = 1, . . . ,p), and let A =
(aij) ∈ [−u,u]mp be a p × m matrix, with u = 1/m. Let τ be
a sigmoidal analytic function on (−r, r), with r > 0. Then the
points τ(Ax1), . . . , τ (Axp) ∈ R

p are linearly independent for
almost all matrices A = (aij) ∈ [−u,u]mp.

This result proves that, given N > m points x1, . . . ,xN ∈ R
m,

the transformed points τ(Ax1), . . . , τ (AxN) generate an over-
space of dimension p > m if the matrix A satisfies suitable
conditions. In particular, the largest overspace is attained when
p = N, that is, when the hidden layer has as many units as the
number of points in the learning set. Moreover, it shows why
neural networks have been shown to work well in presence of
multicollinearity. On this topic De Veaux and Ungar (1994) pre-
sented a case study in which the temperature of a flow is mea-
sured by six different devices at various places in a production
process. Even though the inputs are highly correlated, a better
prediction of the response is gained using a weighted combi-
nation of all six predictors rather than choosing the single best
measurement having the highest correlation with the response.

Theorem 3 introduces the concept of Fp-linearization.
We say that a learning set L is Fp-linearizable or linearized
by Fp if there exists A ∈ [−1/m,1/m]mp such that the empir-
ical error Ê( f ,L) is 0, in other words, if there exists a hyper-
plane in R

p that correctly separates the points of the learning
set (discrimination) or that perfectly interpolates them (regres-
sion). It is obvious that if L is Fp-linearizable, then it is also
Fp+1-linearizable; the counterpart is not true in general, as a
simple analysis of the system (16) shows. Thus the family of
learning sets that can be linearized by Fp is a strict subset of
the learning sets, which can be linearized by Fp+1. The smallest
value pc such that L is Fp-linearizable is here called the critical
dimension of linearization. The next result, which generalizes
theorem 8 of Ingrassia (1999), gives an upper bound on pc.
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Theorem 4. Let L be a given learning set and f = ∑p
k=1 ck ×

τ(a′
kx). If p = N, then the error Ê( f ,L) is 0 for almost all ma-

trices A ∈ [−1/m,1/m]mp.

Proof. Theorem 3 implies that the points τ(Ax1), . . . ,

τ (AxN) are linearly independent for almost all matrices A ∈
[−1/m,1/m] for p ≥ N. In particular, if p = N, then these
points generate R

N , and thus the system

c1τ(a′
1x1) + · · · + cNτ(a′

Nx1) = y1
... + ... + ... = ...

c1τ(a′
1xn) + · · · + cNτ(a′

Nxn) = yn
... + ... + ... = ...

c1τ(a′
1xN) + · · · + cNτ(a′

NxN) = yN

(16)

has a unique solution.

The upper bound on pc given earlier looks too large, but it
refers to the worst-case situation. In neural modeling, given a
learning set L of N sample data, the correct question seems
to not be “what is the largest network we can train by L
(if any),” but rather “what is the suitable size—namely, the di-
mension p of the space R

p—necessary for fitting the input–
output unknown dependence φ = E[Y|X].” This dimension p
essentially depends more on the geometry of the data, and this
explains why neural models may be successfully applied as vir-
tual sensors when the predictors exhibit a high degree of mul-
ticollinearity. As a matter of fact, the hidden units break the
multicollinearity and exploit the contribution of each single pre-
dictor. This is the reason why in modeling virtual sensors, the
optimal size p of the hidden layer often may be greater than the
number m of predictors.

Finally, we remark that Theorem 1 and Theorems 3 and 4
provide insight into the penalization term λ

∑
w2

i in (14).
Indeed, we can split the quantity

∑

i w2
i into two components

linking the weights of the input-to-hidden layer and of the
hidden-to-output layer,

∑
w2

i =
m∑

j=1

p∑

i=1

a2
ij +

p∑

i=1

c2
i = tr(AA′) + c′c. (17)

Small values of the aij’s constrain the quantities a′
nxn (n =

1, . . . ,N) in the nonlinear range of the sigmoidal function τ(·),
whereas small values of the ci’s help prevent overfitting. This
also provides insight into two different choices of the decay
constant λ for each term in (17) proposed by some authors on
the basis of empirical studies (see, e.g., Bishop 1995).

4. EQUIVALENT NUMBER OF DEGREES OF
FREEDOM IN MLP

Many authors have remarked that the number of degrees of
freedom is often much smaller than the number of parameters
involved in the model. For example, in presence of regulariza-
tion, what Moody (1992) called the effective number of parame-
ters and MacKay (1992) called the number of good parameters
measurements does not equal the number of weights in the
model. It is less than W and depends on the size of the reg-
ularization term. Recent studies regarding richly parameterized
models have proposed various definitions of degrees of freedom

that depend not on the number of parameters in the models but
rather on, for example, the sum of the sensitivity of each fit-
ted value to perturbation in the corresponding observed value
(Ye 1998) or on the properties of the space in which the fit-
ted values lie (Hodges and Sargent 2001). In the present study
we focus on neural networks and models of the form (1) and
propose some easy corrections to the model selection criteria
that are automatically computed by most common data-mining
software.

