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Abstract

We introduce various families of irreducible homaloidal hypersurfaces in projective space Pr , for all
r � 3. Some of these are families of homaloidal hypersurfaces whose degrees are arbitrarily large as com-
pared to the dimension of the ambient projective space. The existence of such a family solves a question
that has naturally arisen from the consideration of the classes of homaloidal hypersurfaces known so far.
The result relies on a fine analysis of hypersurfaces that are dual to certain scroll surfaces. We also in-
troduce an infinite family of determinantal homaloidal hypersurfaces based on a certain degeneration of a
generic Hankel matrix. The latter family fit non-classical versions of de Jonquières transformations. As a
natural counterpoint, we broaden up aspects of the theory of Gordan–Noether hypersurfaces with vanishing
Hessian determinant, bringing over some more precision into the present knowledge.
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0. Introduction

The study of Cremona transformations of Pr is a classical and fascinating subject(s) in al-
gebraic geometry. The Cremona group of Pr is well understood only for r � 2. By contrast, in
dimension r � 3 it is even problematic to produce non-trivial examples of birational transfor-
mations of Pr . Therefore, any relevant addition to the universe of these transformations is very
welcome, especially if it bridges up with other interesting concepts in the field.

In this perspective, a good example is that of a homaloidal hypersurface. This is a projec-
tive hypersurface X ⊂ Pr , not necessarily reduced or irreducible, defined by a homogeneous
polynomial f = f (x0, . . . , xr ) of degree d � 2 whose partial derivatives define a Cremona trans-
formation of Pr . Quite generally, the rational map φf : Pr ��� Pr defined by the partial derivatives
of f is called the polar map of the hypersurface X, so that, if X is reduced, the indeterminacy
locus of φf is precisely the singular locus of X. For instance, a smooth quadric is homaloidal,
inasmuch as its polar map is the usual polarity, which is a projective transformation. However,
if X is smooth of degree d � 3, then X is never homaloidal, since its polar map has no inde-
terminacy locus and it is defined by forms of degree d − 1 > 1. Indeed, a relevant role in the
understanding of homaloidal hypersurfaces is played by the analysis of their singular locus.

On the other hand, an obvious necessary condition in order that X be homaloidal, is the non-
vanishing of the Hessian determinant h(f ) of f . Note that, if one measures the complexity of a
hypersurface by the degree of its polar map, the hypersurfaces with vanishing Hessian have to be
considered as the simplest ones, and the homaloidal hypersurfaces are the simplest among those
for which the Hessian is not identically zero. Thus, a couple of natural questions arise: what can
we say about hypersurfaces with identically vanishing Hessian? What are the relations, if any,
between these and homaloidal hypersurfaces?

As is generally known, both problems—the classification of homaloidal hypersurfaces and of
hypersurfaces with vanishing Hessian—play a classical role in the history of algebraic geometry,
perhaps with homaloidal running first, as subsumed into Cremona theory, while vanishing Hes-
sian winning in drama ever since Gordan and Noether (see [20]) showed that Hesse (see [22,23])
had previously misapprehended the question.

Although fairly understood, even the theory of plane Cremona transformations is already quite
involved. The early results of Noether (see, e.g., [37, Remark 2.3 and ff.]), inspired on Cremona’s
original work, showed how much more complicated is the theory in P3. However, it has perhaps
been common thought that, notwithstanding the difficulties of the general Cremona theory, homa-
loidal hypersurfaces would be easier to understand and eventually be subject to classification. For
instance, the classification of reduced homaloidal curves in P2 by Dolgachev (see [10])—which
shows that there are only three types up to projective transformations, and, more generally, the
examples coming from the theory of pre-homogeneous vector spaces (see [14]), whose degree
is bounded in terms of the embedding dimension—could have generated the expectation that the
degree of an irreducible, or perhaps even only reduced, homaloidal hypersurface in Pr is at most
r + 1. If this were proved to be the case, one would perhaps be half-way from the classification
goal.

Alas, nature had the upper hand. Indeed, one of the main objectives of this paper is to show
that, as a counterpart to the planar case, in which a full classification is fairly easy to state, the
situation is much more complicated in higher dimension. In fact, one of our main results here
is to show the existence of families of irreducible hypersurfaces in Pr , for r � 3, with arbitrar-
ily large degree with respect to r (see Section 3.1). We think that this uncovers some complex
phenomenology which makes the classification of irreducible homaloidal hypersurfaces quite in-
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tricate and therefore deserves a deeper scrutiny, beyond our presently inadequate understanding
of the matter. A special role is of course played by the complicated nature of the scheme structure
of the base locus of a homaloidal Cremona transformation. In particular, for a homaloidal hyper-
surface X, this is due to the existence of embedded components originating some infinitely near
base points for the linear system of polars of X, which are somehow unexpected inasmuch as
they are not singular points of X or do not even belong to X (see, e.g., [1] and Section 3.2). Inci-
dentally, this phenomenon is already present in one of the plane cases appearing in Dolgachev’s
classification.

As for the second question envisaged here, the problem is after all to find the homogeneous
polynomial solutions f of the classical Monge–Ampère differential equation h(f ) = 0. It is
therefore not surprising to see how far an outpost this question has reached in subsequent geomet-
ric developments and how strong a role it has played in various other areas, such as differential
geometry and approximation theory (see, for example, [41,16,35]).

In their celebrated work [20], Gordan and Noether constructed counterexamples to Hesse’s
original claim to the effect that X has vanishing Hessian if and only if it is a cone. The examples
have been later revisited and partly extended by several authors (in chronological order, [44,17,
18,32–34,27]). In spite of the difficulty of their original paper, the examples themselves are not
all that difficult to understand and can actually be easily described in explicit algebraic terms (see
also [31]).

A second goal of this paper is to give a modern overview of the known methods to deal
with the problem of vanishing Hessian and to generalize results of Permutti and Perazzo quoted
above. One of the challenges is to determine the structure of the dual variety to Gordan–Noether
or Permutti hypersurfaces, for which we add a tiny contribution that may help improving our
understanding of these defective dual varieties. As it turns, there is a strong relationship between
the families of homaloidal hypersurfaces described here and some hypersurfaces with vanishing
Hessian. We hope to pursue work along this line in the near future.

We now describe the sections of the paper in somewhat more detail.
The first section contains a recap of known concepts and is primarily meant as a collection of

properties of scroll surfaces and their dual varieties that are either spread out or difficult to find
in the current literature. The main results are contained in a series of propositions (see Proposi-
tion 1.4 through Proposition 1.6). We also describe the behavior of more general rational scroll
surfaces containing a so-called line directrix, and their dual hypersurfaces (see Propositions 1.8
and 1.9). This section prepares the ground for the more thorough considerations of the third
section, for which the present material is essential in the construction of the announced exam-
ples.

The second section starts with an overview of the aforementioned polar map φf associated
to a nonzero homogeneous polynomial f . After a brief introduction about the polars and the
Hessian of f , we switch to the problem of the vanishing Hessian. Just enough of the Gordan–
Noether construction is reviewed in order to state a geometric description of its structure (see
Proposition 2.11), based on a notion of core of such a hypersurface. We next discuss the work of
Permutti extending the previous construction in a special situation, and following the same ideas
we also give some features of Permutti’s generalized hypersurface (see Proposition 2.13). We
proceed to establishing both the structure of the dual variety to a Permutti hypersurface and of its
polar image (see Propositions 2.14 and 2.15). The section ends with a generalization of a result
of Perazzo (see Proposition 2.18) establishing a bound for the dimension of the image of φf

for a so-called H -hypersurface X ⊂ Pr with equation f = 0, i.e. a reduced hypersurface which
contains a subspace of dimension t such that the general subspace of dimension t + 1 through
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it cuts out on X a cone with a vertex of dimension at least r − t − 1. The dual hypersurfaces to
scrolls with a line directrix are special cases of H -hypersurfaces and come up in our examples.

In the third section we introduce families of irreducible homaloidal hypersurfaces, including
the case in which they have arbitrarily large degree as compared to the ambient dimension. As
a preliminary, we state a general principle for a Cremona transformation saying that such a map
always contracts its Jacobian, and ask whether, in the case of a polar map φf , contraction is
also sufficient for birationality, provided f , or the corresponding hypersurface X with equation

f = 0, is totally Hessian in the sense that h(f ) = cf
(d−2)(r+1)

d with c ∈ k \ {0}. Here a good deal
of examples of such forms arises from the theory of pre-homogeneous vector spaces, a notion
introduced by Kimura and Sato (see [24], also [11,10,14] and Remark 3.5). In this setup f is
the so-called relative invariant of the pre-homogeneous space, uniquely defined up to a nonzero
factor from C. If, moreover, its Hessian is nonzero then it is in fact totally Hessian and f is a
homaloidal polynomial such that φf coincides with its inverse up to a projective transformation
(see [11, Theorem 2.8]).

As mentioned, the singularities of a hypersurface X ⊂ Pr which is either homaloidal or has
vanishing Hessian are not arbitrary. For example, in the second case, if r � 3 then X cannot have
isolated singularities. The same result regarding homaloidal hypersurfaces is a conjecture of
Dimca–Papadima (see [9]). We give a slight evidence for this conjecture in terms of a resolution
of the indeterminacies of the polar map of X by successive blowups along smooth centers, to
wit, if X ⊂ Pr is homaloidal and its degree exceeds r + 1 then, for some blowing-up step, the
multiplicity of the proper transform of the general first polar of X is at least the dimension of the
center of the blowup (see Proposition 3.6). In other words, the polar linear system of X cannot
be log-canonical (see [26, p. 56]). This gives a measure of the complexity of the singular locus
of X. In particular it shows that a homaloidal hypersurface in P3, of degree at least 5, cannot
have ordinary singularities.

After these preliminaries, we produce, for every r � 3, the promised infinite series of irre-
ducible homaloidal hypersurfaces in Pr of arbitrarily large degree d � 2r − 3. They are the
dual hypersurfaces to certain scroll surfaces with a line directrix. It is relevant to observe that
the present examples are not related to the ones based on pre-homogeneous vector spaces as
mentioned above. Also they show, perhaps against the ongoing folklore, that there are plenty of
homaloidal polynomials around. They even seem to be in majority as compared to polynomi-
als with vanishing Hessian, though a complete classification does not seem to be presently at
hand.

The full results are a bit too technical to be narrated here—we refer to the main theorem of the
section Theorem 3.13, in which one shows that the dual hypersurfaces to certain rational scroll
surfaces Y(r −2, d −r +2) ⊂ Pr are homaloidal and have degree d � 2r −3. These examples are
obtained via a rather intricate geometric construction linking in an unexpected way hypersurfaces
with vanishing Hessian and homaloidal hypersurfaces. A central piece is Theorem 3.12, whose
proof is fairly technical but keeps a strong geometric flavor. We then dwell quite a bit into the
structure of these scroll surfaces, looking at their construction from various different angles in
order to fully apprehend their properties. Finally, in Theorem 3.18 we produce different infinite
families of homaloidal examples in Pr , r � 4. These, though still related to some scroll surfaces,
do not seem in general to relate to hypersurfaces with vanishing Hessian, which adds to the
feeling that the classification of homaloidal hypersurfaces has still a long way to go.

In addition we give a refined analysis of the nature of the singularities of the homaloidal
examples in P3 along with an insight into the degree of the inverse map. That is, here we
deal with the scroll Y(1, d − 1) which, for d = 3 turns out to be a particular case of a series



Author's Personal Copy

C. Ciliberto et al. / Advances in Mathematics 218 (2008) 1759–1805 1763
of degenerate determinantal Hankel hypersurfaces considered in the following and last Sec-
tion 4.

This latter construction, which has a more algebraic flavor, is based on a certain specialization
of the generic Hankel matrix. The interest of these examples lies in that, besides being irreducible
and of degree r , they fit a recent construct generalizing the classical de Jonquières transforma-
tions (see [29]) and boil down in particular cases to projections of certain scroll surfaces. The
full development of the nature of these homaloidal hypersurfaces relates to several typical con-
cepts of commutative algebra. It also relates to the method devised in [37]. These examples do
not come (either) from the theory of pre-homogeneous vector spaces either since, for example,
they are not totally Hessian. A marked feature of these homaloidal hypersurfaces is that the cor-
responding degree is the dimension of the ambient space, while in most examples coming from
pre-homogeneous vector spaces the degree of the invariant polynomial is small with respect to
the number of variables.

Though somewhat exceptional, all these examples share in common the property of having
large degree with respect to the number of variables. Additional inquiry could be made as to
whether there are families of totally Hessian polynomials, not necessarily homaloidal, of arbi-
trary large degree for any r � 3. Or even be wondered if there exists a characterization of all
homaloidal polynomials whose Hessian is a nonzero multiple of a linear form such as is the case
for the Hankel degeneration examples constructed in the last section.

1. Dual varieties of scroll surfaces

In this section we recall, with no proofs, some general and perhaps mostly well-known facts
about projective duality and dual varieties of scroll surfaces. Standing reference for this part are
[25,51,36].

1.1. Generalities

Throughout this paper k denotes an algebraically closed field of characteristic zero—though
many contentions herein will hold more generally.

Let Pr = P(V ) be a projective space over k, where V is a k-vector space of dimension r + 1.
The dual projective space of Pr is Pr∗ = P(V ∗), where V ∗ = Homk(V , k). If Π = P(W) ⊆ Pr ,
with W ⊂ V a vector subspace of dimension m + 1, then the orthogonal projective subspace
Π⊥ ⊆ Pr∗ to Π is defined to be P((V/W)∗) = P(Ann(W)) ⊂ P(V ∗), where Ann(W) = {f ∈
V ∗ | f (w) = 0, ∀w ∈ W }. Note that, geometrically, if one identifies Pr∗ with the linear system
of all hyperplanes in Pr , then Π⊥ is identified with the linear system of all hyperplanes in Pr

containing Π and has dimension r − m − 1.
Let X ⊂ Pr be an irreducible projective variety of dimension n. For a smooth point x ∈ X,

TX,x will denote the embedded tangent space to X at x, a subspace of dimension n.
The conormal variety N(X) of X ⊂ Pr is the incidence variety defined as the closure of the

set of all pairs (x,π) ∈ Pr × Pr∗, such that x is a smooth point of X and π ∈ T ⊥
X,x—each such

a hyperplane π is said to be tangent to X at x. Since the fiber of the first projection N(X) → X

over a smooth point x ∈ X is the projective subspace T ⊥
X,x 	 Pr−n−1 of hyperplanes containing

TX,x , then N(X) is irreducible and dim(N(X)) = r − 1.
The image of the projection of N(X) to the second factor is, by definition, the dual variety

X∗ of X. Since k has characteristic zero, one has N(X) = N(X∗) via the natural identification
Pr = (Pr∗)∗—a property known as reflexivity (see, e.g., [25]). It follows that (X∗)∗ = X.
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The dual defect of X ⊂ Pr is the non-negative integer d(X) := r − 1 − dim(X∗) and X ⊂ Pr

is said to be (dual) defective if d(X) > 0, i.e. if X∗ ⊂ Pr∗ is not a hypersurface. Note that d(X)

is the dimension of (TX∗,ξ )⊥ ⊂ Pr for smooth ξ ∈ X∗; thus, if ξ corresponds to the general
hyperplane π tangent to a point x ∈ X then π is tangent at all points of (TX∗,ξ )⊥ ⊂ Pr .

Also recall that X ⊂ Pr is said to be degenerate if its linear span Π = 〈X〉 is a proper subspace
of Pr , i.e., if its homogeneous defining ideal contains some nonzero linear form.

Let now Π ⊂ Pr be a subspace of dimension m, and let

σΠ : Pr ���
(
Π⊥)∗ 	 Pr−m−1

be the projection from Π , defined as σΠ (p) = (�1(p) : . . . : �r−m(p)), where �1, . . . , �r−m are
linear forms cutting Π as a linear subspace of Pr . If X ⊂ Pr is not contained in Π , the closure
XΠ of the image of X via σΠ is called the projection of X from Π . If Π ∩ X = ∅, then σΠ ,
or XΠ , is said to be an external projection of X. If dim(X) < r − m − 1 then XΠ is a proper
subvariety of (Π⊥)∗ 	 Pr−m−1 and one has the following:

Proposition 1.1. With the previous notation, suppose that X ⊂ Pr is non-degenerate and that
dim(X) < r − dim(Π) − 1. Then:

(i) (XΠ)∗ ⊆ Π⊥ ∩ X∗ and (XΠ)∗ is an irreducible component of Π⊥ ∩ X∗;
(ii) if Π⊥ ∩ X∗ is irreducible and reduced, then (XΠ)∗ = Π⊥ ∩ X∗ as a scheme.

Proof. A general tangent hyperplane to XΠ pulls back, via σΠ , to a hyperplane containing Π

and tangent to X at a general point. This proves the first assertion in (i).
Let Z be an irreducible component of Π⊥ ∩ X∗ containing (XΠ)∗, and let ξ be a general

point in Z. Then ξ corresponds to a hyperplane containing Π and tangent to X at a general
point. Hence its projection via σΠ is a general tangent hyperplane to XΠ . This proves (i). Part (ii)
follows from (i). �
Proposition 1.2. Let Π = P(W) ⊂ Pr = P(V ) stand for the linear span of the variety X ⊂ Pr

and let X̃ denote the variety X as re-embedded into Π . Then X∗ ⊂ Pr∗ = P(V ∗) is the cone over
X̃∗ ⊂ P(W ∗) with vertex Π⊥ = P((V/W)∗). Conversely the dual of a cone is degenerate, lying
on the orthogonal of the vertex of the cone.

The proof follows immediately from the aforementioned interpretation of Π⊥ as the set of
hyperplanes in Pr containing Π .

Therefore, a subvariety X ⊂ Pr is a cone if and only if its dual X∗ ⊂ Pr∗ is degenerate. Thus,
the study of dual varieties may safely be restricted to non-degenerate varieties.

Finally recall that the Gauss map of an embedding X ⊂ Pr is the map

γX :x ∈ X \ Sing(X) ��� TX,x ∈ G(n, r).

