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Resonant modes in strain-induced graphene superlattices
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We study tunneling across a strain-induced superlattice in graphene. In studying the effect of applied strain
on the low-lying Dirac-like spectrum, both a shift of the Dirac points in reciprocal space, and a deformation of
the Dirac cones is explicitly considered. The latter corresponds to an anisotropic, possibly nonuniform, Fermi
velocity. Along with the modes with unit transmission usually found across a single barrier, we analytically find
additional resonant modes when considering a periodic structure of several strain-induced barriers. We also study
the bandlike spectrum of bound states, as a function of conserved energy and transverse momentum. Such a
strain-induced superlattice may thus effectively work as a mode filter for transport in graphene.
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Graphene is a single layer of carbon atoms in the sp2 hy-
bridization state, arranged according to a honeycomb lattice.1,2

Transport properties in graphene are largely determined by its
reduced dimensionality, which characterizes its remarkable
electronic properties.3,4 These include low-energy quasipar-
ticles with a Dirac-like spectrum and a linearly vanishing
density of states (DOS) at the Fermi level. Evidence of
such an unconventional behavior is to be found in several
electronic properties, such as Klein tunneling,5–9 the optical
conductivity,10–12 and the plasmon dispersion relation.13–16

These have been predicted to depend quite generally on applied
strain,17 following the earlier suggestion that suitably de-
formed graphene sheets could be engineered into nanodevices
with the desired electron properties.18 For instance, it has been
recently demonstrated that the electrical properties of epitaxial
graphene on SiC strongly depend on the local strain induced
in graphene by the substrate.19 One thus expects that a suitable
pattern of periodically repeating stripes, with alternating
values of strain, i.e., a strain-induced superlattice, may produce
coherent effects on single-particle transport, depending on
the energy and momentum of the incident electrons. Here,
we therefore study the possible occurrence of resonant states
within a strain-induced superlattice in graphene.

We consider quasiparticle transmission across N identical
barriers, each of width �, the interbarrier separation being also
�, such that 2N� = D (Fig. 1). Let x denote the coordinate or-
thogonal to the barriers, forming an angle θ with the graphene
zigzag direction. Thus, θ = 0 (respectively, θ = π/2) will
refer to a superlattice oriented along the zigzag (respectively,
armchair) direction. Such a superlattice is usually obtained
via a stepwise varying gate potential U (x) = U±, with
U (x) = U− within each barrier [2(m − 1)� � x � (2m − 1)�,
m = 1, . . . ,N ], and U (x) = U+ between two neighboring
barriers [(2m − 1)� � x � 2m�, m = 1, . . . ,N]. Here, we
will additionally consider a nonuniform profile of uniaxial
strain ε = ε(x) applied along the θ direction, with strain
modulus alternating between the values ε(x) = ε± inside and
outside a barrier, as above. Such a dependence approximates a
smooth periodic strain wave with period 2�, as a train of sharp
steps.

Within each barrier, strain is described by the tensor
ε = 1

2ε[(1 − ν) + (1 + ν)A(θ )], where ε = ε(x) is the strain
modulus, ν = 0.14 is Poisson’s ratio for graphene,20 and
A(θ ) = cos(2θ )σz + sin(2θ )σx , with σi (i = x,y,z) denoting
the Pauli matrices. Within a quite general tight-binding
approach,3 strain then enters the electronic properties through
the dependence of the hopping parameters on the lattice
vectors.21 Expanding such a tight-binding Hamiltonian to
linear order in the strain modulus, one finds that the low-lying
spectrum can still be described by a Dirac-like Hamiltonian,
but now (i) applied strain shifts the location of the Dirac points
in reciprocal space with respect to ±K at the vertices of the first
Brillouin zone, and (ii) it induces a deformation of the Dirac
cones, which can be accounted for in terms of an anisotropic
Fermi velocity vF. Specifically, one finds for the Hamiltonian
under applied strain

H = h̄vF U†(θ ) σ̃ · qU(θ ), (1)

where q = (q1,q2)� measures the wave-vector displacement
from the shifted Dirac points qDa = ±[κ0ε(1 + ν) cos(2θ ),
− κ0ε(1+ν) sin(2θ )]�, σ̃i = (1 − λiε)σi (i = 1,2) taking into
account the strain-induced deformation of the Fermi velocity,
with λx = 2κ , λy = −2κν, U(θ ) = diag (1,e−iθ ) is the unitary
matrix performing a rotation mapping the zigzag direction onto
the the direction x of applied strain, κ0 = (a/2t)|∂t/∂a| ≈ 1.6
is related to the logarithmic derivative of the nearest-neighbor
hopping parameter t with respect to the lattice parameter a at
zero strain, and κ = κ0 − 1