We recall that in the usual linear model,

y = Xβ + ε, (18)

where y is N × 1, X is N × m, β is m × 1, and ε is N × 1, with
cov(ε) = σ 2IN , IN being the N-dimensional identity matrix.
The number of degrees of freedom of the model is the dimen-
sion of the space in which the fitted values ŷ = X(X′X)−1X′y
lie and is given by

K = tr{X(X′X)−1X′} = tr{(X′X)−1X′X} = tr(Im) = m. (19)

Here we assume that m ≤ N and that X is of full rank; however,
even if X is not of full rank, then the definition of K is fine pro-
vided that one uses the generalized inverses. When the constant
term is included in the model, β is (m+1)×1, and the matrix X
has m + 1 columns, the first being an N-dimensional unit vec-
tor; in this case K = m + 1. As noted by Hodges and Sargent
(2001), defining degrees of freedom in this way avoids quan-
daries created by counting parameters. We can also consider the
principal component (PC) regression, where now for simplicity
y and X are measured about their mean. Let A be the m × m
matrix whose kth column is the kth eigenvector of X̄′X̄, where
X̄ is the centered version of X, so that the values of the PCs for
each observation are given by Z = XA. Because A is orthogo-
nal, Xβ can be rewritten as XAA′β = Zγ , where Z = XA and
γ = A′β , so that (18) can therefore be written as

y = Zγ + ε, (20)

which simply replaces the predictor variables by their PCs in
the regression model. PC regression can be defined as the use
of the model (20) or the reduced model,

y = Zpγ p + εp, (21)

where γ p is a vector of p elements that are a subset of γ , Zp is
an N ×p matrix whose columns are the corresponding subset of
columns of Z, and εp is the appropriate error term (see, Jolliffe
1986, sec. 8.1). The degrees of freedom in model (20) that re-
sults from defining the projection of the centered matrix X̄ in
the space spanned by the m PCs and then K = p.

Let us switch to nonlinear models of the form (15). For a
given p × m matrix A, let T be the N × p matrix with rows
τ(Ax1)

′, . . . , τ (AxN)′, with p ≤ N. According to Theorems
3 and 4, the matrix T has rank p (and then it is nonsingular)
for almost all matrices A ∈ [−1/m,1/m]mp. The empirical er-
ror Ê( f ,L) can be written as

Ê( f ,L) =
∑

(xn,yn)∈L
( yn − f (xn))

2 =
∑

(xn,yn)∈L

(
yn − c′τ(Axn)

)

= (y − Tc)′(y − Tc)

= y′y − 2c′T′y + c′T′Tc,
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and for any fixed matrix A, the error Ê( f ,L) attains its mini-
mum when

∂Ê( f ,L)

∂c
= −2T′y + 2T′Tc = 0,

which implies that c = (T′T)−1T′y.
Thus the matrix

H = T(T′T)−1T′ (22)

is a projection matrix because ŷ = Hy and H is symmetric, and
positive semidefinite, idempotent, and it results in

rank(H) = tr(H) = tr{T(T′T)−1T′}
= tr{(T′T)−1T′T} = p, (23)

so that ŷ lies in the space R
p and thus to the model f (x) =

∑p
k=1 ckτ(ak,x) should be given p equivalent number of de-

grees of freedom (edf ), according to Hastie and Tibshirani
(1990, sec. 2.8).

This notion of edf applies to other kinds of networks, includ-
ing the radial basis function network (RBFN) (see, e.g., Bishop
1995, chap. 5) and projection pursuit regression (PPR) (see,
e.g., Hastie et al. 2001, chap. 11).

We remark that the stopped training minimization procedure
imposes some constraints on the estimates of the weights, but
they are not explicit, so that we can set K = tr(H) = p; in con-
trast, the other common procedure is based on the weight decay
strategy, and it imposes explicit constraints on the minimization
of the error function. In this case the error function (14) is

Ê∗( f ;L) = Ê( f ;L) + λ
∑

w2
i

= (y − Tc)′(y − Tc) + λ{tr(AA′) + c′c}
= y′y − 2c′T′y + c′T′Tc + λ{tr(AA′) + c′c}
= y′y − 2c′T′y + c′T′Tc + λ tr(AA′) + λc′c,

and it attains its minimum when

∂Ê∗( f ;L)

∂c
= −2T′y + 2T′Tc + 2λc

= −2T′y + 2(T′T + λIp)c = 0,

that is, for

c = (T′T + λIp)
−1T′y.

Thus we get

ŷ = T(T′T + λIp)
−1T′y = Hλy,

where Hλ = T(T′T + λIp)
−1T′.

Thus the equivalent degrees of freedom in this case are

tr(Hλ) = tr{T(T′T + λIp)
−1T′} = tr{(T′T + λIp)

−1T′T}
= tr{(T′T + λIp)

−1(T′T + λIp − λIp)}
= tr{(T′T + λIp)

−1(T′T + λIp) − (T′T + λIp)
−1λIp)}

= tr(Ip) − tr{(T′T + λIp)
−1λIp}

= p − λtr{(T′T + λIp)
−1}, (24)

which shows that p is decreased by the quantity λ tr{(T′T +
λIp)

−1}. Because T′T is positive semidefinite, the p eigenval-
ues of T′T, say l1, . . . , lp, are nonnegative. Thus (T′T + λIp)

has eigenvalues (l1 + λ), . . . , (lp + λ), and then the eigenval-
ues of (T′T + λIp)

−1 are (l1 + λ)−1, . . . , (lp + λ)−1. Hence,
we have

tr{(T′T + λIp)
−1} =

p∑

i=1

1

li + λ
, (25)

and finally, from (24) and (25), we get

K = tr(Hλ) = p −
p∑

i=1

λ

li + λ
. (26)

The matrix Hλ is no longer a projection matrix, and thus the
edf should be given by tr(Hλ) rather than p. However, in prac-
tice λ always assumes small values, so that p is slightly larger
than tr(Hλ), and for practioners the simple quantity p can be
used as a measure of edf in model selection criteria even when
the decay strategy is implemented. In contrast, more accurate
values could be required in the error variance estimation (10).
We present some numerical studies in Section 5.