The image of the Gauss map is the closure of γ
X
(X \ Sing(X)); γ

X
is said to be degenerate if the

fiber of γX over a general point of its image has positive dimension, i.e., if the Gauss image of
X in G(n, r) has dimension at most n − 1. If X ⊂ Pr is a smooth variety, then γX is well known
to be finite and birational onto its image, see [51, Theorem I.2.3]. More generally, the closure of
the general fiber of the Gauss image is a projective subspace (see [21, 2.10] or [51]).
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1.2. Scrolls and their dual varieties

As mentioned in the Introduction, scrolls will play a substantial role in the construction of the
homaloidal hypersurfaces. Thus, we next proceed to define them.

Definition 1.3. An irreducible variety X ⊂ Pr of dimension n is said to be a scroll if it is swept
out by an irreducible 1-dimensional family F(X) of linear subspaces of Pr of dimension n − 1,
called rulings, in such a way that through a general point of X there passes a unique member of
F(X).

Equivalently, let C be the normalization of the defining 1-dimensional parameter space
F(X) ⊂ G(1, n − 1) and let π :Y → C denote the pull-back of the universal family on
G(1, n − 1) restricted to F(X). Then π :Y → C is a Pn−1-bundle over C and there exists a
birational morphism φ :Y → X ⊂ Pr , induced by the tautological morphism on G(1, n − 1),
such that the fibers of π are embedded as linear subspaces of Pr .

With this terminology the scroll X ⊂ Pr is said to be rational if C 	 P1 and elliptic if C has
genus one. More generally we can define the genus of X to be the geometric genus of C.

A scroll X ⊂ Pr is said to be a smooth scroll if φ :Y → X is an isomorphism. As in the
classical literature, a (smooth) scroll X ⊂ Pr is said to be normal if X ⊂ Pr is a linearly normal
projective variety, i.e. if X ⊂ Pr is not a isomorphic linear external projection of a variety X̃ ⊂
Pr+1.

It is well known that π :Y → C can be naturally identified with π : P(E) → C, where E is
rank n locally free sheaf over C. Moreover, up to twisting by the pull back of a line bundle on C,
we can assume that φ is given by a base point free linear system contained in |OP(E)(1)|. This
linear system is complete if and only if X ⊂ Pr is a normal scroll. Thus we can also assume that
E is generated by global sections and, if C 	 P1, that E 	 ⊕n

i=1 OP1(ai) for suitable integers
0 � a1 � · · · � an. In this case, if d = a1 + · · · + an, then S(a1, . . . , an) ⊂ Pd+n will denote the
rational scroll obtained as the image of the birational morphism φ : P(

⊕n
i=1 OP1(ai)) → Pd+n

given by the complete linear system |O(1)|. In this situation, d is the degree of S(a1, . . . , an) ⊂
Pd+n.

In the above setting, a smooth non-normal scroll X ⊂ Pr is an external projection of a normal
smooth scroll. From the point of view of the theory of dual varieties these examples are particu-
larly interesting since every smooth scroll X ⊂ Pr has d(X) = n−2 (see, e.g., [25]). The simplest
of these examples is perhaps the Segre embedding X = Seg(1, n − 1) = S(1, . . . ,1) ⊂ P2n−1 of
P1 × Pn−1—here dim(X∗) = n and X∗ ⊂ P2n−1∗ is projectively equivalent to the original X, i.e.
these Segre varieties are self-dual.

In dimension 2 the picture turns out to be the following. Consider a non-degenerate surface
X ⊂ Pr , r � 3. Here n = 2, and d(X) = 1 if and only if X is developable. This condition is
equivalent to γX being degenerate which in turn happens to be the case if and only if X is either
a cone with vertex a point p ∈ Pr or the tangent developable to a curve C, i.e., its tangential
surface

X =
⋃

x∈C\Sing(C)

TC,x

(see [21, 3.19]). By Proposition 1.2, the first alternative takes place if and only if X∗ is degener-
ate, contained in the hyperplane p⊥ ⊂ Pr∗.
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We collect further remarks in the form of a proposition for ready reference.

Proposition 1.4. Let X ⊂ Pr be a non-degenerate scroll surface, r � 3. Let d denote the degree
of X, which we assume to be at least 3.

(i) If X is not developable then X∗ is a hypersurface of degree d which is swept out by the
(r −2)-dimensional subspaces F⊥, where F varies in the algebraic family F(X) determined
by the rulings of X.

(ii) Conversely, if Y ⊂ Pr∗ is a hypersurface which is swept out by a one-dimensional family
F(Y ) of subspaces of dimension r − 2, then Y ∗ ⊂ Pr is either a 2-dimensional scroll or else
a curve. Moreover, Y ∗ is a curve if and only if one of the following equivalent conditions
holds:
(a) Y is developable, that is to say, the general fiber of the Gauss map γ

Y
coincides with the

general element of F(Y );
(b) F(Y ) is the family of the (r − 2)-dimensional subspaces (r − 1)-osculating a curve.

Proof. Part (i) follows from the fact that a hyperplane ξ is tangent to X if and only if it contains
a ruling so that a general pencil of hyperplanes cuts X∗ exactly in d points. As for (ii), see [21,
Section 2]. �
1.2.1. Smooth rational normal scroll surfaces

We now go deeper into the structure of rational scroll surfaces.
Let X = S(a, b) ⊂ Pa+b+1, 0 < a � b, be a smooth rational normal scroll surface of degree

d = a + b, in its standard embedding. Recall that S(a, b) is swept out by all lines joining corre-
sponding points on rational normal curves of degree a and b spanning Pa+b+1. This makes sense
even if a = 0, in which case S(0, b) is the cone over a rational normal curve of degree b. The ho-
mogeneous defining ideal is generated by the 2-minors of the piecewise 2 × (a + b) catalecticant
matrix (

x0 x1 . . . xa−1 xa+1 xa+2 . . . xa+b

x1 x2 . . . xa xa+2 xa+3 . . . xa+b+1

)
(see [13]).

We collect the main features of these scrolls.

Proposition 1.5. Let S(a, b) ⊂ Pa+b+1, 0 < a � b, be as above.

(i) S(a, b) is a linear section of the Segre embedding Seg(1, a + b − 1) of P1 × Pa+b−1 into
P2(a+b)−1 by a subspace Π of dimension a + b + 1.

(ii) S(a, b)∗ is the projection to Pa+b+1∗
of Seg(1, a+b−1)∗, from Π⊥, where Π is a subspace

as in (i). In particular, S(a, b)∗ is a hypersurface in Pa+b+1∗
of degree

deg
(
S(a, b)∗

) = deg
(
Seg(1, a + b − 1)∗

) = deg
(
S(a, b)

) = a + b.

(iii) As an abstract surface S(a, b) is isomorphic to the so-called Hirzebruch surface Fb−a =
P(OP1 ⊕ OP1(a − b)), with π : Fb−a → P1 the structural morphism. In particular, S(a, b)

admits a section E of π with E2 = a − b � 0, which is unique if a < b. Moreover, if H is
a hyperplane section class of S(a, b) ⊂ Pa+b+1, then H ≡ E + bF , where F is the class of
the fibers of π .
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(iv) Let Π be a hyperplane in Pr tangent to S(a, b) at finitely many points p1, . . . , pm ∈ S(a, b),
m � 1. Let H = HΠ be the corresponding hyperplane section divisor. Then H = Fp1 +· · ·+
Fpm + C, where Fpi

is the ruling of S(a, b) through the point pi and C ≡ E + (b − m)F is
the divisor of a curve in S(a, b) of degree a + b − m passing through p1, . . . , pm.

(v) If m � a and 3m � a + b + 1, then the general hyperplane section of S(a, b) tangent at
m general points has exactly m ordinary quadratic singularities there and it is smooth
elsewhere.

(vi) If either m � a or m = b then the general curve C ∈ |E + (b − m)F | is smooth and ir-
reducible and, together with m distinct fibres F1, . . . ,Fm of π , gives rise to a hyperplane
section tangent at the intersection points pi of Fi with C, i = 1, . . . ,m, and nowhere else.

Proof. (i) This is clear from the above algebraic description of S(a, b) and the corresponding
defining equations of the Segre embedding as given by the 2-minors of a generic 2 × (a + b)

matrix over k.
(ii) As we pointed out already, these Segre varieties are self-dual, i.e. Seg(1, a + b − 1)∗ is

projectively equivalent to Seg(1, a+b−1). Since Π ∩Seg(1, a+b−1) = S(a, b) is reduced and
irreducible, then, by Proposition 1.1, S(a, b)∗ coincides with the projection of Seg(1, a +b−1)∗
from π⊥. Note that Π⊥ ∩ Seg(1, a + b − 1)∗ = ∅ since Π ∩ Seg(1, a + b − 1) is smooth. Then
the degree of S(a, b)∗ is the same as the degree of Seg(1, a + b − 1)∗, which is the same as the
degree of S(a, b), namely a + b.

(iii) The first part is well known (see, e.g., [13]) and the rest follows from this.
(iv) Describing S(a, b)∗ ⊂ Pa+b+1 is the same as describing the singular hyperplane sec-

tions of S(a, b), i.e. those given by hyperplanes Π containing tangent planes of S(a, b). If
Π ⊇ TS(a,b),x , then Π ⊇ Fx , the line of the ruling through x. Thus, if Π is a hyperplane tangent
to S(a, b) at finitely many points p1, . . . , pm, m � 1, and H = HΠ denotes the corresponding
hyperplane section divisor, it is clear that H = Fp1 + · · · + Fpm + C, where C ≡ E + (b − m)F

is the divisor of a curve of degree a + b − m in S(a, b). Moreover HΠ has to be singular at
p1, . . . , pm, hence C contains p1, . . . , pm.

(v) If a � m, then (E + (b − m)F)2 = b + a − 2m � 0. Let C be the general curve in |E +
(b − m)F |. The exact sequence

0 →OS(a,b) → OS(a,b)(C) → OC(C) → 0

implies that the linear system |E + (b−m)F | is base point free of dimension b+a −2m+1 and
its general curve C is smooth and rational. If b+a � 3m−1, the general curve in |E+(b−m)F |
contains m general points of S(a, b). This proves the assertion.

(vi) If either m � a, or if m = b, the general such curve C is smooth and irreducible (see the
above argument). The assertion follows. �

Next we highlight the nature of the singularities of the dual S(a, b)∗. Let E ⊂ S(a, b) be as in
Proposition 1.5(iii).

Proposition 1.6. Let S(a, b) ⊂ Pa+b+1, 0 < a � b be as above.

(i) The points of S(a, b)∗ corresponding to hyperplanes tangent to S(a, b) at m distinct points
are points of multiplicity at least m of S(a, b)∗.
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(ii) The singularities Sing(S(a, b)∗) have a natural stratification into locally closed sets
S∗

α(a, b), with 2 � α � a and α = b, consisting of points of multiplicity at most α; as for
α = b, one has S∗

b (a, b) = 〈E〉⊥ ⊂ S(a, b)∗, a linear space of dimension b contained in
Sing(S(a, b)∗).

(iii) (a = 1) The stratum Sing(S(1, d − 1)∗) = S∗
d−1(1, d − 1) is the subspace 〈E〉⊥ of di-

mension d − 1, whose general points are points of multiplicity d − 1 of the hypersurface
S(1, d − 1)∗ ⊂ Pd+1∗

.

Proof. (i) Quite generally, the points of S(a, b)∗ corresponding to hyperplanes tangent to S(a, b)

at m distinct points, with m � a or m = b, are points of multiplicity at least m. One sees that
S∗

b (a, b) = 〈E〉⊥ ⊂ S(a, b)∗ is a linear space of dimension b contained in Sing(S(a, b)∗). We
now suppose that 2 � m � a.

We know that S(a, b)∗ is a hypersurface. If a point of S(a, b)∗ corresponds to a hyperplane
H = Fp1 + · · · + Fpm + C tangent to S(a, b) at the m points p1, . . . , pm, one sees that there are
at least m distinct branches of S(a, b)∗ passing through H , namely the ones corresponding to
hyperplane sections of the form Fpi

+ Ci , Ci irreducible and smooth, proving the assertion.
Assertions (ii) and (iii) follow from (i). �
Notice that the scheme structure on Sing(S(a, b)∗) defined by the partial derivatives of the

defining equation of S(a, b)∗ has embedded points (see [1] for some interesting considerations
on this scheme structure on Sing(S(a, b)∗)).

It is classically known that a non-developable scroll surface is self-dual. We prove this result
anew in the case where the scroll is rational, which is our main focus. The proof contains elements
for later use.

Proposition 1.7. Let X ⊂ Pr be a rational scroll which is not developable. Then X is self-dual,
i.e. there is a projective transformation sending X to X∗.

Proof. By definition X ⊂ Pr is the birational projection to Pr of a smooth rational normal scroll
surface S(a, b) ⊂ Pa+b+1, with 0 < a � b, from a subspace Ψ of dimension a + b − r such that
S(a, b) ∩ Ψ = ∅.

By part (i) of Proposition 1.1, we have

X∗ ⊆ Ψ ⊥ ∩ S(a, b)∗. (1.1)

The right-hand side is a hypersurface of degree a + b in Pr . Moreover X∗ is also a hypersur-
face, since X is not developable, and its degree is a + b (see part (i) of Proposition 1.4). Then
equality holds in (1.1), i.e.

X∗ = Ψ ⊥ ∩ S(a, b)∗. (1.2)

By (i) of Proposition 1.5, S(a, b) = Π ∩ Seg(1, a + b − 1) with Π a subspace of dimension
a + b + 1 of P2(a+b)−1. Thus

X∗ = Ψ ⊥ ∩ (
Seg(1, a + b − 1) ∩ Π

)∗

= Ψ ⊥ ∩ σΠ⊥
(
Seg(1, a + b − 1)∗

)
.
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Therefore, up to a projective transformation

X∗ = Ψ ⊥ ∩ σΠ⊥
(
Seg(1, a + b − 1)

)
= σΠ⊥

(〈
Π⊥,Ψ ⊥〉 ∩ (

Seg(1, a + b − 1)
)) = X. �

1.2.2. Multiple line directrix on scrolls
We now consider another interesting class of scroll surfaces. Any non-developable rational

scroll surface X ⊂ Pr of degree d is a birational external projection of a scroll S(a, b) with
d = a + b and X∗ is a section of S(a, b)∗ by Proposition 1.7. If there is a line L ⊂ X such that X

is smooth at the general point of L and L meets the general ruling of X at one single point, then
X is the projection of S(1, d − 1). In such a case X∗ is a hypersurface of degree d for which the
(r − 2)-dimensional subspace L⊥ has multiplicity d − 1.

Such a line L is called a simple line directrix. More generally, a line L ⊂ X is a line directrix
of multiplicity e := e(X) if the general point x ∈ L has multiplicity e for X and there is some line
in F(X), different from L, passing through x. Note that L may, or may not, belong to F(X). It
is clear that a scroll with a line directrix is not developable, unless it is a plane. Therefore in what
follows we will implicitly assume that a scroll with a line directrix is not developable.

Proposition 1.8. Let L be a line directrix of multiplicity e on a rational scroll surface X ⊂ Pr

of degree d . Let μ := μ(X) denote the number of rulings in F(X) not coinciding with L and
passing through a general point x of L and let Fx,i , i = 1, . . . ,μ, be these rulings. Let ν := ν(X)

be the dimension of the span 〈L,Fx,1, . . . ,Fx,μ〉.
One has:

(i) μ � e;
(ii) μ < e if and only if L is a ruling in F(X);

(iii) The dual X∗ ⊂ Pr∗ is a hypersurface of degree d and contains the (r − 2)-dimensional
subspace Π = L⊥. Moreover X∗ has multiplicity d − μ at the general point of Π and
the general hyperplane through Π cuts out on X∗ off Π , the union of μ codimension 2
subspaces whose intersection with Π is a subspace of dimension r − ν − 1.

Proof. (i) Let f : X̄ → X be the normalization morphism. The surface X̄ is ruled and its rulings
are mapped to the lines in F(X). Let p1, . . . , ph be the points on X̄ mapping to x. It is clear
that e � h. Note that X̄, which is normal and therefore smooth in codimension one, is smooth at
p1, . . . , ph. Hence there is a unique ruling of X̄ through each of the points p1, . . . , ph. Moreover
the μ rulings in F(X), different from L, and passing through x are the image, via f , of rulings
on X̄ passing through one of the points p1, . . . , ph. Thus μ � h � e.

(ii) Let us prove that, if μ < e, then L is a ruling of F(X). The converse is similar and can be
left to the reader.

Suppose first that μ � h < e. This is equivalent to say that f is ramified at some of the points
p1, . . . , ph, which we denote by y. Let F be the ruling of X̄ passing through y. Since F maps to
a line via f , the only possibility is that F maps to L, hence L is a ruling of F(X) in this case.

Suppose that h = e, i.e. f is unramified at a general point x ∈ L. One has therefore e distinct
points p1, . . . , pe on X̄ mapping to x. Let Fi be the ruling through pi, i = 1, . . . , e. If L is not a
ruling in F(X), then the images on X of F1, . . . ,Fe are all distinct from L. Moreover they are
also e distinct lines, since f is a finite birational map. Hence μ = e, proving the assertion.
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(iii) The general hyperplane Ξ = x⊥ containing Π = L⊥ corresponding to the general point
x ∈ L cuts out X∗, off Π , along the union of the μ codimension 2 subspaces F⊥

x,i , i = 1, . . . ,μ.
The intersection

Π⊥ ∩ F⊥
x,1 ∩ · · · ∩ F⊥

x,μ = 〈L,Fx,1, . . . ,Fx,μ〉⊥,

has dimension r − ν − 1. �
We will see later how to construct scrolls with μ < e (see Lemma 3.11 and ff.). As for the case

μ = e, the following construct works: consider S(a, b) ⊂ Pd+1, d = a + b, a � 2, and project
it down to Pb+2 from a general linear space of dimension a − 2 which sits in 〈E〉. In this way
the image X(a,b) of the projection has still degree d and the image of E is the line Λ to which
〈E〉 maps. Notice that by projecting X(a,b) from Λ to Pb one gets a rational normal curve C of
degree b. Thus X(a,b) sits on the 3-dimensional cone of degree b projecting C from Λ.

