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Abstract. Uniaxial strain is known to modify significantly the electronic properties of
graphene, a carbon single layer of atomic width. Here, we study the effect of applied strain on
the composite excitations arising from the coupling of charge carriers and plasmons in graphene,
i.e. the plasmarons. Specifically, we predict that the plasmaron energy dispersion, which has
been recently observed experimentally in unstrained graphene, is shifted and broadened by
applied uniaxial strain. Thus, strain constitutes an additional parameter which may be useful
to tune graphene properties in plasmaronic devices.

Graphene is a monoatomic carbon layer with honeycomb structure. After having been
considered for decades as the ideal constituent of most compounds of carbon in the sp2

hybridization state, it has been recently obtained in the laboratory [1], thus kindling intense
research activity both on the experimental and on the theoretical side. Graphene is especially
characterized by a quasiparticle band structure consisting of two bands, touching at the Fermi
level in a linear, cone-like fashion at the so-called Dirac points ±K, and a linearly vanishing
density of states (DOS) at the Fermi level [2, 3]. These peculiar electronic properties, along
with the reduced dimensionality, have remarkable effects on the electromagnetic properties
of graphene. These include, e.g., the reflectivity [4], the optical conductivity [5, 6, 7, 8, 9],
the plasmon dispersion relation [10, 11, 12, 13], as well as a newly predicted transverse
electromagnetic mode [14], which is characteristic of a 2D system with a double band structure,
such as graphene.

The composite elementary excitations arising from the coupling of charge carriers and
plasmons, the so-called plasmarons, have been considered in a general context earlier on by
Lundqvist [15, 16]. Recently, plasmarons have been experimentally observed in graphene by
means of angular resolved photoemission spectroscopy (ARPES) [17], and their dispersion
relation described theoretically within an improved version of the random phase approximation
(G0W -RPA) [18].

In n doped graphene, a plasmaron mode with momentum k results from the relatively strong
coupling of a quasihole with momentum k+q, and a plasmon with momentum−q, the quasihole-
plasmon coupling being stronger when the two excitations have the same group velocity [18].
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At k = 0, the plasmaron relative momentum modulus turns out to be

q =
e2

8πε

µ

(h̄vF)2
, (1)

where µ is the chemical potential, vF the Fermi velocity, ε = ε0εr the dielectric constant.
Therefore, the plasmaron binding energy with respect to the Fermi energy can be estimated, in
first approximation, as the sum of the energies of the bare quasihole and plasmon, both having
momentum modulus q, viz.

EP = −µ− α
c

vF

µ

2εr
, (2)

where α is the fine structure constant. In the realistic case of graphene on a SiO2 substrate,
Eq. (2) yields EP ' −1.25µ. A more accurate estimate, including the contribution of the
quasihole-plasmon interaction at the G0W -RPA level [18], yields EP ' −1.3µ, in better
agreement with the experimental results [17].

We now consider the effect of uniaxial strain on the graphene sheet. It has been shown that
this amounts to a shift of the Dirac points in reciprocal space, and to an anisotropic deformation
of the Dirac cone centred at those points [19], with elliptic sections at constant energy. Such
a strain-induced angular dependence may also be nonuniform, as in the case of coordinate-
dependent strain [20]. The effect of applied uniaxial strain on the plasmon dispersion relation
of graphene has been studied in Refs. [12, 13]. Besides, is has been shown [19] that strain
may significantly modify the dispersion relation of a transverse plasmon mode, which has been
recently predicted to occur in graphene [14]. Therefore, it can be expected, on general grounds,
that strain affects the energy dispersion of the plasmaronic modes.

Denoting by ε the modulus of applied strain, θ its direction (with θ = 0 and θ = π/6 referring
to strain along the zig zag and armchair directions, respectively), and ν the Poisson’s ratio of
graphene (ν = 0.14 [21], to be compared with the known experimental value ν = 0.165 for
graphite [22], and with ν = −1, corresponding to the hydrostatic limit), following Ref. [19], the
quasiparticle dispersion relation, to linear order in ε, reads

εq = ±h̄vFq[(1− κ(1− ν)ε)− κ(1 + ν)ε cos(2θ + 2ϕ)], (3)

where the + (−) sign refers to the conduction (valence) band, and while the plasmon dispersion
relation under strain becomes

h̄ωpl =

√
e2

2πε
µ [1− κ(1 + ν)ε cos(2θ − 2ϕ)]

√
q. (4)

Deriving the corresponding group velocities from the above Eqs. (3) and (4), Eqs. (1) and (2)
for the plasmaron momentum and energy, respectively, get modified into

q = [1 + 2κ(1− ν)ε]
e2

8πε

µ

(h̄vF)2
, (5a)

EP (ϕ) = −µ− α
c

vF

µ

2εr
[1 + κ(1− ν)ε− κ(1 + ν)ε cos(2θ − 2ϕ)], (5b)

to linear order in the strain modulus ε. Here, κ = (a/2t)|∂t/∂a| − 1
2 ≈ 1.1 is related to

the logarithmic derivative of the nearest-neighbor hopping t at ε = 0, a is the carbon–carbon
distance, and θ is the direction of the stress.