4.1 Relationship With Other Approaches

Recently, for richly parameterized models, Hodges and
Sargent (2001) have introduced a new measure of degrees of
freedom, say ρ, based on a property of the vector space into
which the outcomes yi are projected to give the fitted values ŷi.
For the cases where both our definition of equivalent degrees
of freedom and ρ are defined, they are equal if the model para-
meters are estimated by the minimization of the sum of squares
error function. For example, this is true for RBFNs,

f (x) =
p∑

k=1

ckφ(x,ak) + c0, (27)

where the second-layer parameters are estimated by least
squares and the basis functions parameters are chosen by for-
ward selection of the input vector or k-means cluster analysis.
In (27) the nonlinear transfer function φ(·) is a Gaussian radial
basis. Without loss of generality, if we suppress the constant
term in the linear combination, then (27) can be expressed in
matrix form as

�c = ŷ (28)

where � is an N × p matrix with generic element φnk = φ(xn,

ak), n = 1, . . . ,N, k = 1, . . . ,p, and it satisfies the assump-
tions of the Hodges and Sargent approach. The parameters c are
given by c = (�′�)−1�′y. The matrix

H = �(�′�)−1�′

is a real projection matrix, because ŷ = Hy and H is symmet-
ric, positive semidefinite, and idempotent and has rank p (or
p + 1 if we include the constant term in the model). Because
tr(H) = p (or p + 1 if we include the constant term), our notion
of degrees of freedom is equal to ρ. If the Y variable is nor-
mally distributed with known variance σ 2, our notion of edf is
equal to the generalized degrees of freedom (GDF) introduced
by Ye (1998). Indeed, Hodges and Sargent (2001) proved that
the two quantities ρ and GDF are equal when both measures
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are defined. When the variance σ 2 is not known, as usually hap-
pens in practice, Ye’s GDF must be computed by simulations,
whereas our definition of edf is still explicit.

With a weight-decay cost function (and a penalty term λ cho-
sen by trial and error), we have

ρ = p − λ tr(�′�)−1 = p − λ

p∑

k=1

1

λ + lk
,

where the lk’s are the eigenvalues of the matrix �′�, which is
a result formally equivalent to (26). Then ρ is smaller than p,
and its value depends on λ. If the parameter λ is estimated by
cross-validation, then the model cannot be reexpressed in a lin-
ear form, and Hodges and Sargent’s degrees of freedom are not
defined, whereas our measure is a good explicit approximation.

In PPR, the nonlinear function is a smoother, and the
vectors a′

k are constrained to be unit vectors. The model
f (x) = ∑p

k=1 ckτk(a′
k,x) + c0 results in a linear combination

of ridge functions. It is built in a forward-stagewise man-
ner, adding a pair (τk,a′

k) at each stage and then estimat-
ing the coefficient ck. Given the (N × p) basis function
matrix T with generic (n, k) element τnk = τk(xn,ak), the ma-
trix P = T(T′T)

−1T′ is a real projection matrix, and thus our
definition of degrees of freedom is equal to tr(P).

As far as smoothers are concerned, for models of the form
Sy = ŷ, where S is an n × n smoothing matrix (with rank n
and with S′S < S), our definition does not apply, because it is
defined for projection models. For smoothers that can be ex-
pressed as Py = ŷ, where P is a linear operator, with rank p (or
p + 1 if the constant term is included in the model) and with
P′P = P, our definition of degrees of freedom is equal to tr(P).
So it is equal to Hastie and Tibshirani’s first definition (they
give three definitions of degrees of freedom, depending on the
purpose for which they are used) and to Hodges and Sargent’s
definition.

5. NUMERICAL RESULTS

In this section we present some numerical results to inves-
tigate the behavior of Bartlett’s constant ‖c‖1 and its relation
to the learning error Ê( fp,L), the test error Ê( fp,T ), and num-
ber of edf K = p + 1 in model selection criteria. Moreover, we
analyze the unbiased estimate of the variance (10) considering
both K = p + 1 and K = tr(Hλ) as the edf. For this purpose, we
consider three cases involving both real and simulated data.

The first dataset is the polymer dataset modeled by De Veaux
et al. (1998) by means of an MLP with 18 neurons in the
hidden layer. This dataset contains 61 units with 10 predictor
variables concerning measurements of controlled variables in a
polymer process plant and 4 responses concerning the outputs
of the plant. We choose the 11th variable (i.e., the first of the
four response variables) as the response variable y. These data,
which lie in the interval [.1, .9], are particularly good for test-
ing the robustness of nonlinear methods for irregularly spaced
data. De Veaux, Psichogios, and Ungar (1993) showed that in
this case neural networks are superior to multivariate adap-
tive splines regression and both are superior to linear regres-
sion. The data exhibit quite a large degree of multicollinearity,

Table 1. VIF Values for Polymer Data

Variables

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

VIF 2.82 .83 25.03 100.25 49.73 95.90 57.99 1.65 3.75 .55

as can be seen by an analysis of the variance inflation factor
VIFj = (1 − R2

j )
−1, where R2

j is the coefficient of determina-
tion when the jth variable Xj is regressed on the remaining
p − 1 variables. If Xj is nearly orthogonal to the remaining
predictor variables, then R2

j is small and then VIFj is close to
unity, whereas if Xj is nearly linearly dependent on some sub-
set of the remaining variables, then R2

j is near unity and VIFj

is large. Table 1 lists the VIF values of the 10 predictors. In
general, variance inflation factors larger than 10 imply serious
problems with multicollinearity; here this is true for variables
X3,X4,X5,X6, and X7. Following De Veaux et al. (1998), we
fix 50 units for the learning set and 11 units for the test set. We
then consider 100 different samples with different units for the
training set and the test set (these sets all have 50 and 11 units).
We consider neural networks with increasing numbers of hid-
den units from p = 2 to p = 25. For each p, we train the network
1,000 times, varying the samples and the initial weights; we
adopt either the weight decay or the early-stopping regulariza-
tion technique. The distribution of the learning and test errors
and the distribution of ‖c‖1 versus the number p of neurons in
the hidden layer are plotted in Figure 1 using boxplots, for both
values obtained with stopped training and values obtained with
weight decay.