Since E has degree a, one has that Λ is a line directrix of multiplicity a and clearly μ = a. In
this case ν = a + 1 (see the argument in the proof of parts (i) and (ii) of Proposition 1.8 above).
Notice that X(a,b) is contained in a cone Z(a,b) of dimension a + 2 which is swept out by the
subspace 〈Λ,Fx,1, . . . ,Fx,a〉 of dimension a as x varies on Λ. The cone Z(a, b) is a rational
normal scroll of degree b − a + 1 (see [13]).

One can also obtain the previous example in terms of the dual variety of certain projections of
more general scrolls, as follows.

Let 1 � a = a1 � a2 � a3 � · · · � ar−1 be integers and set d = ∑r−1
i=1 ai . Consider the rational

normal scroll X1 = S(a, a2, . . . , ar−1) ⊂ Pd+r−2 of degree d and dimension r − 1, with

S(a, a2, . . . , ar−1) 	 P
(
OP1(a) ⊕OP1(a2) ⊕ · · · ⊕OP1(ar−1)

)
embedded via the O(1) bundle. Algebraically, the homogeneous defining ideal of this embed-
ding is generated by the 2-minors of a multi-piecewise catalecticant matrix as in (1.2.1). Consider
also the rational normal scroll X2 = S(a2, . . . , ar−1) ⊂ Pd+r−a−3 of degree d − a and dimen-
sion r − 2. By a suitable identification, one can consider X2 as a subvariety of X1. Let Ω be
a sufficiently general linear space of dimension d − 3 which cuts the linear space 〈X2〉 along a
subspace of dimension d − a − 2, and set Y = σΩ (X1) ⊂ Pr , where σΩ as before stands for the
projection from Ω .

Proposition 1.9. Let the notation be as above, with Y = σΩ (X1) ⊂ Pr . The dual Y ∗ ⊂ Pr∗ is a
scroll surface of degree d , with e(Y ∗) = μ(Y ∗) = a and with line directrix σΩ (〈X2〉) of multi-
plicity a.

Proof. Clearly deg(Y ) = deg(X1) = d and Sing(Y ) contains the linear space Π = σΩ (〈X2〉) of
dimension r − 2. The general point of Π has multiplicity d − a for V because deg(X2) = d − a.

Since Y is swept out by a 1-dimensional family of projective spaces of dimension r − 2, then
X = Y ∗ is a scroll surface of degree d with line directrix L = Π⊥. Since Y has multiplicity
d − a along Π , we see μ(X) = a. Actually the multiplicity of the line directrix L on Y ∗ is also
a because clearly L is not a ruling in F(X). �
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2. The polar map of a projective hypersurface

Let f = f (x) = f (x0, . . . , xr ) ∈ k[x0, . . . , xr ] be a nonzero homogeneous polynomial of de-
gree d in the r + 1 variables x0, . . . , xr over an algebraically closed field k of characteristic
zero.

Then V (f ) ⊂ Pr will denote the hypersurface scheme theoretically defined by the equation
f (x0, . . . , xr ) = 0, so V (f ) might not be reduced. Its support Supp(V (f )) is the set of points of
Pr where f vanishes.

We will often denote by fi the partial derivative ∂f
∂xi

, i = 0, . . . , r .

Let p = (p0, . . . , pr) ∈ kr+1 \ {0}, and let p = (p0, . . . , pr) denote the corresponding point
in Pr . For every positive integer s < d consider the polynomial

Δs
pf (x) =

(
p0

∂

∂x0
+ · · · + pr

∂

∂xr

)(s)

f (x)

where the exponent s in brackets means, as usual, a symbolic power involving products and
derivatives. The polynomial Δs

pf has degree d − s and, for any t ∈ k∗, one has:

Δs
tpf (x) = t sΔs

pf (x).

If Δs
pf is not identically zero, then it makes sense to consider the hypersurface V (Δs

pf ) which
depends only on p and on V (f ) and is called the sth polar of V (f ) with respect to p. We will
denote it by V s

p(f ). If Δs
pf is identically zero, one says that the sth polar V s

p(f ) of V (f ) with
respect to p vanishes identically. In this case we consider V s

p(f ) to be the whole Pr .
For general properties of polarity, which we will freely use later on, we refer to [43]. Among

these we mention here the so called reciprocity theorem:

Proposition 2.1. Given the hypersurface V (f ) in Pr and two points p = (p0, . . . , pr), q =
(q0, . . . , qr ), one has:

1

s!Δ
s
pf (q) = 1

(d − s)!Δ
d−s
q f (p).

Thus q ∈ V s
p(f ) if and only if p ∈ V d−s

q (f ).

As p varies in Pr , the polars V s
p(f ) do not vary in a linear system, unless s = 1. The

base locus scheme of the linear system P(f ) of the first polars of V (f ) is the singular locus
Sing(V (f )) of V (f ), defined by the Jacobian (or gradient) ideal generated by the partial deriva-
tives f0(x), . . . , fr (x).

A consequence of the reciprocity theorem is that the polar hyperplane πp(f ) := V d−1
p (f ) has

equation:

f0(p)x0 + · · · + fr(p)xr = 0

which vanishes identically if and only if p ∈ Sing(V (f )). If p ∈ V (f ) and it is not singular, then
πp(f ) is the tangent hyperplane TV (f ),p to V (f ) at p.
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The (first) polar map of f or of V (f ) is the rational map

φf : x = (x) ∈ Pr ���
(
f0(x), . . . , fr (x)

) ∈ Pr .

It can be interpreted as mapping the point p to its polar hyperplane πp(f ) and, as such, its target
is Pr∗.

In terms of linear systems φf is the map defined by the system P(f ) of the first polars. Thus,
if V (f ) is reduced, as we will now assume, the indeterminacy locus of φf is Sing(V (f )). The
restriction of φf to V (f ) \ Sing(V (f )) is the Gauss map of V (f ), hence the corresponding
image is the dual variety V (f )∗ of V (f ). We will set v(f ) = dim(V (f )∗).

Denote by Z(f ) the closure of the image of Pr via φf —called the polar image of f —and
set z(f ) = dim(Z(f )). Clearly v(f ) � z(f ), but we shall see in a moment that strict inequality
holds (see Remark 2.4).

We denote by δ(f ) the degree of the map φf , which is meant to be 0 if and only if z(f ) < r ,
otherwise it is a positive integer. We will call δ(f ) the polar degree of V (f ). Let fred be the
radical of f , i.e. (fred) = √

(f ).
We record the following result from [9, Corollary 2] which proves a conjecture stated in [10]:

Theorem 2.2. Let notation be as above. Then δ(f ) = δ(fred), i.e. the polar degree of V (f )

depends only on Supp(V (f )).

This result enables us to restrict our attention to reduced hypersurfaces if we are interested
in studying the polar degree. The argument in [9] depends on topological considerations. For
different proof, see [15], whereas an algebraic proof of the case where the irreducible factors of
f are of degree one has been established in [3].

2.1. The Hessian of a projective hypersurface

Consider now the (r + 1) × (r + 1) Hessian matrix of f (x)

h(f )(x) := det

(
∂2f (x)

∂xi∂xj

)
i,j=0,...,r

.

Its determinant h(f ) ∈ k[x0, . . . , xr ] is the Hessian polynomial of f (x).
Sometimes we will abuse notation and denote by h(f ) also the Hessian matrix rather than its

determinant, hoping no ambiguity will be caused.
We note that the Hessian is covariant by a linear change of variables. If h(f ) is a nonzero

polynomial, the Hessian of the hypersurface V (f ) ⊂ Pr is the hypersurface H(f ) := V (h(f )).
Otherwise we say that V (f ) has vanishing, or indeterminate Hessian, in which case we consider
H(f ) to be the whole of Pr .

A couple of basic remarks is in order.

Remark 2.3. A point p ∈ Pr belongs to H(f ) if and only if the polar quadric Qp(f ) := V d−2
p (f )

is either singular or vanishes identically.
Thus, in particular p ∈ V (f )∩ H(f ) if and only if either p ∈ Sing(V (f )) or p is a parabolic

point of V (f ) in the sense that the tangent cone Ap(f ) at p of the intersection of V (f ) with the
tangent hyperplane πp(f ) (necessarily singular at p) has a vertex of positive dimension (see [43,



Author's Personal Copy

C. Ciliberto et al. / Advances in Mathematics 218 (2008) 1759–1805 1773
p. 71]). This cone is called the asymptotic cone of V (f ) at p. More precisely, a point p ∈ V (f )

is said to be h-parabolic, h � 0, if the vertex of the asymptotic cone Ap(f ) has dimension h.
In that case p is a point of multiplicity h for H(f ) (see [39]). Note that 0-parabolic means non-
parabolic. If f is irreducible and the general point of V (f ) is h-parabolic, then f h divides h(f );
in particular, if h > 0, then V (f ) is contained in H(f ).

Conversely, if f is irreducible and V (f ) is contained in H(f ) then the Gauss map of V (f ) is
degenerate, i.e. v(f ) < r − 1 and the general point p ∈ V (f ) is h-parabolic with h = r − v(f )−
1 > 0 (see [45, 4–5], [39,6]). In this case, since the general fibre of the Gauss map is a linear
space, then V (f ) is described by an (r − h − 1)-dimensional family of h-dimensional linear
subspaces of Pr , parameterized by V (f )∗. Moreover H(f ) contains V (f ) with multiplicity at
least h = r − v(f ) − 1.

The question as to when H(f ) contains V (f ) with higher multiplicity than the expected value
r − v(f ) − 1 has been considered in [39,42,17,6].

Remark 2.4. A point p ∈ Pr belongs to H(f ) if and only if the rank of the map φf at p is
not maximal, i.e. if and only if rkp(φf ) < r . Hence z(f ) < r if and only if V (f ) has vanishing
Hessian. Set ρ(f ) := rk(h(f )), where the rank of h(f ) is computed as a matrix over the field
k(x0, . . . , xr ), or, what is the same, at a general point of Pr . Then one has:

z(f ) = ρ(f ) − 1.

Indeed, if p = (p0, . . . , pr) is a point in Pr not on Sing(V (f )), and if ξ = φf (p), then TZ(f ),ξ is
spanned by ξ and by the points (fi0(p), . . . , fir (p)), i = 0, . . . , r . Notice that T ⊥

Z(f ),ξ is the vertex
of Qp(f ). A vastly more general principle holds in this connection (see [46, Proposition 1.1] for
a detailed argument).

Notice that, if V (f ) is irreducible and its general point p is h-parabolic, then v(f ) + 2 =
r − h + 1 = rk(Qp(f )) � ρ(f ) = z(f ) + 1, i.e. v(f ) < z(f ), namely the dual V (f )∗ of V (f )

is properly contained in the polar image Z(f ).
Note that, by Theorem 2.2, the property of having vanishing Hessian only depends on the

support of a hypersurface. Thus, if one is interested in hypersurfaces with vanishing Hessian,
one can restrict the attention to the reduced ones.

2.2. Hypersurfaces with vanishing Hessian

The hypersurface V (f ) has vanishing Hessian if and only the derivatives f0, . . . , fr are al-
gebraically dependent, i.e. if and only if there is some nonzero polynomial g(x0, . . . , xr ) ∈
k[x0, . . . , xr ] such that g(f0, . . . , fr) = 0.

Note that V (f ) is smooth if and only if f0, . . . , fr form a regular sequence; in particu-
lar, if V (f ) is smooth then h(f ) �= 0. Thus, having vanishing Hessian implies at least that
Sing(V (f )) �= ∅ and one then asks how big is this locus.

The following result due to Zak (see [52, Proposition 4.9]) partially answers this question.
Part of it can be traced back to Gordan–Noether (see [20]).

Proposition 2.5. Let X = V (f ) ⊂ Pr be a reduced hypersurface with vanishing Hessian and let
Z(f ) ⊂ Pr∗ denote the polar image of f . Then
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(i) the closure of the fiber of the map φf over a general point ξ ∈ Z(f ) is the union of finitely
many linear subspaces of dimension r − z(f ) = r −ρ(f )+1, passing through the subspace
(TZ(f ),ξ )

⊥;
(ii) Z(f )∗ is contained in Sing(V (f )).

The careful reader will notice that the argument in [52, Proposition 4.9] actually proves the
above statement (i) rather than the corresponding part (ii) of the statement there.

A clear-cut case of vanishing Hessian is when, f0, . . . , fr are linearly dependent, i.e. up to
a linear change of variables, f does not depend on all the variables, i.e., when V (f ) is a cone
(Proposition 1.2). One could naively ask for the converse:

Question 2.6 (Hesse problem). Does h(f ) = 0 imply that the derivatives f0, . . . , fr are linearly
dependent?

Hesse claimed this twice (see [22,23]), however the proofs had a gap. The question was taken
up by Gordan and Noether in [20], who showed that the question has an affirmative answer for
r � 3, but is false in general for r � 4. Their methods have been revisited in more recent times
by Permutti in [32,34] and [27].

Using Proposition 2.5 we can give an easy proof of this fact for r � 2. The case r = 3 is
slightly more complicated and will not be dealt with it here—we refer to [20,17] or [27]. A simple
proof is also contained in [19].

Proposition 2.7. Let V (f ) ⊂ Pr , 1 � r � 2, be a reduced hypersurface of degree d . Then V (f )

has vanishing Hessian if and only if V (f ) is a cone. More precisely, V (f ) has vanishing Hessian
if and only if either r = 1 and d = 1, or else r = 2 and V (f ) consists of d distinct lines through
a point.

Proof. If r = 1, then Z(f ) ⊂ P1 must be a point, so the partial derivatives of f are constant and
d = 1.

Suppose r = 2. Then z(f ) � 1. As above, Z(f ) is a point if and only if d = 1. Let z(f ) = 1.
From part (ii) of Proposition 2.5, we have that Z(f )∗ ⊂ Sing(V (f )). Since we are assuming
V (f ) to be reduced, we have that Z(f )∗ is a point, so that Z(f ) is a line, hence degenerate. This
is equivalent to saying that V (f ) is a cone. �
Remark 2.8. It is interesting to note that the only hyperplane arrangements with vanishing Hes-
sian are cones (see [9, Cor. 2 and Cor. 4]).

2.3. Gordan–Noether counterexamples to Hesse’s problem

We will now briefly recall the results of Gordan–Noether and Permutti in connection with the
Hesse problem, which showed that Hesse’s argument was faulty for dimension r = 4 and higher.

Thus, assume that r � 4 and fix integers t � m + 1 such that 2 � t � r − 2 and 1 � m �
r − t − 1. Consider forms hi(y0, . . . , ym) ∈ k[y0, . . . , ym], i = 0, . . . , t , of the same degree, and
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also forms ψj (xt+1, . . . , xr ) ∈ k[xt+1, . . . , xr ], j = 0, . . . ,m, of the same degree. Introduce the
following homogeneous polynomials all of the same degree:

Q�(x0, . . . , xr ) = det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0 . . . xt
∂h0
∂ψ0

. . . ∂ht

∂ψ0

. . . . . . . . .
∂h0
∂ψm

. . . ∂ht

∂ψm

a
(�)
1,0 . . . a

(�)
1,t

. . . . . . . . .

a
(�)
t−m−1,0 . . . a

(�)
t−m−1,t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where � = 1, . . . , t − m. Here a

(�)
u,v (u = 1, . . . , t − m − 1, v = 0, . . . , t) are elements of the base

field k, while ∂hi/∂ψj stands for the derivative ∂hi/∂yj computed at yj = ψj (xt+1, . . . , xr ), for
i = 0, . . . , t and j = 0, . . . ,m. Let n denote the common degree of the polynomials Q�. Taking
Laplace expansion along the first row, one has an expression of the form:

Q� = M�,0x0 + · · · + M�,txt

where M�,i , � = 1, . . . , t − m, i = 0, . . . , t , are homogeneous polynomials of degree n − 1 in
xt+1, . . . , xr .

Fix an integer d > n and set μ = [d/n]. Fix biforms Pk(z1, . . . , zt−m;xt+1, . . . , xr ) of bide-
gree (k, d − kn), k = 0, . . . ,μ. Finally, set

f (x0, . . . , xr ) :=
μ∑

k=0

Pk(Q1, . . . ,Qt−m,xt+1, . . . , xr ), (2.1)

a form of degree d in x0, . . . , xr . It will be called a Gordan–Noether polynomial (or a GN-
polynomial) of type (r, t,m,n), and so will also any polynomial which can be obtained from
it by a projective change of coordinates. Accordingly, a Gordan–Noether hypersurface (or GN-
hypersurface) of type (r, t,m,n) is the hypersurface V (f ) where f is a nonzero GN-polynomial
of type (r, t,m,n).

The main point of the Gordan–Noether construction is the following result:

Proposition 2.9. Every GN-polynomial has vanishing Hessian.

Proof. Let f (x) be a GN-polynomial. Its first t + 1 partial derivatives

fi =
t−m∑
�=1

∂f

∂Q�

M�,i, i = 0, . . . , t,

can be expressed in the form of a column vector(
f0
. . .

f

)
=

(
M1,0 . . . Mt−m,0
. . . . . . . . .

M . . . M

)
·
⎛⎝ ∂f

∂Q1
. . .
∂f

⎞⎠ . (2.2)

t 1,t t−m,t ∂Qt−m
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Consider the rational map

φ� : (xt+1 : . . . : xr) ∈ Pr−t−1 ���
(
M�,0(xt+1, . . . , xr ), . . . ,M�,t (xt+1, . . . , xr )

) ∈ Pt

with � = 1, . . . , t − m. Its image has dimension at most m since the polynomials hi , i = 0, . . . , t ,
appearing in the determinants which define the polynomials M�,i , � = 1, . . . , t − m, i = 0, . . . , t ,
depend on m + 1 variables.