Eq. (5b) shows that, in the presence of applied uniaxial strain, the plasmaronic energy at
k = 0 acquires an explicit dependence on the angle ϕ of the quasihole momentum q. This is
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due to the anisotropy of both the electronic and the plasmon spectrum. Correspondingly, the
plasmaron energy is characterized by a central value

Ec
P = −µ− α

c

vF

µ

2εr
[1 + κ(1− ν)ε], (6)

and a strain-induced energy spread

∆EP = α
c

vF

µ

εr
κ(1 + ν)ε. (7)

Considering again the realistic case of graphene on a SiO2 substrate, one can estimate the
central plasmaron energy in the unstrained case as Ec

P (ε = 0) = −1.25µ = −125 meV, for
µ = 100meV , with zero energy spread. Correspondingly, in the case of an applied strain
ε = 10 %, one finds a central plasmaron energy of Ec

P (ε = 10 %) = −127.4 meV, with an
energy spread ∆EP (ε = 10 %) = 6.27 meV.

In conclusion, the effect of applied uniaxial strain on graphene is therefore that of shifting and
broadening the plasmaron energy, proportionally to the strain modulus. Therefore, by suitably
applying uniaxial strain, one gains further control on the energy of the plasmaronic excitation,
besides the possibility of tuning the relative dielectric constant εr [23]. This may be instrumental
for the realization of ‘plasmaronic’ devices.

References
[1] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc.

Nat. Acad. Sci. 102 10451
[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 000109
[3] Abergel D S L, Apalkov V, Berashevich J, Ziegler K and Chakraborty T 2010 Adv. Phys. 59 261
[4] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K

2008 Science 320 1308
[5] Kuzmenko A B, van Heumen E, Carbone F and van der Marel D 2008 Phys. Rev. Lett. 100 117401
[6] Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M and Shen Y R 2008 Science 320 206
[7] Mak K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A and Heinz T F 2008 Phys. Rev. Lett. 101 196405
[8] Stauber T, Peres N M R and Geim A K 2008 Phys. Rev. B 78 085432
[9] Pellegrino F M D, Angilella G G N and Pucci R 2010 Phys. Rev. B 81 035411

[10] Hwang E H and Das Sarma S 2007 Phys. Rev. B 75 205418
[11] Abedinpour S H, Vignale G, Principi A, Polini M, Tse W K and MacDonald A H 2011 Phys. Rev. B 84

045429
[12] Pellegrino F M D, Angilella G G N and Pucci R 2010 Phys. Rev. B 82 115434
[13] Pellegrino F M D, Angilella G G N and Pucci R 2011 High Press. Res. 31 98
[14] Mikhailov S A and Ziegler K 2007 Phys. Rev. Lett. 99 016803
[15] Lundqvist B I 1967 Phys. kondens. Materie 6 193
[16] Lundqvist B I 1967 Phys. kondens. Materie 6 206
[17] Bostwick A, Speck F, Seyller T, Horn K, Polini M, Asgari R, MacDonald A H and Rotenberg E 2010 Science

328 999
[18] Polini M, Asgari R, Borghi G, Barlas Y, Pereg-Barnea T and MacDonald A H 2008 Phys. Rev. B 77

081411(R)
[19] Pellegrino F M D, Angilella G G N and Pucci R 2011 Phys. Rev. B 84 195407
[20] Pellegrino F M D, Angilella G G N and Pucci R 2011 Phys. Rev. B 84 195404
[21] Farjam M and Rafii-Tabar H 2009 Phys. Rev. B 80 167401
[22] Blakslee O L, Proctor D G, Seldin E J, Spence G B and Weng T 1970 J. Appl. Phys. 41 3373
[23] Walter A L, Bostwick A, Jeon K J, Speck F, Ostler M, Seyller T, Moreschini L, Chang Y J, Polini M, Asgari

R, MacDonald A H, Horn K and Rotenberg E 2011 Phys. Rev. B 84 085410

23rd International Conference on High Pressure Science and Technology (AIRAPT-23) IOP Publishing
Journal of Physics: Conference Series 377 (2012) 012083 doi:10.1088/1742-6596/377/1/012083

3