Figures 1(a)–1(d) show that for the errors to be rather stable
across simulations, the network must be large enough; in par-
ticular, Figures 1(a) and 1(c) refer to training and test error with
weight decay, and Figures 1(b) and 1(d) refer to training and
test errors with stopped training. For small values of p, results
are very unstable, and the algorithms are influenced mostly by
local minima. The fit, as measured by the median value of the
learning errors, increases as the complexity rises, and stabilizes
(i.e., the spread of the boxplots becomes small) after a certain
threshold (given by about 10 or 11 hidden units). The differ-
ent behavior of boxplots in Figures 1(c) and 1(d) is due to the
fact that test observations are used for controlling overfitting in
the stopped training criterion, whereas they are independent of
training with the weight decay and can be used for measuring
the generalization performance of the network only in this sec-
ond case.

Figures 1(e) and 1(f ) show that the median values of ‖c‖1

are in practice linearly related to our measure p; however, the
quantity ‖c‖1 is too unstable across simulations to be a good
complexity measure. We remark that such median values of
the training errors and of ‖c‖1 versus p have a similar trend
for both weight decay and stopped training. Table 2 gives for
each p the mean values of the training error Ê( fp;L), the test
error Ê( fp;T ), the L1 norm ‖c‖1, and the model selection cri-
teria AIC, BIC/SBC, GCV, and FPE, computed with K = p + 1
because here we implemented the stopped training. We remark
that analogous results have been obtained using the weight de-
cay strategy, where in model selection criteria K = tr(Hλ) can
be approximated by K = p + 1 because here we are interested
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Polymer Dataset: Distribution of (a) Training Errors With Weight Decay, (b) Training Errors With Stopped Training, (c) Test Errors With
Weight Decay, (d) Test Errors With Stopped Training, and (e) ||c||1 With Weight Decay, (f) ||c||1 With Stopped Training versus p.

in the rank rather than in the size of the indices AIC, BIC, and
so on.

The numerical results show that there is no unique p that min-
imizes the different model selection criteria, even if the model
selected by the BIC agrees with the smallest value of the test
error while the other ones suggest larger models; however, we
note that many numerical experiments have shown that the BIC
often works well for neural networks, whereas AIC and FPE
tend to overfit with neural networks (see Sarle 1999; Kadane

and Lazar 2004). For the sake of completeness, Table 3 gives
the values for model selection criteria when the number of de-
grees of freedom is selected equal to W . In this case some
indices are useless because they assume negative values, and
some others have a high variability and anomalous peaks. FPE
is useless because it assumes negative values for more than four
hidden units; GCV suggests large models and shows an anom-
alous peak for the model with four hidden units (which holds
a number W near N); this peak and the high variability are not
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Table 2. Polymer Dataset: Values of Some Model Selection Criteria for K = p + 1

p Ê(fp;L) Ê(fp;T ) ||c||1 K BIC AIC FPE GCV

2 .0540 .0275 1.513 3 1.2280 1.1133 3.0447 3.0557
3 .0381 .0273 1.982 4 .9570 .8040 2.2352 2.2496
4 .0384 .0286 2.535 5 1.0426 .8514 2.3444 2.3681
5 .0338 .0282 2.966 6 .9933 .7638 2.1489 2.1803
6 .0363 .0294 3.467 7 1.1441 .8764 2.4067 2.4548
7 .0307 .0296 3.776 8 1.0539 .7480 2.1187 2.1743
8 .0314 .0313 4.517 9 1.1551 .8109 2.2590 2.3346
9 .0284 .0306 4.913 10 1.1326 .7502 2.1289 2.2176

10 .0330 .0323 5.569 11 1.3603 .9397 2.5779 2.7091
11 .0260 .0312 6.033 12 1.2026 .7437 2.1240 2.2538
12 .0283 .0351 6.420 13 1.3648 .8676 2.4105 2.5853
13 .0295 .0353 7.271 14 1.4832 .9478 2.6201 2.8430
14 .0281 .0362 7.353 15 1.5143 .9407 2.6111 2.8693
15 .0264 .0352 8.030 16 1.5297 .9178 2.5629 2.8553
16 .0242 .0367 8.605 17 1.5216 .8715 2.4588 2.7802
17 .0247 .0378 9.003 18 1.6188 .9305 2.6228 3.0133
18 .0221 .0375 9.537 19 1.5844 .8579 2.4547 2.8689
19 .0224 .0394 9.946 20 1.6783 .9135 2.6138 3.1117
20 .0212 .0379 10.671 21 1.6999 .8969 2.5916 3.1466
21 .0221 .0393 11.235 22 1.8205 .9792 2.8396 3.5213
22 .0188 .0382 11.614 23 1.7383 .8588 2.5431 3.2256
23 .0206 .0398 12.060 24 1.9091 .9913 2.9367 3.8159
24 .0175 .0413 12.594 25 1.8237 .8677 2.6281 3.5042
25 .0175 .0425 12.755 26 1.9010 .9068 2.7717 3.7989

NOTE: The minimum values for the different criteria are in bold.

supported by values summarized in the boxplots of Figure 1.
Furthermore, the BIC and AIC give strictly increasing values
as p grows, so we should select the model with p = 2.