The rational map

φ : (x0 : . . . : xr) ∈ Pr ���
(
f0(x0, . . . , xr ) : . . . : ft (x0, . . . , xr )

) ∈ Pt ,

is the composite of the polar map φf with the projection (x0 : . . . : xr) ��� (x0 : . . . : xt ). There-
fore, if we let

σ : (x0 : . . . : xr) ∈ Pr ��� (xt+1 : . . . : xr) ∈ Pr−t−1

denote the complementary projection then, for a general point p ∈ Pr , Eq. (2.2) shows that φ(p)

sits in the span of φ1(σ (p)), . . . , φt−m(σ(p)). Thus we see that the image of φ has dimension at
most m + t − m − 1 = t − 1. This proves that f0, . . . , ft are algebraically dependent, hence so
are f0, . . . , fr . �

For a proof of the previous proposition which is closer to Gordan–Noether’s original approach,
see [27].

Following [34] we give a geometric description of a GN-hypersurface of type (r, t,m,n), as
follows. For this we introduce the following notion.

Definition 2.10. Let f be GN-hypersurface of type (r, t,m,n). The core of V (f ) is the t -
dimensional subspace Π ⊂ V (f ) defined by the equations xt+1 = · · · = xr = 0.

We agree to call a GN-hypersurface of type (r, t,m,n) general if the defining data have
been chosen generically, namely, the polynomials hi(y0, . . . , ym), i = 0, . . . , t , the polynomi-
als ψj (xt+1, . . . , xr ), j = 0, . . . ,m, the constants a

(�)
u,v , � = 1, . . . , t − m, u = 1, . . . , t − m − 1,

v = 0, . . . , t , and the biforms Pk , k = 0, . . . ,μ, are sufficiently general.

Proposition 2.11. Let V (f ) ⊂ Pr be a GN-hypersurface of type (r, t,m,n) and degree d . Set
μ = [ d

n
]. Then

(i) V (f ) has multiplicity at least d − μ at the general point of its core Π .
(ii) The general (t + 1)-dimensional subspace Π ′ through Π cuts out on V (f ), off Π , a cone

of degree at most μ whose vertex is an m-dimensional subspace Γ subset Π .
(iii) If V (f ) is general, then it has multiplicity exactly d − μ at the general point of Π , the

general (t + 1)-dimensional subspace Π ′ through Π cuts out on V (f ), off Π , a cone of
degree exactly μ, and, as Π ′ varies the corresponding subspace Γ describes the family of
tangent spaces to an m-dimensional unirational subvariety S(f ) of Π .

(iv) If V (f ) is general and μ > r − t − 2 then V (f ) is not a cone.
(v) The general GN-hypersurface is irreducible.
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Proof. Let Π̄ ⊂ Pr denote the subspace defined by the equations x0 = · · · = xt = 0, the coor-
dinate complementary subspace to Π . For any nonzero ξ = (0 : . . . : 0, ξt+1 : . . . : ξr ) ∈ Π̄ , set
Πξ = 〈Π,ξ〉 ⊂ Pr . Then as ξ varies, Πξ describes the set of all (t + 1)-dimensional subspaces
containing Π . For a fixed such ξ the points of Πξ are parameterizable as (x0 : . . . : xt : zξt+1 : . . . :
zξr ), where z is a parameter. Hence we can take (x0 : . . . : xt : z) as homogeneous coordinates in
Πξ and (x0 : . . . : xt ) as coordinates in Π .

Fix such a ξ . The intersection V (f ) ∩ Πξ is a hypersurface Vξ of Πξ with equation:

μ∑
k=0

zd−kPk

(
M1,0(ξ)x0 + · · · + M1,t (ξ)xt , . . . ,Mt−m,0(ξ) x0 + · · · + Mt−m,t (ξ)xt , ξ

) = 0.

The presence of the factor zd−μ shows that the general point of Π has multiplicity at least
d − μ for V (f ). This proves (i). The residual hypersurface Wξ contains the subspace Γξ of Π

with equations:

M1,0(ξ)x0 + · · · + M1,t (ξ)xt = 0, . . . ,

Mt−m,0(ξ)x0 + · · · + Mt−m,t (ξ)xt = 0, z = 0. (2.3)

Furthermore Wξ is a cone with vertex Γξ . Indeed, if p = (p0 : . . . : pt : p) ∈ Wξ and q = (q0 : . . . :
qt : 0) ∈ Γξ , the line joining p and q is parameterizable by xi = λpi + νqi , z = λp, i = 0, . . . , t ,
where (λ : ν) ∈ P1 is a parameter. By restricting the equation of Wξ to this line, we find that the
resulting equation is identically verified in λ and ν, because (q0 : . . . : qt ) is a solution of the
system (2.3). This proves (ii).

Assume now V (f ) is general. We note that, by setting x0 = 1, x2 = · · · = xt = 0, the coeffi-
cient of zd−k , k = 0, . . . ,μ, in the resulting polynomial can be seen as a general polynomial of
degree d − k in the variables ξt+1, . . . , ξr . By taking into account the proofs of parts (i) and (ii),
the first part of (iii) immediately follows.

Next note that dim(Γξ ) � m and the equality holds if V (f ) is a general GN-hypersurface.
Now Γξ contains the m + 1 points pj (ξ) = (pj,0(ξ) : . . . : pj,t (ξ)), where

pj,i(ξ) = ∂hi

∂yj

(
ψ0(ξ), . . . ,ψm(ξ)

)
, i = 0, . . . , t, j = 0, . . . ,m.

Since V (f ) is general, the points pj (ξ), j = 0, . . . ,m, are linearly independent. Hence Γξ =
〈p0(ξ), . . . , pm(ξ)〉. Consider the unirational subvariety S(f ) of Π which is the image of the
map h : Π̄ ��� Π sending the general point ξ ∈ Π̄ to the point (η0 : . . . : ηt ) where

ηi = hi

(
ψ0(ξ), . . . ,ψm(ξ)

)
, i = 0, . . . , t.

It is clear now that S(f ) has dimension m and that Γξ is the tangent space to S(f ) at h(ξ).
This concludes the proof of (iii).

As for (iv), we notice that, if μ + 1 > r − t − 1, then for no ξ does the hypersurface Vξ

vanish identically. Thus, if V (f ) is a cone, the vertex of V (f ) should lie on Π . In this case
all the tangent spaces to S(f ) should contain the vertex of the cone, hence S(f ) itself ought
to be a cone (cf., e.g., [36, Proposition 1.2.6]). This is clearly not the case for a general GN-
hypersurface.
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To prove (v) let f be a general GN-polynomial of type (r, t,m,n) and degree d as in (2.1)
and let V (f ) ⊂ Pr be the corresponding hypersurface. Cutting V (f ) with Π̄ gives the hyper-
surface with equation P0(xt+1, . . . , xr ) = 0, which does not involve the variables x1, . . . , xt−m.
Indeed, for every k = 1, . . . ,μ, the homogeneous polynomial Pk involves these variables and,
being general, must vanish for x0 = · · · = xt = 0 as do the Q�’s. Now, since P0(xt+1, . . . , xr )

is also general, the original hypersurface is reduced. In addition, if t < r − 2, the hypersurface
V (P0) is also irreducible, implying the irreducibility of the original hypersurface. For t = r − 2,
the zero set of the polynomial P0(xr−1, xr ) is a finite set of points, which are the intersection
points of the line Π̄ with V (f ). However in this case we can appeal to the fact that the polyno-
mial P0(xr−1, xr) = 0 is a general equation of degree d and therefore its Galois group is the full
symmetric group. Thus we see that the intersection of V (f ) with a general line consists of d dis-
tinct points, which are exchanged by monodromy when the line moves, proving the irreducibility
also in this case. �

The proposition admits a converse statement to the effect that if V (f ) ⊂ Pr is a hypersurface
of degree d satisfying a suitable reformulation of the above enumerated properties, then it is a
GN-hypersurface of type (r, t,m) (see [34, pp. 104–105]).

2.4. Permutti’s generalization of Gordan–Noether machine

Permutti (see [34]) has extended Gordan–Noether construction in the case t = m + 1. Let us
briefly recall this too.

Fix integers r, t such that r � 2, 1 � t � r − 2. Fix t + 1 homogeneous polynomials
M0(xt+1, . . . , xr ), . . . ,Mt (xt+1, . . . , xr ) of the same degree n − 1 in the variables xt+1, . . . , xr

and assume that they are algebraically dependent over k—which will be automatic if r � 2t

because then the number r − t of variables is smaller than the number t + 1 of polynomials.
Set Q = M0x0 +· · ·+Mtxt , a form of degree n. Fix an integer d > n and set μ = [ d

n
]. Further

fix forms Pk(xt+1, . . . , xr ) of degree d − kn in xt+1, . . . , xr , k = 0, . . . ,μ. The form of degree d

f (x0, . . . , xr ) =
μ∑

k=0

QkPk(xt+1, . . . , xr ),

or any form obtained thereof by a linear change of variables, will be called a Permutti polynomial,
or a P-polynomial of type (r, t, n). Accordingly, the corresponding hypersurface V (f ) ⊂ Pr will
be called a Permutti hypersurface or P-hypersurface of type (r, t, n), with core the t -dimensional
subspace Π with equations xt+1 = · · · = xr = 0. It is immediate to see that a GN-polynomial of
type (r, t, t − 1, n) is a P-polynomial of type (r, t, n).

Proposition 2.12. Every P-hypersurface has vanishing Hessian.

Proof. Let f be a P-polynomial. Then it is immediate to see that

∂f

∂xi

= ∂f

∂Q
Mi, i = 0, . . . , t,

where ∂f/∂Q denotes the formal derivative of f with respect to Q. Since by assumption
M0, . . . ,Mt are algebraically dependent, it is clear that ∂f/∂x0, . . . , ∂f/∂xr are algebraically
dependent too. �
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One can easily prove the analogue of Proposition 2.11 in Permutti’s setup. We use the same
terminology and notation employed in the previous section.

Proposition 2.13. Let V (f ) ⊂ Pr be a general P-hypersurface of type (r, t, n) and degree d . Set
μ = [ d

n
]. Then

(i) V (f ) has multiplicity d − μ at the general point of its core Π .
(ii) The general (t + 1)-dimensional subspace Π ′ through Π cuts out on V (f ), off Π , a cone

of degree at most μ, consisting of μ subspaces of dimension t which all pass through a
subspace Γ of Π ′ of dimension t − 1.

(iii) As Π ′ varies the corresponding Γ describes a unirational family of dimension χ �
min{t − 1, r − t − 1}.

(iv) If μ > r − t − 2, then V (f ) is a cone if and only if the forms M0, . . . ,Mt are linearly
dependent over k. This in turn happens as soon as either t = 1, or n = 1,2.

(v) V (f ) is irreducible.

Proof. One verifies that the general subspace Πξ cuts out on V (f ) a hypersurface Vξ which
contains Π with multiplicity d − μ. The residual hypersurface Wξ is the union of μ subspaces
of dimension t which all pass through the subspace Γξ of Πξ of dimension t − 1 with equation:

M0(ξ)x0 + · · · + Mt(ξ)xt = 0.

Note that, since M0, . . . ,Mt are algebraically dependent, then χ � t − 1. The inequality χ �
r − t − 1 is obvious. Parts (i)–(iii) follow by these considerations.

As for part (iv), like in the proof of Proposition 2.11, we see that the hypersurface V (f ) is a
cone if and only if, as ξ varies, the subspace Γξ contains a fixed point. This happens if and only
if the polynomials M0, . . . ,Mt are linearly dependent. The rest of the assertion is trivial.

The proof of (v) is completely analogous to the proof of the corresponding statement in Propo-
sition 2.11 and shall be omitted. �

It has been proved in [34, pp. 100–101] a converse to the effect that if V (f ) ⊂ Pr is a hyper-
surface of degree d enjoying the above properties—with the core replaced by a subspace with
the same property—then it is a P-hypersurface of type (r, t, n).

For P-hypersurfaces V (f ) ⊂ Pr one can describe the dual variety V (f )∗ ⊂ Pr∗. Note that, as
ξ varies in the subspace Π̄ with equations x0 = · · · = xt = 0, then the subspace Γ ⊥

ξ of dimension

r − t varies describing a cone W(f ) ⊂ Pr∗ , of dimension r − t − 1 with vertex Π⊥ which
contains the subspace Π⊥

ξ of dimension r − t − 2. More precisely, we have the:

Proposition 2.14. Let V (f ) ⊂ Pr be a general P-hypersurface of type (r, t, n) and degree d . Let
μ = [ d

n
]. Then:

(i) V (f )∗ ⊂ W(f ), where W(f ) ⊂ Pr∗ is a cone over a unirational variety of dimension χ �
min{t − 1, r − t − 1} whose vertex is the orthogonal of the core Π of V (f ).

(ii) The general ruling of the cone W(f ) ⊂ Pr∗ is an (r − t)-dimensional subspace through Π⊥
which cuts V (f )∗, off Π⊥, in μ subspaces of dimension r − t − 1 all passing through the
same subspace of Π⊥ of dimension r − t − 2. Hence v(f ) = min{r − 2,2(r − t − 1)}.

Conversely, if V (f ) ⊂ Pr is the dual of such a variety, then V (f ) ⊂ Pr is a P-hypersurface.
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Proof. It follows by dualizing the contents of Proposition 2.13. �
From this we also see that a general P-hypersurface is not a cone. In addition, one has:

Proposition 2.15. Let V (f ) ⊂ Pr be a general P-hypersurface of type (r, t, n). Then Z(f ) =
W(f ) ⊂ Pr∗, and therefore z(f ) = min{r − 1,2(r − t) − 1}.

Proof. For ξ ∈ Π̄ general, Πξ cuts out on V (f ) a hypersurface Vξ which is a union of hyper-
planes of Πξ and is a cone with vertex Γξ . If p ∈ Πξ is a general point, then the polar hyperplane
πξ,p of p with respect to Vξ contains Γξ . By Remark 2.8, when p varies in Πξ , then πξ,p varies
describing an open dense subset of the set of all hyperplanes of Πξ containing Γξ . If πp(f ) is the
polar hyperplane of p with respect to V (f ), then πp cuts out πξ,p on Πξ . Hence the subspace
〈φf (p),Π⊥

ξ 〉 sits in the ruling Γ ⊥
ξ of W(f ) and, as p varies, it describes a dense open subset of

Γ ⊥
ξ . This proves that W(f ) = Z(f ). �

Remark 2.16. The case t = r −2 is particularly interesting. Then V (f )∗ is a scroll surface with a
line directrix L = Π⊥ of multiplicity e � μ, where μ is the invariant introduced in Section 1.2.2.
It is a subvariety of the 3-dimensional rational cone W(f ) over a curve with vertex L, and the
general plane ruling of the cone cuts V (f )∗ along μ lines of V (f )∗, all passing through the same
point of L. In particular, for μ = 1, the dual V (f )∗ is a rational scroll (see Sections 1.2.1 and
1.2.2). According to Proposition 2.15, we have Z(f ) = W(f ), hence z(f ) = 3.

If t = 2 the two constructs of GN-hypersurfaces and P-hypersurfaces coincide. For r = 4 this
is the only value of t which leads to hypersurfaces which are not cones. The case r = 4 is well
understood due to a result of Franchetta (see [18]; see also Proposition 2.14; according to [27]
this result is contained in [20]; for another proof see [19]):

Theorem 2.17. Let V (f ) ⊂ P4 be a reduced hypersurfaces of degree d . The following conditions
are equivalent:

(i) V (f ) has vanishing Hessian;
(ii) V (f ) is a GN-hypersurface of type (4,2,1, n), with μ = [ d

n
], which has a plane of multi-

plicity d − μ;
(iii) V (f )∗ is a scroll surface of degree d , having a line directrix L of multiplicity e, sitting in a

rational cone W(f ) of dimension 3 with vertex L, and the general plane ruling of the cone
cuts V (f )∗ off L along μ � e lines of the scroll, all passing through the same point of L.

In particular, V (f )∗ is smooth if and only if d = 3, V (f )∗ is a rational normal scroll and V (f )

contains a plane, the orthogonal to the line directrix of V (f )∗, with multiplicity 2.

2.5. Variations on some results of Perazzo

Let V (f ) ⊂ Pr be a hypersurface of degree d with r � 4. If d = 2, it is clear that V (f ) has
vanishing Hessian if and only if it is a cone. So the first meaningful case is the one d = 3, in
which, as we saw, there are examples which are not cones (see Theorem 2.17). The case of cubic
hypersurfaces has been studied in some detail by U. Perazzo (see [31]). We will partly generalize
Perazzo’s results. Inspired by the construction of P-hypersurfaces and by Perazzo’s results, we
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will give new examples of hypersurfaces with vanishing Hessian, which are extensions of some
P-hypersurfaces.

Consider a hypersurface V (f ) ⊂ Pr which contains a subspace Π of dimension t such that
the general subspace Πξ of dimension t + 1 through Π cuts out on V (f ) a cone with a vertex
Γξ of dimension s. Assume that s � r − t − 1. By extended analogy, we will call Π the core
of V (f ) and call V (f ) an H-hypersurface of type (r, t, s). Notice that a P-hypersurface of type
(r, t, n) with r � 2t is also an H-hypersurface of type (r, t, t − 1).

As for P-hypersurfaces, we can introduce the cone W(f ) ⊂ Pr∗ with vertex Π⊥, which is
swept out by the (r − s − 1)-dimensional subspaces Γ ⊥

ξ as Πξ varies among all subspaces of
dimension t + 1 containing Π .

A special case of an H-hypersurface is that of a hypersurface V (f ) ⊂ Pr of degree d contain-
ing a subspace Π of dimension t whose general point has multiplicity d − μ > 0 for V (f ), such
that the general subspace Πξ of dimension t + 1 through Π cuts out on V (f ), off Π , a union of
μ subspaces of dimension t , with μ � 2t − r + 1. In this situation, we will call V (f ) ⊂ Pr an
R-hypersurface of type (r, t,μ).

Proposition 2.18. An H-hypersurface V (f ) ⊂ Pr of type (r, t, s) has vanishing Hessian. More-
over Z(f ) = W(f ) ⊂ Pr∗.