2 (cf. Ref. 22).
Since the strain superlattice is uniform along the coordinate

orthogonal to the direction of applied strain, say y, stationary
eigenmodes will be characterized by constant energy E and
transverse wave vector ky . The stationary Dirac equation
associated to Eq. (1), with appropriate matching conditions
for the quasiparticle spinor due to the continuity of its
associated current density at the barriers’ edges, can then be
equivalently recast using the transfer-matrix formalism.23,24

Following Ref. 17, for the transfer matrix across the first,
say, barrier in Fig. 1, one finds M(1)(2�,0) = eiq

(0)
Dx (ε++ε−)�M̃(1),

where q(0)
D = qD(ε = 1), and M̃(1) is a unimodular matrix,
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FIG. 1. Schematic plot of the superlattice of N identical barriers,
with � denoting both each barrier’s width and the interbarrier
separation, while D = 2N�. Subscript − refers to the region within a
barrier (labeled II), while subscript + refers to the interbarrier region
(labeled I and III).

det M̃(1) = 1. Specifically, one obtains

M̃(1)
11 = λ + iη, (2a)

λ = sinh(q−�)

q−

sinh(q+�)

q+
(κ−κ+ − u−u+)

+ cosh(q−�) cosh(q+�), (2b)

η = i

[
u+u− − κ+κ−

q+q−
sinh(q−�) cosh(q+�)

− sinh(q+�) cosh(q−�)

]
, (2c)

where λ is always real, whereas η can be real or purely
imaginary, depending on ky and E. More compactly, one also
finds

M̃(1)
11 = exp(q+�)

[
κ+κ− − u+u−

q+q−
sinh(q−�) + cosh(q−�)

]
.

(3)
In Eqs. (2) and (3), we have employed the definitions
κ± = (1 − λyε±)(ky − q

(0)
Dyε±)/(1 − λxε±), u± = (E − U±)/

[h̄vF (1 − λxε±)], and q± =
√

κ2
± − u2

±. Making use of the
Chebyshev identity for the N th power of a unimodular
matrix,25 for the evolution matrix across N identical barriers,
one finds22

[M̃(1)]N11 = sinh(Nz)

sinh z
M̃(1)

11 − sinh [(N − 1)z]

sinh z
, (4)

where cosh z = λ. Finally, the transmission can be related to
the evolution matrix as

TN (E,ky) = ∣∣[M̃(1)]N11

∣∣−2
. (5)

We are now in the position to discern whether an electronic
mode is characterized by an oscillating or evanescent behavior
far from the barrier superlattice. To this aim, we preliminarily
observe that, depending on E and ky , one has a propagating
(respectively, evanescent) wave for q2

± < 0 (respectively, q2
± >

0), where the subscript + refers to the region between two
consecutive barriers [(2m − 1)� � x � 2m�, m = 1, . . . ,N],
and the subscript − refers to the region within a barrier [2(m −
1)� � x � (2m − 1)�, m = 1, . . . ,N] (Fig. 1).

Figure 2 shows the single-electron transmission TN (E,ky)
across a single barrier, Eq. (5) with N = 1, as a function of
the transverse wave vector h̄vFky/E1 and energy E/E1, each

FIG. 2. (Color online) Single-electron transmission T1(E,ky),
Eq. (5) across a single barrier (N = 1, � = 25 nm), as a function
of scaled transverse wave vector h̄vFky/E1 and scaled energy E/E1,
Eq. (6), with E1 ≈ 40 meV. Here, strain is applied along the armchair
direction, θ = π/2, and we set ε− = 0.02, ε+ = 0, and U± = 0. Cyan
dashed lines delimit cones corresponding to the (deformed) Dirac
cones outside (left cone) and within (right cone) the barrier (regions
I + III and II, respectively, in Fig. 1). Solid lines outside the left Dirac
cone correspond to bound modes.