The second dataset concerns a vibration severity chart (see
Cavarra, Crupi, Guglielmino, and Ingrassia 2002; Ingrassia and
Morlini 2002) for centrifugal pumps in an ethylene system.
There are 51 recordings of the overall level of vibration in the
horizontal, vertical, and axial directions. Besides the overall vi-
bration, the ratios vt+1−vt

t+1−t , where vt+1 is the vibration level at
time t + 1 and vt is the vibration level at time t for each di-

Table 3. Polymer Dataset: Values of Some Model Selection
Criteria for K = W

p W BIC AIC FPE GCV

2 25 2.949 1.993 8.100 10.800
3 37 3.539 2.124 12.743 28.167
4 49 4.485 2.611 189.900 4,795.446
5 61 5.296 2.964 −17.038 34.886
6 73 6.308 3.516 −9.709 8.580
7 85 7.078 3.828 −5.918 3.131
8 97 8.040 4.331 −4.910 1.777
9 109 8.878 4.710 −3.825 1.019

10 121 9.967 5.340 −3.970 .817
11 133 10.670 5.584 −2.870 .472
12 145 11.692 6.148 −2.906 .392
13 157 12.672 6.668 −2.851 .322
14 169 13.563 7.101 −2.587 .248
15 181 14.439 7.518 −2.328 .192
16 193 15.292 7.911 −2.058 .148
17 205 16.250 8.410 −2.031 .128
18 217 17.076 8.778 −1.763 .099
19 229 18.031 9.274 −1.746 .087
20 241 18.913 9.697 −1.613 .073
21 253 19.894 10.219 −1.648 .067
22 265 20.672 10.539 −1.378 .051
23 277 21.704 11.111 −1.486 .050
24 289 22.479 11.428 −1.243 .038
25 301 23.417 11.907 −1.224 .035

NOTE: BIC and AIC are strictly increasing with p; moreover, FPE is negative for p ≥ 5,
FPE and GCV present an anomalous peak when W approximates the size of the learning set.

rection, are also considered input variables. Thus input patterns
are vectors in R

6. The response variable is a measure of the sta-
tus of the centrifugal pump after a period of time, which takes
value 0 for the 32 pumps working perfectly, value .5 for the
12 pumps with something wrong, and value 1 for the 11 pumps
that are about to be broken down. In other words, the value 0 is
associated with the target class low risk, the value .5 with the
target class medium risk, and the value 1 with the class high
risk. A total of 1,000 different partitions in a training set with
39 recordings and a test set with 12 recordings are randomly
generated so that each test set contains 6 observations belonging
to class 1 ( y = 0), 3 observations belonging to class 2 ( y = .5),
and 3 observations belonging to class 3 ( y = 1). As far as the
misclassification error rate is concerned, if ŷ ≤ .3, then the ob-
servation is assigned to class 1; if .3 < ŷ ≤ .7, then the obser-
vation is assigned to class 2; and if ŷ > .7, then the observation
is assigned to class 3. Figure 2 reports boxplots of the training
and the test misclassification errors and the values of ‖c‖1 ob-
tained with stopped training and weight decay according to the
same outline of Figure 1. As in Figure 1, values of ‖c‖1 are very
unstable across simulations. In this example, values of ‖c‖1 for
each number p of hidden units obtained with stopped training
have a higher variability around their median than do values
obtained with weight decay. However, median values obtained
with stopped training and weight decay for each number p are
similar. Table 4 gives for each p the mean values of model se-
lection criteria obtained with K = p + 1 and the mean value
of the validation errors obtained with weight decay. According
to the validation error obtained with weight decay, all model
selection criteria, with the exception of the BIC, suggest mod-
els with a number of hidden units ranging from 8 to 12 (with
more than 12 hidden units, values obtained for these criteria
start increasing), whereas the BIC selects models with a num-
ber p ranging from 5 to 8. However, we remarked that for neural
networks, the BIC is preferable over the AIC and the FPE. The
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Vibration Dataset: Distributions of (a) Misclassification Training Errors With Weight Decay, (b) Misclassification Training Errors With
Stopped Training, (c) Misclassification Test Errors With Weight Decay, (d) Misclassification Test Errors With Stopped Training, and (e) ||c||1 With
Weight Decay, (f) ||c||1 With Stopped Training.

presence of models with different complexity but similar gener-
alization errors is supported by values obtained in the different
simulations and plotted in boxplots of Figures 2(a), 2(b), 2(c),
and 2(d).