Proof. Let p be a general point in Pr and let Π ′ be the span of Π and p. Since the intersection
of V (f ) with Π ′ is a cone with vertex a subspace Γ of dimension s, the polar quadric Qp(f )

cuts out on Π ′ a quadric singular along Γ . If Qp(f ) is smooth we have s = dim(Γ ) � r − t − 2,
a contradiction. This proves that Qp(f ) is singular hence V (f ) has vanishing Hessian.

The argument for the second assertion is similar to the one in the proof of Proposition 2.15
and therefore can be omitted. �

Remark 2.19. It is interesting to look at duals of R-hypersurfaces of degree d and type
(r, r − 2,μ). If V (f ) ⊂ Pr is such a hypersurface, its dual V (f )∗ ⊂ Pr∗ is a scroll surface
with a line directrix L of multiplicity e � μ, where μ � r − 3 is as in Section 1.2.2. We assume
V (f ) ⊂ Pr not a cone and therefore V (f )∗ ⊂ Pr∗ is non-degenerate.

In this case the invariant s is related to the number ν introduced in Section 1.2.2: ν = r −
s − 1 and, moreover, one has Z = W(f ) ⊂ Pr∗ where Z is the cone in the same section, and
dimW(f ) = r − s.

By Proposition 2.18, one has Z(f ) = W(f ) = Z. This means that ρ(f ) = r − s + 1, hence
the vertex of the general polar quadric has dimension s − 1.

Let p ∈ Pr be a general point. The quadric Qp(f ) cuts the hyperplane Π ′ = 〈Π,p〉 in a
quadric singular along the subspace Γ of dimension s. Set ξ = φf (p). The vertex of Qp(f ),
which coincides with T ⊥

Z(f ),ξ (see Remark 2.4), has dimension s − 1, hence it is contained in Γ .

An R-hypersurface with μ = 1 is a hypersurface of degree d with a core Π of dimension t

whose general point has multiplicity d − 1 for the hypersurface, and moreover 2t � r . This is
the case considered by Perazzo in [31, p. 343], where he proves that these hypersurfaces have
vanishing Hessian.
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3. Homaloidal polynomials

A hypersurface V (f ) ⊂ Pr , or the form f , of degree d is said to be homaloidal if δ(f ) = 1,
i.e. if the polar map φf is birational. According to Theorem 2.2, this property depends only on
Supp(V (f )), therefore we will mainly refer to the case V (f ) reduced.

The simplest example is when V (f ) is a smooth quadric: in this case the polar map φf is
the usual polarity, which is an invertible linear map. This is also the only case of a reduced
homaloidal polynomial if r = 1.

Reduced homaloidal curves in P2 have been classified by Dolgachev in [10]:

Theorem 3.1. A reduced plane curve V (f ) ⊂ P2 of degree d is homaloidal if and only if either

(i) V (f ) is a smooth conic, or
(ii) d = 3 and V (f ) consists of three non-concurrent lines, or

(iii) d = 3 and V (f ) consists of the union of a smooth conic with one of its tangent lines.

Note that in case (ii) the polar map φf is a standard quadratic transformation based at three
distinct points, whereas in case (iii) the map φf is a special quadratic transformation based
at a curvilinear scheme of length three supported at one single point. More algebraically, in
cases (ii) and (iii) the base locus ideal of φf is a codimension 2 perfect ideal (Hilbert–Burch)—
see 4.1 and also [37,47] for the ubiquitous role of Hilbert–Burch ideals in the theory of Cremona
transformations.

Remark 3.2. We note that the three cases in Theorem 3.1 can be naturally extended to any
dimension r � 2, thus yielding an infinite series of homaloidal hypersurfaces in Pr , with r � 2
(see [10]). Namely, the following reduced hypersurfaces V (f ) ⊂ Pr of degree d are homaloidal
in Pr for any r � 2:

(i) a smooth quadric;
(ii) the union of r + 1 independent hyperplanes;

(iii) the union of a smooth quadric with one of its tangent hyperplanes.

Note that (ii) gives the only example of arrangements of hyperplanes which are homaloidal (see
[9,10]).

There is a general principle for rational maps φ : Pr ��� Pr . In what follows, we adopt the
terminology the image of φ to mean the closure in the target of the image of the points of the
source Pr at which φ is well-defined. Accordingly, we use the notation φ(Pr ). This convention
sticks to subvarieties as well.

Proposition 3.3. Let φ = (F0 : . . . : Fr) : Pr ��� Pr denote a rational map, where Fi ∈
k[x0, . . . , xr ] are forms of the same degree without proper common factor. Let J ∈ k[x0, . . . , xr ]
denote the Jacobian determinant of these forms. Consider the following conditions:

(i) J �= 0;
(ii) dim(φ(Pr )) = r .

Then (i) ⇔ (ii).
If φ is birational, then dimφ(V (J )) � r − 2.
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Proof. First note that φ is well defined at a general point of V (J ), otherwise F0, . . . ,Fr would
be multiples of a single form which contradicts the assumption on these forms.

(i) ⇔ (ii) Note that, up to a degree renormalization, the homogeneous coordinate ring of
φ(Pr ) ⊂ Pr is k[F0, . . . ,Fr ]. One then draws upon the known fact saying that, in characteris-
tic zero, the dimension of k[F0, . . . ,Fr ] is the rank of the Jacobian matrix of F0, . . . ,Fr (see,
e.g., [46]).

If φ is birational, it is dominant so that J �= 0. Moreover, it has to contract the hypersurface
V (J ) since this is the locus where φ drops rank. �

If dim(V (J )) � r − 2, we shall say that V (J ) is contracted by φ.

Corollary 3.4. If a hypersurface V (f ) ⊂ Pr is homaloidal, then h(f ) does not vanish identically
and H(f ) is contracted by the polar map φf .

Remark 3.5. An interesting case of Corollary 3.4 is when f ∈ k[x0, . . . , xr ] is a nonzero re-

duced, homaloidal form of degree d such that h(f ) = cf
(d−2)(r+1)

d with c ∈ k∗. In this case we
will say that such an f is totally Hessian and use the same terminology for the corresponding
hypersurface. Note that it entails the equality Supp(V (f )) = Supp(H(f ))—hence V (f ) is also
contracted by φf —and any smooth point of V (f ) is parabolic (see Remark 2.3). It would be
interesting to find whether a totally Hessian form is homaloidal.

A good deal of examples of totally Hessian forms arises from the theory of pre-homogeneous
vector spaces (see [39,42], also [28]), a notion introduced by Kimura and Sato (see [24], see also
[11,10,14]), which we now briefly recall for the reader’s convenience.

A pre-homogeneous vector space is a triple (V ,G,χ) where V is a complex vector space
of finite dimension, G is a complex algebraic group, V is an algebraic linear representation
of G, χ :G → C∗ is a non-trivial character, and there is a nonzero homogeneous polynomial
f :V → C, with no multiple factors, such that f (g · v) = χ(g)f (v) for all g ∈ G and v ∈ V , and
such that the complement of the hypersurface {f = 0} is a G-orbit.

The polynomial f , called the relative invariant of the pre-homogeneous space, is unique up
to a nonzero factor from C. The pre-homogeneous vector space (V ,G,χ) is said to be regular if
h(f ) �= 0. In this case the relative invariant f is totally Hessian (see [24,11]) and f is a homa-
loidal polynomial such that φf coincides with its inverse, modulo a projective transformation
(see [11, Theorem 2.8]). In [14] (see also in [28], [51, Ch. III] and [11]), there is a description of
several regular homogeneous vector spaces related to smooth projective varieties with extremal
geometric properties (Severi and Scorza varieties, some varieties with one apparent double point,
varieties whose dual is small, see [14]). The first instances among these examples were described
in the classic literature (see [5,39,17]).

Being homaloidal or having vanishing Hessian implies strong constraints on the singularities
of the hypersurface V (f ). Thus, if dimV (f ) � 2 and if V (f ) ⊂ Pr has vanishing Hessian, then
V (f ) cannot have isolated singularities. Also there is a conjecture in [9] to the effect that a
hypersurface of dimension at least 2 with isolated singularities cannot be homaloidal. We now
prove a result which points somewhat in this direction.

First we need to introduce some notation. Suppose V (f ) ⊂ Pr is a reduced hypersurface of
degree d . Let us resolve the indeterminacies of the polar map φf by iteratively blowing up Pr

X := Xn → Xn−1 → ·· · → X1 → X0 = Pr ,
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thus getting p :X → Pr so that φf ◦ p :X → Pr∗ is a morphism. Here the map Xi → Xi−1,
i = 1, . . . , n, is a blowup with center a smooth variety of codimension ai +1, with 1 � ai � r −1.
We denote by Ei the total transform on X of the exceptional divisors of the blowup Xi → Xi−1,
i = 1, . . . , n. Further let H stand for the proper transform on X of a general hyperplane of Pr

and Φ for the proper transform on X of the first polar hypersurface of V (f ) with respect to a
general point of Pr . Then

Φ ≡ (d − 1)H −
n∑

i=1

μiEi,

where the μi ’s are the multiplicities of Φ along the various centers of the iterated blowups. By
an obvious minimality assumption, we may assume μi > 0, i = 1, . . . , n.

The following result can be seen as a consequence of the so-called Noether–Fano inequality
for Mori fibre spaces (see [8]). We give here a short direct proof. Let us recall that δ(f ) =
deg(φf ) with the usual convention that deg(φf ) = 0 if and only if φf is not dominant.

Proposition 3.6. In the above setting, if δ(f ) � 1 then either d � r + 1 or μi > ai for some
i = 1, . . . , n, i.e. either d � r + 1 or the singularities of the general first polar of V (f ) are not
log-canonical (see [26, p. 56]).

Proof. As above, let Φ denote the proper transform on X of the general first polar hypersurface
of V (f ). Note that Φ is smooth, because the linear system |Φ| is base point free. If δ(f ) � 1
then Φ is either rational or ruled (see Proposition 2.5). Since

KX ≡ −(r + 1)H +
n∑

i=1

aiEi,

one has

KΦ ≡ (d − r − 2)H|Φ +
n∑

i=1

(ai − μi)Ei|Φ.

If d > r + 1 and ai � μi for every i = 1, . . . , n, this divisor is effective, which would contra-
dict the ruledness of Φ . �
Remark 3.7. Although the proper transform Ṽ of V (f ) on X admits a similar expression

Ṽ ≡ dH −
n∑

i=1

miEi,

here, in spite of the previous minimality assumption, some of the mi ’s may vanish (see Sec-
tion 3.2 below).

The problem of understanding the relationship between the mi ’s and the μi ’s is longstanding,
dating back to M. Noether, and is far from being solved in general. For further contributions in
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the plane case see [40] and [50] (see also Remark 3.20 below). Roughly speaking, one would
expect μi = mi − 1 but this is not always the case.

Corollary 3.8. In the above setting suppose that μi = mi − 1 for all i = 1, . . . , n. If d � r + 2
and δ(f ) � 1, then mi > ai + 1 for some i = 1, . . . , n. In particular, a surface V (f ) ⊂ P3 with
d � 5 and δ(f ) � 1 cannot have ordinary singularities.

3.1. Irreducible homaloidal polynomials of arbitrarily large degrees

In this section we produce, for every r � 3, an infinite series of irreducible homaloidal hy-
persurfaces in Pr of arbitrarily large degree, thus settling a question that has been going around
for some time. These polynomials are the dual hypersurfaces to certain scroll surfaces. It is rel-
evant to observe, as we indicate below, that these examples are not related to the ones based on
pre-homogeneous vector spaces as in [14] and in [11].

The examples show that, perhaps opposite to the ongoing folklore, there are plenty of homa-
loidal polynomials around. They even seem to be in majority as compared to polynomials with
vanishing Hessian, though a complete classification does not seem to be presently at hand.

In this respect Dolgachev’s classification Theorem 3.1 might be considered in counterpoint to
Hesse’s result to the effect that the only hypersurfaces with vanishing Hessian in Pr , r � 3, are
cones (see Section 2.2).

We wonder whether a counterpart of Franchetta’s Theorem 2.17 could be a result to the effect
that in P3 there are only finitely many projectively distinct types of (irreducible) homaloidal
polynomials, apart from the ones constructed in this section.

We start with lemmas of general content.

Lemma 3.9. Let V (f ) be a hypersurface in Pr . Suppose there is a point p ∈ V (f ) and s lin-
early independent hyperplanes Hi , i = 1, . . . , s, passing through p and each cutting V (f ) in a
hypersurface having a point of multiplicity at least s in p. Then V (f ) has multiplicity at least s

in p.

Proof. Assume p is the origin in affine coordinates and that Hi has equation xi = 0, i = 1, . . . , s.
Write f = f0 + f1 + · · · + fd , where fj is the homogeneous component of degree j , with
j = 0, . . . , d . By the assumption f0, . . . , fs−1 have to be divisible by xi , i = 1, . . . , s. Hence
f0, . . . , fs−1 are identically zero, proving the assertion. �

Recall now that the polar map of a form f ∈ k[x0, . . . , xr ] is denoted φf or φV (f ) to stress the
corresponding hypersurface V (f ) ⊂ Pr .

Lemma 3.10. Let V (f ) ⊂ Pr be a hypersurface. Let H ⊂ Pr be a hyperplane not contained in
V (f ), let ξ = H⊥ be the corresponding point in Pr∗ and let σξ denote the projection from ξ .
Then

φV (f )∩H = σξ ◦ (φV (f ))|H .

Proof. The proof is straightforward by assuming, as one can, that H is a coordinate hyper-
plane. �
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Lemma 3.11. Let C be a rational normal curve in Pn. Let L be a g1
m, with m < n and consider

the rational normal scroll W(L) = ⋃
D∈L〈D〉, of dimension m and degree n − m + 1 (see, e.g.,

[13]). Let p1, . . . , pn−m be points of C. Then:

(i) W(L) intersects the (n − m − 1)-dimensional subspace Π = 〈p1, . . . , pn−m〉 transversally
only at p1, . . . , pn−m;

(ii) the general tangent space to W(L) does not intersect the (n−m− 1)-dimensional subspace
Π = 〈p1, . . . , pn−m〉.

Proof. Project from Π to Pm. The image of C is a rational normal curve C′ and the image of
W(L) is the analogous scroll W(L′) = ⋃

D∈L′ 〈D〉, where L′ is the g1
m on C′ which is the image

of L. Since this fills up Pm, both assertions follow. �
We introduce now the promised examples. Recall from Section 1.2.2 that we have rational

scrolls X := X(a,b) of degree d = a + b with a multiple line directrix Λ of multiplicity a in
Pb+2, for 1 � a � b. The dual hypersurface X∗ = X(a,b)∗ has vanishing Hessian as soon as
1 � a < b and the image of the corresponding polar map is the cone Z := Z(a, b) containing X,
introduced in Section 1.2.2 (see Remark 2.19). This is a rational normal cone of degree b −a + 1
and dimension a + 2 with vertex Λ. More specifically, let C be the rational normal curve in
Pb which is the projection of X from Λ. One has the general linear series L = g1

a on C whose
general divisor is the projection on C of the a lines of X passing through the general point of Λ.
The scroll Z is the cone with vertex Λ over W(L), which, by the generality assumption about
X(a,b), is a general rational normal scroll of degree b − a + 1 and dimension a in Pb .

An essential piece of information for the construction of our examples is the following:

Theorem 3.12. If 1 � a < b, the closure of the general fibre of the polar map φ := φX(a,b)∗ is a
projective subspace of dimension b − a of Pb+2.

Proof. Let p be a general point of Pb+2. Then ξ = φ(p) is a general point of Z. Recall that the
closure Fp of the fibre of φ over ξ is the union of finitely many (b − a)-dimensional subspaces
containing T ⊥

Z,ξ , which in turn is the (b − a − 1)-dimensional vertex Vp of the polar quadric Qp

of p with respect to X∗ = X(a,b)∗ (see Proposition 2.5 and Remark 2.4). What we have to prove
is that Fp consists of the single subspace 〈p,Vp〉.

Recall Proposition 1.8 and Remark 2.19 and keep the notation introduced therein. In particular
Π = Λ⊥ is a subspace of dimension b in Pb+2∗

, which has multiplicity b for X∗. The hyperplane
Π ′ := Π ′

p = 〈Π,p〉 is dual to the general point x ∈ Λ. Let Fx,1, . . . ,Fx,a be the rulings of X

passing through x, hence Π ′ cuts X∗ along Π , with multiplicity b, and along the a subspaces
Σi := F⊥

x,i , i = 1, . . . , a, of dimension b. The intersection

Γp = Π ∩ Σ1 ∩ · · · ∩ Σa = 〈Λ,Fx,1, . . . ,Fx,a〉⊥

has dimension b − a. Note that Γp = W⊥
ξ , where Wξ = 〈Λ,Fx,1, . . . ,Fx,a〉 is the ruling of Z

containing ξ .
Let p′ be another point in Pb+2 where φ is defined, and set ξ ′ = φ(p′). The above description

implies that Γp = Γp′ if and only if Wξ = Wξ ′ . By recalling the structure of the scroll Z we see
that this happens if and only if Π ′

p = Π ′ ′ .
p
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As we saw in Remark 2.19, the vertex Vp of the quadric Qp is contained in Γp because
Wξ ⊆ TZ,ξ . We claim now that there is no point p′ such that Γp′ �= Γp and Γp ∩ Γp′ = Vp . In
fact if this happens, then TZ,ξ = V ⊥

p contains Wξ ′ = Γ ⊥
p′ . This means that, if W is a general ruling

of Z, then the tangent space to Z at the general point of W contains some other ruling W ′ of Z.
By projecting Z from Λ onto the a-dimensional rational normal scroll W(L) ⊂ Pb , we would
have that, for a general point q ∈ W(L), the tangent space TW(L),q would contain some ruling
of W(L) different from the one of q . This is impossible. Indeed, by cutting with a − 1 general
hyperplanes, we would have the general curve section C of W(L), a rational normal curve, with
the property that its general tangent line TC,q intersects C at a point q ′ �= q , which is clearly not
the case.