scaled by the characteristic energy

E1 = πh̄vF

2�γ
, (6)

where γ = 1
2 [(1 − λxε+)−1 + (1 − λxε−)−1]. Here and in the

following, strain is applied along the armchair direction,
θ = π/2, and we set ε− = 0.02, ε+ = 0, and U± = 0. In
Fig. 2, cyan dashed lines delimit the two (deformed) Dirac
cones defined by q2

+ < 0 (left cone) and q2
− < 0 (right cone),

corresponding to regions I + III and II in Fig. 1), respectively.
One finds that T1(E,ky) is defined within the left cone and
is exponentially vanishing within the intersection between
both cones. This corresponds to having propagating modes
in all the three regions. In this case, resonant modes, i.e.,
propagating modes with unit transmission, are characterized
by the condition for stationary waves

q̃−� = mπ, (7)

where q− = iq̃−, and m is an integer.
Figure 3 shows the single-electron transmission TN (E,ky)

across a superlattice composed of five identical barriers,
Eq. (5) with N = 5. Again, nonzero values of the transmission
are to be found within the intersection of the Dirac cones
corresponding to the region inside a barrier and between two
consecutive barriers. However, at variance of the case N = 1,
because of multiple scatterings, a nonzero transmission is also
possible beyond the cone q2

− < 0. This corresponds to having
evanescent modes within the barriers. Such a phenomenon
is analogous to what happens to photons propagating across
a one-dimensional (1D) photonic crystal with alternative
layers of a left-handed and a right-handed material (1D
metamaterial).26 As for resonant modes, TN (E,ky) = 1, in
addition to the ones given by Eq. (7) regardless of N , additional
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FIG. 3. (Color online) Single-electron transmission T5(E,ky),
Eq. (5) across a superlattice of N = 5 identical barriers (Fig. 1),
as a function of scaled transverse wave vector h̄vFky/E1 and scaled
energy E/E1, Eq. (6). All other parameters are as in Fig. 2. Red lines
outside the right cone correspond to resonant modes.

resonant modes are given by the condition

λ = cos

(
πj

N

)
, j = 1, . . . ,N − 1, (8)

where λ is defined by Eq. (2b), and |λ| < 1. The latter condition
implies that these resonant modes have globally propagating
behavior. Comparing Figs. 2 and 3, one finds that, in the
domain within both Dirac cones, in addition to the resonant
modes given by Eq. (7), in the case N > 1 there exist N − 1
new resonant modes given by Eq. (8). It should also be noted
that in the domain within the left cone but outside the second,
the resonant modes, which are only given by Eq. (8), are
characterized by quite narrow lines in the transmission plots.

Outside the left Dirac cone, it is still possible to find
bound states.18,27,28 Within the transfer-matrix method, these
are given by the condition29 [M̃(1)]N11 = 0. For q2

+ > 0 one
finds evanescent modes outside the barriers, and therefore also
far from the superlattice structure. In the case N = 1, one finds
several such confined modes within the second cone (Fig. 2,
solid lines outside the left cone), whereof only one such mode
survives in the region outside both cones. The latter is the
surface mode analyzed in Ref. 18. In the case N > 1 (Fig. 3,
solid lines outside the right cone), one finds that to each bound
mode in the single barrier case there correspond exactly N

bound states outside either cone. This is remindful of electron
bands in solids, where the overlap of N periodically arranged
atomic orbitals give rise to a band of N states.

In conclusion, we have found that a strain-induced su-
perlattice in graphene can accommodate additional resonant
quasiparticle states, analytically characterized by Eq. (8), in
addition to the ones usually found across a single barrier,
given by Eq. (7). One finds that applied strain modifies the
kinetic part of the quasiparticle Hamiltonian, which preserves
its Dirac-like character, but around shifted and deformed
Dirac cones. This can be described in terms of a coordinate-
dependent, periodic profile of the Fermi velocity, which
produces coherent effects on the quasiparticle transmission.
Specifically, we find resonant modes with globally propagating
behavior far from the superlattice, for conserved energy and
transverse momentum within the intersection of the two
deformed Dirac cones corresponding to the two alternating
strained regions. Other modes are exponentially suppressed,
and we also discuss the spectrum of bound states, which
arrange themselves as “bands,” depending on the overall
number of barriers making up the superlattice. We thus surmise
that a strain-induced superlattice in graphene can be used as a
filter for the resonant modes discussed here.
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