Also in this case, for the sake of completeness, Table 5 lists
the values for model selection criteria when the number of de-
grees of freedom is selected equal to W . As in the previous ex-
ample, some indices are useless because they assume negative

values, and some others have a high variability and anomalous
peaks. FPE and UEV are useless, because these indices assume
negative values for more than five hidden units. GCV suggests
large models; however, values obtained for this criterion for a
number p of hidden units ranging from 2 to 12 have an ex-
tremely high variability and an anomalous peak for the model
with 5 hidden units (which holds a number W not far from N).
This peak and the high variability are not supported by val-
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Table 4. Vibration Dataset: Values of Some Model Selection
Criteria for K = p + 1

p Ê(fp;L) BIC AIC FPE GCV UEV

2 .143 1.863 1.735 5.670 5.703 .135
3 .130 1.757 1.586 4.888 4.940 .114
4 .117 1.642 1.428 4.178 4.247 .095
5 .113 1.605 1.349 3.864 3.957 .086
6 .114 1.600 1.301 3.687 3.810 .080
7 .112 1.603 1.262 3.554 3.710 .076
8 .109 1.610 1.226 3.438 3.632 .072
9 .110 1.656 1.230 3.460 3.703 .071

10 .108 1.677 1.208 3.399 3.693 .068
11 .108 1.724 1.212 3.430 3.788 .067
12 .110 1.762 1.208 3.436 3.866 .066

NOTE: The minimum values for the different criteria are in bold.

ues summarized in the boxplots of Figure 2. Furthermore, the
BIC and AIC give strictly increasing values as p grows, so we
should select the model with p = 2. To summarize, we note that
with W degrees of freedom, model selection criteria give con-
trasting results, whereas with K = p + 1, results are much more
satisfactory.

The third analysis concerns the UEV introduced in (10),
that is,

σ̂ 2 = Ê( fK)

N − K
, (29)

for the two most popular regularization techniques (early stop-
ping and weight decay) and for different choices of p and K.
First, we generated three datasets according to the following
models:

M1: x = 0 ∈ R
5, y = ε;

M2: x = 0 ∈ R
10, y = ε;

and

M3: x ∈ (0,130) ⊂ R,

y = θ1

[(
θ3

θ3 − θ4

)

e−θ4x +
(

θ1

θ2
− θ3

θ3 − θ4

)

e−θ3x
]−1

+ ε,

where ε follows a normal distribution N(0, σ 2), and θ1 = 105,
θ2 = 2.6, θ3 = .5, and θ4 = −.02. Data coming from the mod-
els M1 and M2 have been randomly generated with σ 2 = .5;

Table 5. Vibration Dataset: Values of Some Model Selection
Criteria for K = W

p W BIC AIC FPE GCV UEV

2 17 3.178 2.453 12.370 15.272 .221
3 25 3.636 2.612 16.711 26.897 .265
4 33 4.084 2.762 28.246 76.717 .404
5 41 4.611 2.990 218.17 4,309.6 2.833
6 49 5.169 3.250 −35.91 108.37 −.43
7 57 5.737 3.519 −16.40 21.097 −.180
8 65 6.307 3.791 −10.53 8.171 −.107
9 73 6.917 4.101 −7.963 4.272 −.076

10 81 7.501 4.387 −6.271 2.505 −.056
11 89 8.111 4.699 −5.270 1.643 −.044
12 97 8.714 5.003 −4.510 1.134 −.036

NOTE: BIC and AIC are strictly increasing with p; moreover, FPE and UEV assume negative
values for p ≥ 6, FPE and GCV present an anomalous peak when W approximates the size of
the learning set.

two datasets coming from the model M3 have been randomly
generated choosing σ 2 = 1 and σ 2 = 4.

Data from M1 and M2 have been fitted using an MLP with
p = 5 and p = 10 neurons in the input layer, whereas in the
other case we considered an MLP with one neuron in the in-
put layer. All simulations were performed in MATLAB. For
each model, we generated 100 samples constituting 50 units,
N = 39 units in the training set and 11 units in the test set
for all cases; the input values in model M3 have been sampled
uniformly in the interval (0,130). The values of σ̂ 2 obtained
will be compared with the sample variance s2 = ∑

i ei/(N − 1),
where e1, . . . , eN are the errors (i.e., the realizations of the sam-
ple ε1, . . . , εN ). Data coming from M1 and M2 exhibit a sample
variance equal to s2 = .2381; as far as the two datasets coming
from the model M3 are concerned, the sample variances were
equal to s2 = .7551 and s2 = 2.4490.

First, we considered the early-stopping technique. Table 6
summarizes the obtained results; such results are the aver-
age values over 100 samples with different partitions of ob-
servations in the training and in the test sets. In both models
M1 and M2, the response does not depend on inputs, and thus
the error variance estimate for these models must be indepen-
dent on the number of inputs. This is verified when K = p + 1
is selected so that the values of σ̂ 2 are slightly greater than s2.
In contrast, in many cases the error variance estimates with
K = W degrees of freedom cannot be computed for MLPs,
because the values obtained are negative; moreover, positive es-
timates are considerably larger than s2.

We performed another set of simulations implementing the
weight decay regularization technique to compare K = p + 1
and K = tr(Hλ) given in (26) for different values of the smooth-
ing parameter λ; here we denote by σ̂ 2

p+1 and σ̂ 2
λ the UEV (29)

based on K = p + 1 and K = tr(Hλ). In this case the eigenval-
ues li (i = 1, . . . ,p) of T depend on x, so that we considered
their means over the learning set. Tables 7 and 8 list the values
that we obtained. The estimates agree quite well with s2 (even
if it is obvious that σ̂ 2

p+1 is a little larger than σ̂ 2
λ ).

As far as the model M3 is concerned, the results that we
obtained are listed in Tables 9 and 10 for s2 = .7551 and
s2 = 2.4490. Also in this case the obtained estimates agree quite
well with s2.

Finally, we remark that in many statistical software pack-
ages for neural networks, the smoothing parameter λ can be se-
lected automatically according to cross-validation procedures,
but this value is not available, so that it is impossible to com-
pute the unbiased estimate of the variance using σ̂ 2

λ . Table 11
lists the estimates σ̂ 2 for data coming from the model M3 for
both s2 = .7551 and s2 = 2.4490 adopting both early stopping
and weight decay (with automatic λ selection).