Let now p,p′ be points such that φ(p) = φ(p′). Then Vp = Vp′ , therefore Γp = Γp′ and
Π ′

p = Π ′
p′ . Thus Fp = Fp′ is contained in Π ′

p . To simplify notation, we set V = Vp , Γ = Γp ,
Π ′ = Π ′

p , F = Fp .
We claim next that if φ(p) = φ(p′), then 〈p,Γ 〉 = 〈p′,Γ 〉 and this (b − a + 1)-dimensional

subspace Γ ′ contains F . In fact, F is the closure of the intersection, off the singular locus of
X∗, of all first polars of X∗ containing p. In particular F is contained in the intersection of Π ′
with of all first polars of points of Π ′ containing p (or p′). Remarks 2.8 and 3.2, imply that this
intersection is exactly Γ ′. Our claim thus follows.

Note now that the linear system cut out on Γ ′ by of all first polars of the points of Π ′ is
0-dimensional, consisting of Γ , counted with multiplicity a + b − 1. Thus the linear system N
of hypersurfaces of degree a + b − 1 cut out on Γ ′ by all first polars of X∗ is a pencil, i.e.
dim(N ) = 1. Note that the fixed locus of N certainly contains Γ with multiplicity b − 1, since
the general first polar contains Π with this multiplicity. To finish our proof, we have to show that
the movable part of N , whose degree is bounded by a, is actually a pencil of hyperplanes.

To see this, look at the linear system M cut out by all first polars on Π ′ off Π , which, as
we said, appears with multiplicity b − 1 in the base locus. The general member M of M is a
hypersurface of degree a. Let us consider its intersection with the hyperplanes Σi , i = 1, . . . , a.
Note that the intersections Σi ∩ Σj , 1 � i < j � a, all of dimension b − 1 and containing Γ ,
sit in the singular locus of X∗, since they are intersection of rulings of the scroll X∗. Hence the
intersection of M with Σi has multiplicity a − 1 along Γ for all i = 1, . . . , a. By Lemma 3.9,
M has multiplicity a − 1 along Γ . This implies that the movable part of N has degree one, thus
ending the proof of the theorem. �

Let now F1, . . . ,Fb−a be general rulings of X(a,b). Together with Λ they span a projective
space Φ of dimension b − a + 1. Choose a general subspace Ψ of dimension b − a − 1 in Φ

and project down X(a,b) from Ψ to Pa+2. The projection is a scroll surface Y(a, b) ⊂ Pa+2

of degree d = a + b � 2a + 1 which has a directrix L, the image of Λ, of multiplicity e = b.
However we have here μ = a because, if x ∈ L is the general point, only a among the b lines of
the ruling through x vary, the other b − a stay fixed and coincide with L.

Theorem 3.13. For every r � 3 and for every d � 2r −3 the hypersurface Y(r −2, d − r +2)∗ ⊂
Pr∗ of degree d is homaloidal.

Proof. We keep the above notation. A repeated use of (1.2) gives

Y(r − 2, d − r + 2)∗ = X(r − 2, d − r + 2)∗ ∩ Ψ ⊥.
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To simplify the notation, set X = X(r − 2, d − r + 2) and Y = Y(r − 2, d − r + 2).
According to Remark 2.19, X∗ has vanishing Hessian and the image of its polar map is a

rational normal scroll Z = Z(r − 2, d − r + 2) of dimension r and degree d − 2r + 5. By
Theorem 3.12 the general fibre of the polar map is a projective subspace of dimension d −2r +4.

Let us repeat all pertinent dimensions translating from above a, b to present d, r :

dim(X) = 2, dim(X∗) = d − r + 3 � r (from the assumed inequality)

dim(Y ) = 2, dim(Y ∗) = r − 1, dim(Φ) = d − 2r + 5, dim(Ψ ) = d − 2r + 3,

dim(Z) = dim
(
Ψ ⊥) = d − r + 4 − dim(Ψ ) − 1

= d − r + 4 − (
d − r + 2 − (r − 2) − 1

) − 1 = r.

By a repeated use of Lemma 3.10 in a dual form, one has:

φY ∗ = σΨ ◦ (φX∗)|Ψ ⊥ . (3.1)

We claim that the map (φX∗)|Ψ ⊥ :Ψ ⊥ ��� Z is birational. By part (ii) of Lemma 3.11 and
duality, if z ∈ Z is a general point, then Φ⊥ ∩ T ⊥

Z,z = ∅. Let ξ ∈ Pr∗ be an inverse image of z

by φX∗ . Then 〈ξ,Φ⊥〉 ∩ 〈ξ, T ⊥
Z,z〉 = {ξ}. Assuming, as we may, that Ψ ⊥ is a general subspace of

dimension r through 〈ξ,Φ〉, then Ψ ⊥ ∩ 〈ξ, T ⊥
Z,z〉 = {ξ} and moreover Ψ ⊥ intersects the fiber of

φX∗ over z only at ξ (see Propositions 2.5 and Theorem 3.12).
By (3.1) and Theorem 3.12, the degree of the polar map φ

Y∗ is the same as the degree of
the restriction of the projection σΨ to Z. To compute this latter degree, note that Ψ intersects Z

exactly in d −2r +4 distinct points, namely the intersections of Ψ with each one of the d −2r +4
planes spanned by Λ and by one of the d − 2r + 4 rulings spanning Ψ together with Λ. We
claim that the intersection of Ψ with Z at these points is transversal. Indeed, by projecting from
Λ to Pd−r+2, we see that X maps to a rational normal curve C, the lines F1, . . . ,Fd−2r+4 map to
points p1, . . . , pd−2r+4 on C and Ψ maps to Π = 〈p1, . . . , pd−2r+4〉. By part (i) of Lemma 3.11,
Π intersects the projection of Z transversally at p1, . . . , ,pd−2r+4. The claim follows.

Thus the restriction of the projection σΨ to Z coincides with the projection of Z from
d − 2r + 4 independent points on it. Since, as seen, deg(Z) = d − 2r + 5, the restriction of
the projection σΨ to Z is a birational map of Z to Pr , thus completing proof. �
Remark 3.14. As in Section 1.2.2 and in the description before Proposition 1.9, one can take the
dual viewpoint to describe the homaloidal hypersurfaces we constructed above.

More precisely, to obtain the dual of Y(a, b), one can proceeds as follows. Consider the scroll
X1 = S(1a, b) ⊂ Pb+2a of degree d = a+b and dimension a+1, with S(1a, b) 	 P(OP1(1)⊕a ⊕
OP1(b)) embedded via the O(1) bundle. Consider also the rational normal scroll X2 = S(1a) ⊂
P2a−1 of degree a and dimension a. Clearly X2 ⊂ X1. Take b − a general rulings F1, . . . ,Fb−a

of X1. The span Σ = 〈X2,F1, . . . ,Fb−a〉 has dimension 2a − 1 + b − a = a + b − 1. Take a
sufficiently general subspace Σ ′ of dimension b + a − 3 intersecting Σ in a general subspace of
dimension b − 2, and project form Σ ′ down to Pa+2. The image of X1 is a hypersurface V with
a subspace Π of dimension a, the image of Σ , of multiplicity b, since it is the image of X2 and
of F1, . . . ,Fb−a . The hypersurface V is the dual of Y(a, b).
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In this way we see that Y(a, b) is a section of S(1a, b)∗ made with a suitable linear space
of dimension a + 2. Since S(1a, b) is a suitable linear section of S(1a+b) = Seg(1, a + b − 1),
which is self-dual, we see that S(1a, b)∗ is a suitable projection in Pb+2a of Seg(1, a + b − 1).

Remark 3.15. In the construction of Y(a, b), it is not necessary that the rulings F1, . . . ,Fb−a be
distinct. Indeed, one can consider an effective divisor D = m1F1 + · · · + mhFh of degree b − a

formed by lines of the ruling of X(a,b). Then in the above construction one replaces the subspace
Φ with the span of Λ and of the osculating spaces of order mi at the points pi ∈ C projections
of the lines Fi , i = 1, . . . , h. We will denote the resulting surface by Y(a, b;m1, . . . ,mh).

The corresponding hypersurfaces in Theorem 3.13 are still homaloidal, since the proof of the
theorem works even in this special situation: indeed the intersection of Ψ with Z(r −2, d −r +2)

is no longer formed by d − 2r + 4 distinct points, but by a 0-dimensional scheme of length d −
2r + 4, formed by h points x1, . . . , xh, with length m1, . . . ,mh respectively, hence the projection
of Z(r − 2, d − r + 2) to Pr from Ψ is still birational.

As we will see in the next section however, this specialization influences the degree of the
inverse of the resulting polar map.

Remark 3.16. The scroll S(a, b), with 0 < a < b, has a group of dimension b − a + 5 of projec-
tive transformations which fixes it and all scrolls S(a, b) are projectively equivalent, i.e. S(a, b)

has no projective moduli.
The scroll X(a,b) has a group of dimension max{0, b− 3a + 7} of projective transformations

which fixes it, and the scrolls X(a,b) have no projective moduli if and only if b − 3a + 7 � 0.
Assume b − a � 3. Then the subgroup fixing F1, . . . ,Fb−a has dimension max{0,7 − 2a}. In

conclusion Y(a, b) has a group of dimension max{0,7−2b} of projective transformations which
fixes it, and there are no projective moduli if and only if 2b � 7, i.e. b � 3.

If b −a � 4 the subgroup fixing F1, . . . ,Fb−a has dimension max{0, b− 3a + 4}, and Y(1, b)

has no continuous group of projective transformations because b − 3a + 4 − 2(b − a) = 4 − a −
b < 0. In this case Y(a, b) has projective moduli.

This implies that, except for Y(1,2)∗, the homaloidal hypersurfaces we constructed here can-
not be related to pre-homogeneous vector spaces. The same holds for Y(1,2)∗, as we will see
later (see Theorem 4.4(iii) and (iv), and Example 4.7).

We finish this section by producing families of homaloidal hypersurfaces in Pr , which are
different from the above ones as soon as r � 4. They do not seem to be related in general to
hypersurfaces with vanishing Hessian. For r = 3 instead one essentially recovers the above ex-
amples.

Let X ⊂ Pr be a non-degenerate scroll surface of degree d with a line directrix L of multiplic-
ity e = r − 2, with μ = e = r − 2, i.e. such that there are r − 2 variable rulings Fx,1, . . . ,Fx,r−2
of X passing through the general point x ∈ L. According to Proposition 2.18, if ν � r − 2, i.e.
if Fx,1, . . . ,Fx,r−2 and L do not span a hyperplane, then X∗ has vanishing Hessian. We will
assume instead that ν = r − 1 and that the hyperplane 〈L,Fx,1, . . . ,Fx,r−2〉 homographically
varies in a pencil when x moves on L.

Example 3.17 (Scrolls in Pr with line directrix, having e = μ = r − 2 and ν = r − 1). Take a
curve C of degree n � 2r − 5 in a (r − 2)-dimensional subspace Π of Pr , having a (n − r + 2)-
secant (r − 4)-dimensional subspace Π ′. Assume also that the general hyperplane in Π through
Π ′ cuts C, off Π , in r − 2 independent points. Curves of this sort are not difficult to construct.
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The first instance, is for r = 4 in which case C is a plane curve of degree n � 3 with a point O

of multiplicity n − 2. Note that, for r � 4 these curves need not to be rational.
Take a line L in Pr skew with Π and set up an isomorphism between L and the pencil of

hyperplanes through Π ′ in Π . Fix a general point x ∈ L, let Πx be the corresponding hyperplane
in Π through Π ′ and let x1, . . . , xr−2 be the intersection points of Πx with C off Π . Then let
Fx,i be the line joining x with xi , i = 1, . . . , r − 2. As x varies on L, the lines Fx,1, . . . ,Fx,r−2

describe a scroll X of the aforementioned type: the hyperplane 〈L,Fx,1, . . . ,Fx,r−2〉 = 〈L,Πx〉
varies in the pencil of hyperplanes through 〈L,Π ′〉.

The degree of such a scroll is d = n+r −2, as one sees by cutting it with a general hyperplane
through L.

Theorem 3.18. Let X ⊂ Pr , be a non-degenerate scroll surface of degree d with a line directrix L

of multiplicity e = r − 2 and with μ = e = r − 2. Let Fx,1, . . . ,Fx,r−2 be the variables rulings of
X passing through the general point x ∈ L. Suppose that 〈L,Fx,1, . . . ,Fx,r−2〉 is a hyperplane
in Pr varying homographically in a pencil when x moves on L. Then X∗ ⊂ Pr∗ is a homaloidal
hypersurface.

Proof. The space Σ = L⊥ has multiplicity d − r +2 for V = X∗ and the general hyperplane ξ =
x⊥, x ∈ L, through Σ , cuts out on V a hypersurface Vξ formed by Σ with multiplicity d − r + 2
and r − 2 more (r − 2)-dimensional subspaces Σi := F⊥

x,i , i = 1, . . . , r − 2, such that Σ ∩ Σ1 ∩
· · · ∩ Σr−2 = {p}, where p = 〈L,Fx,1, . . . ,Fx,r−2〉⊥. Hence, as ξ varies, p homographically
describes a line Λ in Σ .

Consider the subspaces Ti,j = Σi ∩ Σj , 1 � i < j � r − 2, which have multiplicity 2 for Vξ ,
whereas p has multiplicity d for Vξ . Note that all Ti,j , with 1 � i < j � r − 2, belong to the
singular locus of V since they are intersections of two rulings of the scroll V . Furthermore, they
all contain p.

Let now z be a general point in ξ , hence a general point in Pr∗. The polar hyperplane πz of
z with respect to X∗ contains p. However it cannot contain the line Λ, otherwise all the polar
hyperplanes would contain Λ and, by the reciprocity theorem, the first polars of X∗ with respect
to the points of Λ would vanish identically, i.e. the points of Λ would all have multiplicity d

for X∗, which would be a cone, a contradiction, because X is non-degenerate.
This proves that if πz = πz′ then z′ lies in ξ = 〈z,Σ〉. To finish our proof, we have to prove

that all first polars through z intersect ξ only at z, off the singular locus of V . To see this, first
consider the polars with respect to points y ∈ ξ , and containing z. By Remarks 2.8 and 3.2, the
closure of their intersection off the singular locus of V is the line � = 〈z,p〉. There is finally one
more independent polar through z which we have to take into account. It passes however with
multiplicity d − r + 1 through Σ , hence it cuts ξ along Σ counted with multiplicity d − r + 1,
plus another hypersurface V ′ of degree r − 2, which, as we saw, contains all the subspaces Ti,j ,
1 � i < j � r − 2. By applying Lemma 3.9, we see that V ′ has multiplicity r − 3 at p. Hence V ′
intersects � only in z and p, thus proving that z is the only point having the polar hyperplane πz,
i.e. the assertion. �
Remark 3.19. Note that the homaloidal hypersurfaces in Proposition 3.18 are reminiscent, in its
structure, to the homaloidal hypersurface F4 = V (f (4)) in Theorem 4.4 below.
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3.2. Examples in P3 revisited

In this section we want to revisit the examples of homaloidal surfaces Y(1, d − 1)∗ in P3 of
degree d � 3 constructed in Theorem 3.13. We want to analyze the singularities of these surfaces
and understand the degree of the inverse of the polar map.

First of all, the scrolls Y(1, d − 1) are self-dual, i.e. Y(1, d − 1)∗ is projectively equivalent to
Y(1, d − 1) (see Proposition 1.7). The surface Y(1, d − 1) has a line L of multiplicity d − 1 and
no other singularity. One obtains the desingularization S(1, d −1) of Y(1, d −1) by simply blow-
ing up L. The pull-back of L on S(1, d − 1) consists of the line directrix E plus F1, . . . ,Fd−2
rulings. This means that L is the intersection of d − 1 distinct, generically smooth, branches,
X,X1, . . . ,Xd−2 respectively corresponding to E,F1, . . . ,Fd−2. The branches F1, . . . ,Fd−2 in-
tersect transversally at a general point of L, whereas the branch X glues with the branch Xi at
the point Oi , which is the image of the intersection point O ′

i of E with Fi , i = 1, . . . , d − 2.
We want to resolve the singularities of the polar maps. We will see that, in order to do so, it is

not sufficient to blow up L, but one has to perform further blowups.
In order to illustrate this, we analyze in detail the case d = 3. The other cases can be treated

similarly, and we will briefly discuss them later.
Consider the surface F with equation:

f = x3
2 − 2x1x2x3 + x0x

2
3 = 0.

It will be shown later that F = Y(1,2) (see Example 4.7). The partial derivatives of f are:

f0 = x2
3 , f1 = x2x3, f2 = 3x2

2 − 2x1x3, f3 = −2x1x2 + 2x0x3.

The double line L has equation x2 = x3 = 0. Now we pass to affine coordinates x = x1
x0

, y =
x2
x0

, z = x3
x0

, so that the equation of the surface becomes:

z2 + y3 − 2xyz = 0,

whereas the first polars V (fi), i = 0, . . . ,3, become:

z2 = 0, yz = 0, 3y2 − 2xz = 0, z − xy = 0 (3.2)

and L is the line y = z = 0. Blow up this line. To do this, introduce coordinates (x, y, ξ), the
blowup map being:

(x, y, ξ) → (x, y, yξ).

The exceptional divisor M of the blowup has equation y = 0. The strict transform F ′ of the
surface F = Y(1,2) has equation:

ξ2 + y − 2xξ = 0

which is smooth. A similar analysis at the infinity, shows that the singularities of Y(1,2) can be
resolved with one single blowup along the double line L. The proper transform of L has now the
equation:

y = 0, ξ(ξ − 2x) = 0,
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which is the union of two smooth rational curves on M , meeting at the point O ′ = (0,0,0) which
maps to the origin O in A3, which is where the two branches of Y(1,2) through L glue. Consider
now the proper transform of the first polars

yξ2, yξ, 3y − 2xξ, ξ − x. (3.3)

We see that all these pass through O ′. Thus, in order to resolve the singularities of the polar map,
one still has to blow up O ′—though, we emphasize, this is no longer a singular point of F ′.

This tells us that the scheme S = Sing(Y (1,2)) is not reduced: it consists of the line L with
an embedded point at O . There is no need to blow up in order to understand the structure of
this embedded point—it suffices to analyze the affine equations (3.2) of the first polars. The
scheme in question is a subscheme of the surface of equation z = xy, whose coordinate ring is
k[x, y, z]/(z − xy) 	 k[x, y]. Hence we interpret the scheme S as the subscheme of A2 defined
by the equations:

x2y2 = 0, xy2 = 0, 3y2 − 2x2y = 0.

The line L, which has now equation y = 0 splits off, leaving a zero-dimensional scheme S ′
supported at the origin O , which is responsible for the embedded point of S. The equations of S′
are:

x2y = 0, xy = 0, 3y − 2x2 = 0.

This is now a subscheme of the smooth curve C of equation 3y − 2x2 = 0, which is simply
tangent to L at O . The coordinate ring of C is k[x, y]/(3y − 2x2) 	 k[x] and the scheme S′ has
now the equations x3 = 0. Summing up, the embedded point at the origin is due to the fact that
all the polars have multiplicity of intersection 4 with the curve C at O . We thus see that we will
have to blow up along L and then three more times at subsequent infinitely near points to resolve
the singularities of the polar map.

Remark 3.20. Note that, after the first blowup, the polar system is given by the system (3.3). The
base point scheme is now zero-dimensional supported at O ′. Indeed it is a curvilinear scheme
T of length 3 along the proper transform C′ of the curve C, defined by the equations x = ξ ,
3y = 2x2. Note however that F ′ has only intersection multiplicity 2 with C′ at O ′. This means
that F ′ does not contain T . In other words, the fourth (and last) point, infinitely near to O , to
be blown up in order to resolve the singularities of the polar map, does not even belong to the
original surface F .

The above analysis gives another reason why Y(1,2) is a homaloidal surface. Indeed the polar
system is formed by quadrics through L. The general such quadric is smooth, as we see from
the equations of the polars or from (3.2). The residual intersections of two general polars off
L are rational normal cubics, i.e., curves of type (1,2) on the general such quadric. The self-
intersection of these curves is therefore 4. However, the curves in question have to contain the
0-dimensional scheme of length 3 supported at O , which is responsible for the embedded point
of Sing(Y (1,2)) on L. This drops the self-intersection of the system of cubic curves to 1 and
explains why the polar map is birational.
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We emphasize that the polar map is a quadratic transformation of P3 which is a degenerate
case of the well-known quadratic transformation defined by all quadrics passing through a given
line L and three distinct general points p1,p2,p3 (see [7,30]).

Remark 3.21. It is worth comparing the behavior of the polar map of Y(1,2) with the one of the
general projection Y of S(1,2) to P3. We may think of Y as the surface defined by the equation
x1(x

2
2 + x2

3) − 2x0x2x3 = 0, whose double line L has the equations x2 = x3 = 0. The resolution
of the singularities of Y is obtained by blowing up along L. In this way one recovers S(1,2),
and the proper transform of L is a conic C, which projects 2 : 1 to L, with two branch points,
located at the points O1,O2 with affine coordinates (0,0,0) and (1,0,0). The scheme Sing(Y )

consists of L with two embedded points of length 2 at O1 and O2. This yields degree 2 for the
polar map. The surface Y(1,2) can be thought of as obtained from Y when O1 and O2 collapse
together. Indeed the conic C then splits as the union of the line directrix E of S(1,2) and a ruling.
This also clarifies why Y(1,2) coincides with the surface F , which is a member of a series of
homaloidal hypersurfaces under the general name of sub-Hankel hypersurfaces, to be dealt with
in the next section—in the notation of that subsection, one has F = V (f (3)) (see Example 4.7).

The analysis of the general case Y(1, d − 1) is similar. The general point p of L has mul-
tiplicity d − 1 and it is the intersection of d − 1 smooth branches of Y(1, d − 1) containing
L and pairwise intersecting transversally along L around p. There are however d − 2 points
O1, . . . ,Od−2 on L around which Y(1, d − 1) looks like the union of d − 3 branches which
intersect transversally along L around Oi , plus another branch which is analytically equivalent
to Y(1,2) at O and which is generically located with respect to the previous d − 3 branches.
The singularities of Y(1, d − 1) can be resolved by blowing up along L: in this way one obtains
S(1, d − 1) and the blowingup map is nothing but the projection S(1, d − 1) → Y(1, d − 1).

The general polar has a point of multiplicity d − 2 at a general point of L. It is again resolved
when we blow up L. However, for the same reason as in the case of Y(1,2), after blowing up,
there are d − 2 curvilinear schemes of length 3 supported at each of the points O ′

1, . . . ,O
′
d−2,

which belong to the base locus of the proper transform of the polar system. Another way of
saying this is that there are d − 2 embedded points O1, . . . ,Od−2 in the scheme structure of
Sing(Y (1, d − 1)) along L supported at O1, . . . ,Od−2.

Again this explains the reason why the polar map is birational. Let Φ be the proper transform
of the general first polar after having blown up L. This is a rational scroll. Let us denote by R the
general ruling and by D the proper transform of L, which is a section. If H is the pull-back of a
general plane section, we have H ≡ D + R. Since H 2 = d − 1, we find D2 = d − 3. If Γ is the
trace on Φ of the proper transform L of the polar system, we have Γ ≡ (d − 1)H − (d − 2)D ≡
(d − 1)R + D, thus Γ 2 = 3d − 5. Notice however that the trace of L on Φ has d − 2 base point
schemes each of length 3. After having further blown up these base point schemes, this reduces
the self-intersection of L to 1.

The analysis is more complicated for the surfaces Y(a, b;m1, . . . ,mh), m1 +· · ·+mh = d −2,
described in Remark 3.15. We will merely outline the results that can be checked by a care-
ful treatment. The singularity can still be resolved with a simple blowup along L thus getting
S(1, d − 1). The proper transform of L is now E + m1F1 + · · · + mhFh. This means that L

is the intersection of h + 1 branches, a smooth one X, corresponding to the line directrix E

of S(1, d − 1), the other branches X1, . . . ,Xh are instead cuspidal of orders m1, . . . ,mh corre-
sponding to the rulings F1, . . . ,Fh respectively.
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As for the degree of the inverse map, one has the following. First, the degree of the inverse
map of the polar map φ of Y(1, d − 1) coincides with the degree of the image of a general plane
π via φ. The linear system cut out on π by the system of the first polars, is a 3-dimensional linear
system of curves of degree d − 1 with only one ordinary base point x of multiplicity d − 2, i.e.
x is the intersection of L with π . Thus the image of π has degree (d − 1)2 − (d − 2)2 = 2d − 3.
Note that, for d = 3, one retrieves the expected degree of the inverse to the polar map of the
specialized Hankel determinant (see Remark 4.6(c))

Consider now the surface Y(a, b;m1, . . . ,mh) with m1 + · · · + mh = d − 2. The general
first polar has again a point of multiplicity d − 2 at a general point x ∈ L. Moreover, a local
computation shows that it has tangency of order mi − 1 along the plane πi tangent to the branch
Xi , i = 1, . . . , h. Arguing as above, we see that this decreases the degree of the inverse of φ by∑h

i=1(mi − 1) = d − 2 − h. In particular, if h = 1,m1 = d − 2, then we have the maximal drop
of the degree of the inverse, namely d − 3, i.e. the degree of the inverse of φ is d .

It would be interesting to have a similar analysis in Pr , for r > 3.

4. Some determinantal homaloidal polynomials

In this section we bring up a series of examples of homaloidal polynomials which can be
treated in an algebraic fashion. Some of the proofs, though elementary in spirit, are nevertheless
quite involved.

4.1. Degenerations of Hankel matrices

First we need a few algebraic concepts (see [37] for more contextual details).

Definition 4.1. Let R be a Noetherian ring and let I ⊂ R be an ideal.

(1) Let SR(I) � RR(I) denote the structural graded R-algebra homomorphism from the sym-
metric algebra of I to its Rees algebra, i.e. the R-algebra that defines the blowup along the
subscheme corresponding to the ideal I (see [12, Section 5.2]). We say that I is of linear
type if this map is injective.

(2) If R is a Noetherian local ring (or a standard graded ring over a field) the ideal I is said to
be perfect if it has finite homological (i.e., projective) dimension over R and this attains its
minimal possible value, namely, the codimension of I (see [12, p. 485]). It is known that if
R is moreover a Cohen–Macaulay ring (e.g., regular) then an ideal I is perfect if and only if
R/I is Cohen–Macaulay.

(3) An ideal I ⊂ R of linear type satisfies the Artin–Nagata condition G∞ (see [2]) which states
that the minimal number of generators of I locally at any prime p ∈ Spec(R) is at most the
codimension of p. This condition is equivalent to a condition in terms of a free presentation

Rm ϕ−→ Rn −→ I −→ 0

of I , namely:

cod
(
It (ϕ)

)
� rank(ϕ) − t + 2, for 1 � t � rank(ϕ), (4.1)

where It (ϕ) denotes the determinantal ideal of the t × t minors of a representative matrix of
ϕ (see, e.g., [49, Section 1.3]).
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(4) Suppose that R is standard graded over a field k and I is generated by forms of a given
degree s. In this case, I is more precisely given by means of a free graded presentation

R
(−(s + 1)

)� ⊕
∑
j�2

R
(−(s + j)

) ϕ−→ R(−s)n → I → 0

for suitable �. We call the image of R(−(s + 1))� by ϕ the linear part of ϕ and say that
the corresponding submatrix ϕ1 has maximal rank if its rank is n − 1 (= rank(ϕ)). Clearly,
the latter condition is trivially satisfied if ϕ1 = ϕ, in which case I is said to have linear
presentation (or is linearly presented).

We remark that such an ideal, if it is of linear type, then it is generated by algebraically
independent elements over k. In particular, if R = k[x] = k[x0, . . . , xr ] and I happens to be of
linear type and generated by r + 1 forms of the same degree then these forms define a dominant
rational map Pr ��� Pr .

4.1.1. Arithmetic of sub-Hankel matrices
So much for generalities. We now introduce the main object of this part, which is a degenera-

tion of a generic Hankel matrix over a polynomial ring by specializing convenient entries to zero
(see [38] for further classes of specializations of square generic matrices whose determinants are
often homaloidal, treated within the general framework of the theory of ideals).

Let y1, . . . , yr+1 be variables over a field k and set

M(r) = M(r)(y1, . . . , yr+1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1 y2 y3 . . . yr−1 yr

y2 y3 y4 . . . yr yr+1
y3 y4 y5 . . . yr+1 0
. . . . . . . .

. . . . . . . .

. . . . . . . .

yr−1 yr yr+1 . . . 0 0
yr yr+1 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Note that the matrix has two tags: the upper index (r) indicates the size of the matrix, while the
variables enclosed in parentheses are the total set of variables used in the matrix. We call attention
to the notation as several of these matrices will be considered with variable tags throughout,
though we will often omit the list of variables if they are sufficiently clear from the context.

This matrix will be called a generic sub-Hankel matrix; more precisely, M(r) is the generic
sub-Hankel matrix of order r on the variables y1, . . . , yr+1. Its determinant, a form of degree r ,
will be the central object of this section. Throughout we fix a polynomial ring k[x0, . . . , xr ]
which will be the source of all lists of variables appearing in the various such matrices considered
heretofore. We will denote by f (r)(x0, . . . , xr ) the determinant of M(r)(x0, . . . , xr ) for any r � 1,
and we set f (0) = 1. We also set φ(j) = φ(j)(xr−j , . . . , xr ) := f (j)(xr−j , . . . , xr ).

We now head on to the main result concerning generic sub-Hankel matrices. First we need the
following algebraic structural lemmas about the partial derivatives of f (r).

Lemma 4.2. Let r � 2. Then:
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(i) One has

∂f (r)

∂xi

= (−1)rxr

∂φ(r−1)

∂xi+1
, 0 � i � r − 2. (4.2)

(ii) For 0 � i � r − 1, one has

∂f (r)

∂x0
, . . . ,

∂f (r)

∂xi

∈ k[xr−i , . . . , xr ] (4.3)

and the g.c.d. of these partial derivatives is xr−i−1
r .

(iii) For any i in the range 1 � i � r − 1, the following holds:

xr

∂f (r)

∂xi

= −
i−1∑
k=0

2i − k

i
xr−i+k

∂f (r)

∂xk

. (4.4)

Moreover,

xr

∂f (r)

∂xr

= (r − 1)x0
∂f (r)

∂x0
+ (r − 2)x1

∂f (r)

∂x1
+ · · · + xr−2

∂f (r)

∂xr−2
. (4.5)

Proof. (i) We induct on r . For r = 2, the relation is readily seen to hold. To proceed, intro-
duce the following sign function on integers: ξ(r) = 1 if r ≡ 1,2 (mod 4) and ξ(r) = −1 if
r ≡ 0,3 (mod 4). The following identity is easily established:

ξ(j)ξ(j − 1) = (−1)j . (4.6)

Equivalently one has

(−1)j+1ξ(j) = −ξ(j − 1). (4.7)

Assume that r � 3. Expanding f (r) by Laplace along the first row one finds

f (r) = −ξ(r)

r−1∑
j=0

ξ(j)xj x
r−j−1
r φ(j). (4.8)

By the same token, expanding φ(r−1) by Laplace along the first row one finds

φ(r−1) = −ξ(r − 1)

r−1∑
j=1

ξ(j − 1)xj x
r−j−1
r φ(j−1). (4.9)

Suppose now 0 � i � r − 1. Taking xi -derivatives of both sides of (4.8), for i in this range,
yields

∂f (r)

∂xi

= −ξ(r)

(
ξ(i)xr−i−1

r φ(i) +
r−1∑

ξ(j)xj x
r−j−1
r

∂φ(j)

∂xi

)
. (4.10)
j=1
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Similarly, taking xi+1-derivatives of both sides of (4.9) in the range 0 � i � r − 2, yields

∂φ(r−1)

∂xi+1
= −ξ(r − 1)

(
ξ(i)xr−i−2

r φ(i) +
r−1∑
j=1

ξ(j − 1)xj x
r−j−1
r

∂φ(j−1)

∂xi+1

)
. (4.11)

Thus, by the inductive hypothesis applied to f (i), with i < r , hence to φ(i), with i < r , and by
the identity (4.6), we find

xr

∂φ(r−1)

∂xi+1
= −ξ(r − 1)

(
ξ(i)xr−i−1

r φ(i) +
r−2∑
j=1

ξ(j)xj x
r−j−1
r

[
ξ(j)ξ(j − 1)xr

∂φ(j−1)

∂xi+1

])

= −ξ(r − 1)

(
ξ(i)xr−i−1

r φ(i) +
r−1∑
j=1

ξ(j)xj x
r−j−1
r

∂φ(j)

∂xi

)
.

Multiplying the last line above by ξ(r −1), using (4.7), and drawing upon (4.10) as multiplied
by ξ(r), one obtains

ξ(r)
∂f (r)

∂xi

= ξ(r − 1)xr

∂φ(r−1)

∂xi+1
. (4.12)

Since ξ(r) ξ(r − 1) = (−1)r for every r � 1 by (4.6), Eq. (4.12) yields (4.2).
(ii) We induct on r . Both assertions are readily verified for r = 2 since f (2) = x0x2 − x2

1 .
Thus, assume that r � 3. Note that if i < r − j , the form φ(j) does not involve the variable xi ,
hence all its derivatives with respect to xi vanish, for 0 � i � r − 2 and j < r − i. Thus, using
(4.10) we immediately see that (4.3) holds. As for the assertion about the g.c.d., this is easy in
the range 0 � j � r −2, since it follows form the expressions (4.10) and the inductive hypothesis
applied to f (i), hence to φ(i), with i < r .

As for i = r − 1, we still have the expression

∂f (r)

∂xr−1
= −ξ(r)

(
ξ(r − 1)φ(r−1) +

r−1∑
j=1

ξ(j)xj x
r−j−1
r

∂φ(j)

∂xr−1

)
, (4.13)

coming from (4.10). To prove the assertion about the g.c.d., replace φ(r−1) by its Euler expansion
in (4.13) and collect the two terms in xr−1 (∂φ(r−1)/∂xr−1). We get

∂f (r)

∂xr−1
= ξ(r)

(
r−2∑
j=1

ξ(j)xj x
r−j−1
r

∂φ(j)

∂xr−1

)

+ (−1)r+1 1

r − 1

(
r−2∑
j=1

xj

∂φ(r−1)

∂xj

+ (r − 1)xr−1
∂φ(r−1)

∂xr−1
+ xr

∂φ(r−1)

∂xr

)
. (4.14)

Now the g.c.d. of the derivatives up to order i = r − 2 was found to be xr−i−1
r = xr . If the

derivatives up to order i = r − 1 would have a nonunit g.c.d. then it had to be xr . Thus, assume
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as if it were that xr divides the left-hand side in (4.14). Since xr divides the first summand in the
right-hand side of (4.14) and, by the inductive hypothesis applied to f (r−1), xr divides the sum-
mands xj (∂φ(r−1)/∂xj ), for 1 � j � r − 2, then xr would divide the derivative ∂φ(r−1)/∂xr−1,
which would contradict the inductive hypothesis as applied to f (r−1).