Table 6. Simulated Data: Error Variance Estimates Using K = p + 1
and K = W (early-stopping regularization technique)

K = p + 1 K = W

p M1 M2 M1 M2

2 .2677 .2557 .4015 .6576
3 .2748 .2681 .5658 4.6916
4 .2852 .2807 .9697 −.9543
5 .2977 .2922 3.2742 −.4383

NOTE: The values must be compared with s2 = .2381.
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Table 7. Simulated Data From Model M1: Error Variance Estimates Using K = p + 1 and K = tr (Hλ) (weight decay regularization technique)

p = 2 p = 3 p = 4

λ σ̂ 2
p+1 tr(Hλ) σ̂ 2

λ
σ̂ 2

p+1 tr(Hλ) σ̂ 2
λ

σ̂ 2
p+1 tr(Hλ) σ̂ 2

λ

.02 .2410 1.9041 .2355 .1678 3.3583 .1655 .2512 1.9223 .2351

.03 .2416 1.8278 .2358 .2462 1.8526 .2352 .2513 1.8669 .2350

.04 .2424 1.7416 .2361 .2467 1.7997 .2354 .2516 1.8188 .2350

.05 .2434 1.6387 .2366 .2471 1.7271 .2354 .2519 1.7604 .2350

.06 .2446 1.5137 .2371 .2478 1.6470 .2358 .2523 1.7034 .2351

.08 .2458 1.3602 .2375 .2484 1.5759 .2360 .2527 1.6447 .2352

.09 .2472 1.1692 .2379 .2492 1.4886 .2363 .2532 1.5825 .2354

.10 .2483 .9995 .2381 .2501 1.3922 .2367 .2538 1.5171 .2356

.11 .2483 .9988 .2381 .2511 1.2857 .2371 .2544 1.4485 .2358

.12 .2483 .9985 .2381 .2522 1.1684 .2375 .2551 1.3766 .2361

.14 .2483 .9983 .2381 .2533 1.0399 .2380 .2559 1.3012 .2365

.15 .2483 .9981 .2381 .2537 .9986 .2381 .2568 1.2222 .2369

.16 .2483 .9979 .2381 .2537 .9983 .2381 .2577 1.1396 .2373

.18 .2483 .9977 .2381 .2537 .9981 .2381 .2587 1.0529 .2378

.19 .2483 .9975 .2381 .2537 .9979 .2381 .2593 .9983 .2381

.20 .2483 .9973 .2381 .2537 .9977 .2381 .2593 .9981 .2381

.22 .2483 .9971 .2381 .2537 .9975 .2381 .2593 .9979 .2381

.23 .2483 .9969 .2381 .2537 .9974 .2381 .2593 .9977 .2381

.25 .2483 .9967 .2381 .2537 .9972 .2381 .2593 .9975 .2381

NOTE: The values must be compared with s2 = .2381.

Table 8. Simulated Data From Model M2: Error Variance Estimates Using K = p + 1 and K = tr (Hλ) (weight decay regularization technique)

p = 2 p = 3 p = 4

λ σ̂ 2
p+1 tr(Hλ) σ̂ 2

λ
σ̂ 2

p+1 tr(Hλ) σ̂ 2
λ

σ̂ 2
p+1 tr(Hλ) σ̂ 2

λ

.05 .2180 1.8250 .2127 .1448 2.8709 .1414 .1149 3.7284 .1117

.06 .2192 1.7344 .2135 .1534 2.6732 .1491 .1458 2.9299 .1394

.08 .2204 1.6847 .2144 .2223 1.7173 .2118 .1523 2.7635 .1451

.09 .2216 1.6404 .2153 .2237 1.6538 .2128 .1585 2.5937 .1505

.10 .2229 1.5982 .2164 .2241 1.6527 .2132 .2270 1.6807 .2114

.11 .2242 1.5574 .2175 .2244 1.6141 .2134 .2275 1.6457 .2118

.12 .2256 1.5173 .2187 .2263 1.5467 .2149 .2280 1.6185 .2120

.14 .2270 1.4778 .2199 .2274 1.5127 .2157 .2285 1.5892 .2124

.15 .2284 1.4387 .2211 .2277 1.5053 .2160 .2293 1.5542 .2130

.16 .2299 1.3997 .2224 .2279 1.4903 .2161 .2299 1.5264 .2134

.18 .2334 1.3147 .2253 .2289 1.4611 .2169 .2306 1.4997 .2140

.19 .2331 1.3221 .2251 .2299 1.4324 .2177 .2313 1.4738 .2145

.20 .2347 1.2834 .2265 .2309 1.4042 .2186 .2321 1.4487 .2151

.22 .2364 1.2450 .2279 .2331 1.3538 .2204 .2328 1.4244 .2157

.23 .2381 1.2069 .2294 .2343 1.3257 .2214 .2337 1.4006 .2164

.25 .2398 1.1692 .2308 .2344 1.3216 .2215 .2345 1.3775 .2170

NOTE: The values must be compared with s2 = .2381.