(iii) We begin with (4.5). The formula is readily verified for r = 2 so we induct on r � 3.
Taking xr -derivatives in (4.8), multiplying by xr we get

xr

∂f (r)

∂xr

− ξ(r)

(
r−2∑
j=0

(r − j − 1)ξ(j)xj x
r−j−1
r φ(j) +

r−1∑
j=0

ξ(j)xj x
r−j−1
r

(
xr

∂φ(j)

∂xr

))

= −ξ(r)

(
r−2∑
i=0

(r − i − 1)ξ(i)xix
r−i−1
r φ(i) +

r−1∑
j=0

ξ(j)xj x
r−j−1
r

(
r−2∑
i=0

(r − i − 1)xi

∂φ(j)

∂xi

))

= −ξ(r)

r−2∑
i=0

(r − i − 1)xi

(
ξ(i)xr−i−1

r φ(i) +
r−1∑
j=0

ξ(j)xj x
r−j−1
r

∂φ(j)

∂xi

)

=
r−2∑
i=0

(r − i − 1)xi

∂f (r)

∂xi

where in the second line we applied the inductive hypothesis to f (�), for every l = 1, . . . , r − 1,
to wit

xr

∂φ(l)

∂xr

=
r−2∑

j=r−l

(r − j − 1)xj

∂φ(l)

∂xj

=
r−2∑
j=0

(r − j − 1)xj

∂φ(l)

∂xj

(4.15)

and in the fourth line we used the expression obtained from multiplying (4.10) both sides by xi ,
for i = 0, . . . , r − 1.

We now prove formula (4.4). In the range 0 � i � r − 2 the formula follows from (4.2).
Indeed, the formula is easily obtained for r = 2. Inducting on r in this range, we assume that

xr

∂φ(r−1)

∂xi+1
= −

i∑
j=1

2i + 1 − j

i
xr−i−1+j

∂φ(r−1)

∂xj

(4.16)

holds. Therefore

xr

∂f (r)

∂xi

= (−1)rxr

(
xr

∂φ(r−1)

∂xi+1

)

= −
(

i∑
j=1

2i + 1 − j

i
xr−i−1+j

[
(−1)rxr

∂φ(r−1)

∂xj

])

= −
(

i∑ 2i + 1 − j

i
xr−i−1+j

∂f (r)

∂xj−1

)

j=1
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= −
(

i−1∑
j=0

2i − j

i
xr−i+j

∂f (r)

∂xj

)
,

as was to be shown.
It remains to get the case where i = r −1. For this first note that a repeated use of (4.2) yields,

for every j = 1, . . . , r − 1, the relation

ξ(r)
∂f (r)

∂xj−1
= ξ(j)x

r−j
r

∂φ(j)

∂xr−1
. (4.17)

Applying (4.5) to φ(r−1) and using Euler’s formula yields

(−1)rxr

[
(r − 1)φ(r−1)

] =
r−1∑
k=1

xk

[
(−1)rxr

∂φ(r−1)

∂xk

]
+ (

(−1)rxr

)[
xr

∂φ(r−1)

∂xr

]

=
r−1∑
k=1

xk

∂f (r)

∂xk−1
+

r−1∑
k=1

(r − 1 − k)xk

[
(−1)rxr

∂φ(r−1)

∂xk

]

=
r−1∑
k=1

(r − k)xk

∂f (r)

∂xk−1
. (4.18)

Combining (4.13) with (4.17) and (4.18), we get

(r − 1)xr

∂f (r)

∂xr−1
= −ξ(r)

(
ξ(r − 1)xr

[
(r − 1)φ(r−1)

] + (r − 1)

r−1∑
j=1

xj

[
ξ(j)x

r−j
r

∂φ(j)

∂xr−1

])

= −
(

(−1)rxr

[
(r − 1)φ(r−1)

] + (r − 1)

r−1∑
k=1

xk

∂f (r)

∂xk−1

)

= −
r−1∑
k=1

(2r − 1 − k)xk

∂f (r)

∂xk−1
,

proving (4.4) also in this case.
This completes the proof of the lemma. �

Proposition 4.3. Let r � 2. Set f = f (r). Then upon factoring out the g.c.d. of
∂f/∂x0, . . . , ∂f/∂xi , the resulting polynomials generate a codimension two perfect ideal Ji ⊂
k[xr−i , . . . , xr ] of linear type with linear presentation.

Proof. The assertion is readily checked for r = 2 since f (2) = x0x2 − x2
1 . Thus, we assume

henceforth that r � 3.
Fix an i in the range 1 � i � r − 1. Let Ji denote the ideal of the ring R[i] = k[xr−i , . . . , xr ]

generated by the partial derivatives of f = f (r) with respect to x0, . . . , xi divided by xr−i−1
r .
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We claim that the presentation matrix of Ji is an (i + 1) × i recurrent matrix having the form

Φ[i] =

⎛⎜⎜⎜⎜⎜⎝
2xr−i

2i−1
i

xr−i+1
... Φ[i−1]

i+1
i

xr−1
xr 0

⎞⎟⎟⎟⎟⎟⎠ , 0 = (0, . . . ,0)︸ ︷︷ ︸
i−1

, (4.19)

where the first column comes from (4.4). By induction on i, one has that the last i − 1 columns
of Φ[i] are relations of Ji , hence the full matrix Φ[i] is a matrix of relations of Ji and, moreover,
its linear part has maximal rank (= i).

On the other hand, by a well-known acyclicity criterion (see, e.g., [4]), in this case it suffices
to check that the columns of Φ[i] are relations of the generators of Ji and the determinantal ideal
Ii(Φ

[i]) has codimension at least 2. Thus, we are left with finding two i-minors of Φ[i] without
non-trivial common factor. Let δ1 (respectively, δ2) denote the minor obtained by deleting the
first (respectively, the last) row of Φ[i]. By induction on i, δ1 = ±xi

r and δ2 admits a summand
of the form ±(i + 1)xi

r−1 that results from multiplying the entries along the anti-diagonal of the
first i rows—indeed, by (4.4), taking k = i − 1, the coefficient of the (i, i − 1) entry is (i + 1)/i,
hence the product is (i + 1/i)(i/i − 1) · · · (3/2)(2/1) = i + 1. It follows that δ1 is not divisible
by xr . Therefore, Ii(Φ

[i]) has codimension at least 2, as required.
What we have proved so far is that Ji has a Hilbert–Burch resolution, and since it has codi-

mension at least 2 then it is a codimension two perfect ideal. So, it remains to prove the last
contention of this item, namely, that Ji is an ideal of linear type. By [49, Corollary 1.4.2 and
Theorem 3.1.6] this will be the case if the inequalities in (4.1) are fulfilled.

Since cod(Ii(Φ
[i])) � 2 = i − i + 2 = rank(Φ[i]) − i + 2, we only have to check that

cod
(
It

(
Φ[i])) � i − t + 2, for 1 � t � i − 1. (4.20)

We proceed by induction on i, so cod(It (Φ
[i−1])) � i − 1 − t + 2 = i − t + 1 holds true in the

range 1 � t � i − 2. Therefore, one needs, for every t in the range 1 � t � i − 1, an additional
t -minor of Φ[i] which is a nonzero-divisor on the ideal It (Φ

[i−1]). Since Φ[i−1] has entries in
the polynomial ring R[i−1] = k[xr−i+1, . . . , xr ], it suffices to show that there exists such a minor
effectively involving the extra variable xr−i . Supposing this were not the case, the full matrix of
relations Φ[i] would have entries entirely contained in the ring R[i−1] and, since the generators
of Ji are the maximal minors of Φ[i], they would all belong to R[i−1], which is not the case.

This finishes the proof of the last statement. �
4.1.2. Sub-Hankel polynomials are homaloidal

From the previous lemma ensues the following geometric result.

Theorem 4.4. Let r � 2. Set f = f (r) and J = (∂f/∂x0, . . . , ∂f/∂xr). Then:

(i) For every value of i in the range 1 � i � r − 1, the partial derivatives ∂f/∂x0, . . . , ∂f/∂xi

divided by their common g.c.d. define a Cremona transformation of Pi ; in addition, the
base ideal of the inverse map is also a codimension two perfect ideal of linear type and both
ideals are generated in degree i.
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(ii) The linear part of the graded presentation matrix of J has maximal rank.
(iii) The Hessian of f has the form h(f ) = c x

(r+1)(r−2)
r , c ∈ k, c �= 0.

(iv) f is homaloidal.

Proof. (i) This follows from Proposition 4.3 and [37, Example 2.4] (see also Proposi-
tion 4.5(iii)).

(ii) Again from Proposition 4.3 we know that Jr−1 is linearly presented, generated by
∂f/∂x0, . . . , ∂f/∂xr−1 (since for the value i = r − 1, the g.c.d. is 1), hence it yields a chunk
of rank r − 1 of the linear part of the graded presentation matrix of J .

In addition, by (4.4) there is a linear relation with last coordinate xr—hence, nonzero. Clearly
then the rank of the full presentation matrix of J has rank at least r . Since this is the maximal
possible value of the rank, the linear part of the matrix has maximal rank.

(iii) By (4.3) one had ∂f/∂xi ∈ k[xr−i , . . . , xr ], hence ∂2f/∂xi∂xj = 0 for every j < r − i,
or equivalently, ∂2f/∂xi∂xj = 0 for all pairs i, j such that i + j � r − 1. This means that the
Hessian matrix is anti-lower triangular (i.e., all zeros below the anti-diagonal). Therefore the
determinant is the product of the entries along its anti-diagonal, namely, ∂2f/∂xi∂xr−i , for i =
0, . . . , r .

We now see that

∂2f

∂xi∂xr−i

= cix
r−2
r ,

for suitable nonzero constants ci ∈ k. To calculate these derivatives, we induct on r . One may
assume at the outset that 0 � i � r − 1 as otherwise one changes the roles of i and r − i not
affecting the result except for the value of the nonzero coefficient. Applying (4.2) in this range
we obtain

∂2f

∂xi∂xr−i

= ±xr

∂2φ(r−1)(x1, . . . , xr )

∂xi+1∂xr−i

. (4.21)

By the inductive hypothesis applied to f (r−1), we deduce that

∂2φ(r−1)(x1, . . . , xr )

∂xi+1∂xr−i

= cix
r−3
r .

Substituting in (4.21), we get the stated values.
It now follows that h(f ) = cx

(r+1)(r−2)
r , c = Πci �= 0.

(iv) We will show that the polar map φf is a Cremona map by drawing upon results from [47]
and [38]. Since the latter is not yet published, we choose to state the method ab initio, in the form
of a self-contained proposition adapted to our present purpose.

Proposition 4.5. Let φ = (F0 : · · · : Fr) : Pr ��� Pr be a rational map where F0, . . . ,Fr are
forms of the same degree generating an ideal I ⊂ k[x] of codimension � 2. Set k[x,y] for the
bihomogeneous coordinate ring of Pr × Pr and consider the bigraded incidence k-algebra

A= k[x,y]/I1(y · ϕ1),
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defined by the ideal of entries of the product matrix (y) · ϕ1, where ϕ denotes a graded presen-
tation matrix of I over k[x]. Finally, let R = Rk[x](I ) stand for the Rees algebra of the ideal
I ⊂ k[x]. Then:

(i) There is a surjective map of bigraded k-algebras ρ :A� R.
(ii) If the Jacobian determinant of F0, . . . ,Fr is nonzero and if ker(ρ) is a minimal prime of A

then φ is a Cremona map.
(iii) If the Jacobian determinant of F0, . . . ,Fr is nonzero and if ϕ1 has maximal rank r then φ

is a Cremona map.

Proof. (i) This is a general algebraic fact: there is a structural surjection S � R where S stands
for the symmetric algebra of I . Since S 	 k[x,y]/I1(y · ϕ), where ϕ is the full presentation
matrix of I , there is a natural surjection A� S .

(ii) Let V ⊂ Pr ×Pr stand for the subscheme whose bihomogeneous coordinate ring is A and
let Γ ⊂ Pr ×Pr stand for the irreducible subvariety whose bihomogeneous coordinate ring is R,
i.e. Γ is the closure of the graph of φ. Let V1, . . . , Vr denote the distinct irreducible components
of Vred where, say, V1 = Γ . Let π2 :V → Pr denote the second projection restricted to V and
let p2 :Γ → Pr stand for its restriction to Γ . Since p2(Γ ) = Pr , we have π−1

2 (p) �= ∅ for every
p ∈ Pr . By the nature of V , given any point p ∈ Pr , there is a non-negative integer s(p) such that
the scheme theoretic fiber π−1

2 (p) is of the form Ps(p) × {p}, linearly embedded in Pr × {p}.
Since Ps(p)×{p} is irreducible and reduced, for every p ∈ Pr one has π−1

2 (p) = Ps(p)×{p} ⊆ Vi

for some i = i(p). Moreover,

p−1
2 (p) = Γ ∩ π−1

2 (p) ⊆ V1 ∩ Vi(p),

as schemes. On the other hand, for every i � 2 we have dim(V1 ∩ Vi) < dim(V1) = r so that
dim(p2(V1 ∩ Vi)) < r for every i � 2. Let

W =
⋃
i�2

p2(V1 ∩ Vi) � Pr .

Then for every p ∈ Pr \ W we have

p−1
2 (p) = π−1

2 (p) = Ps(p) × {p},
as schemes. By the theorem on the dimension of the fibers of a morphism, there exists an open
subset U ⊆ Pr such that dim(p−1

2 (p)) = 0 for every p ∈ U . Thus for every p ∈ U ∩ (Pr \W) we
get s(p) = 0 and scheme theoretically p−1

2 (p) reduces to a point, yielding the birationality of p2
and hence of φ.

(iii) One shows that the maximal rank condition implies the condition on ker(ρ) in (ii).
Namely, note that the incidence algebra A is isomorphic, as a bigraded algebra, to the sym-
metric algebra S(E) of the k[x]-module E = coker(ϕ1). The assumption on the rank of ϕ1 then
says that I 	 E/(k[x]-torsion). By definition, R 	 Rk[x](E), where the latter is understood as
S(E)/(k[x]-torsion) (cf., e.g., [48]). Therefore ker(ρ) is actually the k[x]-torsion τ(S(E)) of
S(E). If we show that the torsion is a minimal prime of S(E), we will be done. Now, one has by
definition

τ
(
S(E)

) = ker
(
S(E) → S(E) ⊗k[x] k(x)

)
,
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hence τ(S(E)) is a prime ideal and moreover it is annihilated by some nonzero g ∈ k[x]. It fol-
lows that any graded prime ideal of S(E) whose degree zero part vanishes must contain τ(S(E)),
because it contains (0) = (g) ·τ(S(E)) and does not contain (g). Since τ(S(E)) itself is one such
prime—because k[x] is a domain—it cannot properly contain a minimal prime of S(E) (neces-
sarily graded) whose degree zero part is nonzero. Therefore, τ(S(E)) has to be a minimal prime
itself. �

To conclude the proof of part (3) of the theorem we apply Proposition 4.5(iii), and parts (2)
and (3) of the theorem. �
Remark 4.6. (a) The proof of part (ii) of the proposition is a more geometric formulation of the
argument in [47, Theorem 4.1] which imprecisely claims that every fiber of p2 is linear. This is
true if V is irreducible, but not otherwise in general: some special fibers of π2 may cut Γ along
non-linear varieties.

(b) We note that the recurrence ideals Ji (1 � i � r − 1) are (xr−1, xr )-primary ideals,
however the full Jacobian ideal J is not. Geometrically, it obtains that the singular locus of
the sub-Hankel hypersurface is a multiple structure over the codimension 2 linear subspace
xr−1 = xr = 0 off the codimension 3 subspace xr−2 = xr−1 = xr = 0. One can see that the
generators of Ji define a generalized de Jonquières transformation as introduced by Pan under
the designation of stellar Cremona maps (cf. [29]). This would give a different proof that Ji is
the base ideal of a Cremona map, yet the structure of Ji might not follow immediately from [29],
let alone that of J .

(c) A sub-Hankel determinant f (r) is irreducible. Indeed, we can readily see that

f (r) = −ξ(r)xr−1
r x0 + g(x1, . . . , xr ),

where g(x1, . . . , xr ) ⊂ k[x1, . . . , xr ] is monic in xr−1. Therefore, as a polynomial in the ring
(k[x1, . . . , xr ])[x0] it is primitive and of degree one in x0, hence is irreducible.

(d) There is enough evidence to conjecture that the ideal J is also of linear type. For one
thing, the computation for various values of r corroborates the conjecture. Knowing that J is
of linear type would shorten by quite a bit the proof of part (3) of the theorem and circumvent
the need for the full apparatus of Proposition 4.5 and, moreover, it would give immediately the
dominance of the polar map φf . Finally, it would also imply that the inverse map to the polar map
is defined by forms of degree r generating a codimension two perfect ideal—this has also been
computationally checked for various values of r . For a fuller coverage of the syzygy theoretic
properties of J see [38].

Example 4.7. It is interesting to consider, in particular, the first two cases r = 3,4. The sub-
Hankel surface V (f (3)) has degree 3 and it has the double line L defined by x3 = x2 = 0. Hence
it is a rational scroll which is a projection of S(1,2) ⊂ P4.

Consider the general plane πλ, with λ = (λ2, λ3) �= 0, through L, defined by the equation
λ2x3 = λ3x2. By introducing a parameter t and by taking x0, x1, t as homogeneous coordinates
in πλ, the equation of the intersection Rλ of πλ with V (f (3)) off L is:

det

(
x0 x1 λ2
x1 λ2t λ3

)
= 0.
λ2 λ3 0
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Hence Rλ is a line which varies linearly with λ. In particular, when λ3 = 0, Rλ coincides
with L. Thus we see that L is a line directrix of multiplicity e = 2, but μ = 1 (see Section 1.2.2).
This shows that V (f (3)) is the projection of S(1,2) from a point which lies in a plane spanned
by the (−1)-section E and by a ruling F , precisely the one corresponding to R(1,0)—see Re-
mark 3.21.

The threefold V (f (4)) has degree 4 and it has the double plane Π defined by x3 = x4 = 0.
As above, consider the general hyperplane πλ through Π , defined by λ4x3 = λ4x3. By intro-

ducing a parameter t and by taking x0, x1, x3, t as homogeneous coordinates in πλ, the equation
of the intersection Qλ of πλ with V (f (4)) off Π is:

det

⎛⎜⎝
x0 x1 x2 λ3
x1 x2 λ3t λ4
x2 λ3t λ4 0
λ3 λ4 0 0

⎞⎟⎠ = 0.

One sees that Qλ is a quadric cone with vertex Pλ = [2λ3,−λ4,0,0], thus Pλ sits on Π and
linearly moves on a line as λ varies.
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