Table 9. Simulated Data From Model M3: Error Variance Estimates Using K = p + 1 and K = tr (Hλ) (weight decay regularization technique)

p = 2 p = 3 p = 4 p = 5

λ σ̂ 2
p+1 σ̂ 2

λ
σ̂ 2

p+1 σ̂ 2
λ

σ̂ 2
p+1 σ̂ 2

λ
σ̂ 2

p+1 σ̂ 2
λ

.005 .5757 .5568 .5610 .5280 .5660 .5155 .5770 .5091

.05 .6050 .5738 .6180 .5701 .6343 .5688 .6523 .5681

.1 .6314 .5983 .6338 .5839 .6456 .5778 .6614 .5747

.2 .6883 .6526 .6780 .6247 .6811 .6095 .6911 .6002

.3 .7288 .6911 .7182 .6618 .7199 .6443 .7282 .6324

.4 .7646 .7249 .7498 .6910 .7525 .6734 .7620 .6618

NOTE: The values must be compared with s2 = .7551.

Table 10. Simulated Data From Model M3: Error Variance Estimates Using K = p + 1 and K = tr (Hλ) (weight decay regularization technique)

p = 2 p = 3 p = 4 p = 5

λ σ̂ 2
p+1 σ̂ 2

λ
σ̂ 2

p+1 σ̂ 2
λ

σ̂ 2
p+1 σ̂ 2

λ
σ̂ 2

p+1 σ̂ 2
λ

.005 2.1347 2.0363 2.1414 2.0160 2.1919 2.0045 2.2496 1.9925

.05 2.3873 2.2657 2.4505 2.2619 2.5188 2.2602 2.5916 2.2602

.1 2.4062 2.2818 2.4632 2.2707 2.5302 2.2659 2.6028 2.2627

.2 2.4674 2.3404 2.5087 2.3121 2.5665 2.2971 2.6342 2.2881

.3 2.5092 2.3800 2.5490 2.3493 2.6045 2.3312 2.6701 2.3192

.4 2.5459 2.4141 2.5813 2.3789 2.6375 2.3606 2.7039 2.3485

NOTE: The values must be compared with s2 = 2.4490.
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Table 11. Simulated Data From Model M3: Error Variance Estimates
Using K = p + 1 for Both Early Stopping (ES) and Weight Decay (WD)

(λ selected automatically) Regularization Strategies

s2 = .7551 s2 = 2.4490

p ES WD ES WD

2 .6885 .6323 2.4931 2.4625
3 .6387 .5869 2.5780 2.5086
4 .6828 .5915 2.6395 2.4408
5 .6638 .5892 2.5626 2.3848

NOTE: The values must be compared with s2 = .7551 and s2 = 2.4490.

We note that in all simulations, the unbiased estimates of the
variance using both K = p + 1 and K = tr(Hλ) agree with the
true values.

6. CONCLUDING REMARKS

Bartlett’s (1998) theorem 1 gives the theoretical basis for
using neural models with a total number of weights larger
than the number of sample data points used to estimate the
weights. Based on this result, we have investigated the role of
the weights of a neural network with a mapping function of the
form f (x) = ∑p

k=1 ckτ(a′
kx + bk) + c0. We have shown that the

two levels of weights play quite different roles; the input-to-
hidden weights concern just a (nonlinear) projection from R

m

to R
p, whereas the hidden-to-output weights fit the projected

data and perform the regression or the classification, according
to the problem at hand. Both the projection and the fit are op-
timized according to the target values. From this point of view,
the complexity of the network depends more on the number
of hidden units than on the whole set of weights, and we have
shown that the greatest complexity is reached by a network with
a number of hidden neurons equal to the number of sample data
points.

According to results for richly parameterized models, the
concept of equivalent number of degrees of freedom K has
been introduced for one-hidden-layer networks like MLP and
RBF as the trace of the projection matrix, and it proves to be
K ≤ p + 1, where p + 1 is the number of the hidden to out-
put weights. The value of K also depends on the adopted regu-
larization technique. If early stopping is implemented, then we
set K = tr(H) = p + 1, whereas when weight decay is imple-
mented, it is K = tr(Hλ) < p + 1, and it also depends on the
value of the smoothing parameter λ. However, in both cases,
for model selection according to the BIC and AIC we can adopt
K = p + 1, because we are interested mainly in the number of
hidden units p that minimizes such indices. In contrast, estima-
tion of the error variance (29) requires more attention; if early
stopping is adopted, then we set K = p+1, whereas in the other
case (i.e., the weight decay), using K = p + 1 leads to slightly
larger estimates than those obtained using the trace K = tr(Hλ).
However, our numerical simulations showed that K = p+1 also
could be adopted in general for this aim.

In contrast to Ye’s GDF and according to the definition of ρ

and to Hastie and Tibshirani’s definitions, our notion of degrees
of freedom does not depend on the underlying true function.
For a certain MLP, it is equal for all three models, and fitting
an MLP to a pure noise dataset does not require more degrees

of freedom than fitting an MLP to a dataset with a structure
between the inputs and the target.

We have also presented some numerical studies of the behav-
ior of the constant ‖c‖, given by the sum of the absolute values
of the hidden to output weights, and of the training and test er-
ror of an MLP across the simulation. These studies show that
the values of ‖c‖ have a similar increasing trend, with respect
to the number p of hidden units, for both stopped training and
weight decay. They also show that this quantity is particularly
unstable across simulations, whereas our measure of degrees of
freedom does not depend on local minima or on the conver-
gence of the learning algorithm. The simulation studies show
that besides model selection, the proposed measure also may
be used to achieve a good estimate of the error variance, espe-
cially for small networks, whereas the total number of weights
is useless for this task.

Finally, we remark that for deeper networks with more than
one hidden layer, analogous considerations apply. The equiv-
alent number of degrees of freedom relates to the units in the
highest hidden layer (i.e., on the hidden layer immediately be-
fore of the output layer), with the other layer performing only
geometric transformations of data; this is also congruent with
theorem 28 of Bartlett (1998).
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