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a  b  s  t  r  a  c  t

Activation  of group-I  metabotropic  glutamate  receptors,  mGlu1  and  mGlu5,  triggers  a variety  of  signalling
pathways  in  neurons  and  glial  cells,  which  are  differently  implicated  in  synaptic  plasticity.  The  earliest
and  much  of key  studies  discovered  abnormal  mGlu5  receptor  function  in Fragile  X  syndrome  (FXS)
mouse  models  which  then  motivated  more  recent  work  that  finds  mGlu5  receptor  dysfunction  in related
disorders  such  as  intellectual  disability  (ID), obsessive-compulsive  disorder  (OCD)  and  autism.  Therefore,
mGlu1/5  receptor  dysfunction  may  represent  a common  aetiology  of  these  complex  diseases.  Further-
more,  many  studies  have  focused  on  dysregulation  of  mGlu5  signalling  to synaptic  protein  synthesis.
However,  emerging  evidence  finds  abnormal  mGlu5  receptor  interactions  with  its scaffolding  proteins
in  FXS  which  results  in mGlu5  receptor  dysfunction  and phenotypes  independent  of  signalling  to  protein
mrp
SC
TEN
euroligin
omer
HANK

synthesis.  Finally,  both  an increased  and reduced  mGlu5  functioning  seem  to be associated  with  ID and
autism  spectrum  disorders,  with  important  consequences  for potential  treatment  of these  developmental
disorders.

© 2014  Published  by  Elsevier  Ltd.
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. Introduction

Metabotropic glutamate (mGlu) receptors are key players in
xcitatory transmission and important regulators of synaptic
lasticity. Accumulating evidence over the past 15 years has impli-
ated abnormal expression, signalling and function of group-I
etabotropic glutamate (mGlu) receptors in the pathophysiology

f neurodevelopmental disorders which has led to ongoing Phase
IB clinical trials targeting mGlu receptors in patients affected by
ne of these disorders, i.e. Fragile X syndrome (FXS).

mGlu receptors are members of class C G-protein-coupled
eceptor (GPCR) superfamily and consist of eight receptor sub-
ypes, which can be subdivided into three groups on the basis of
equence homology, pharmacology and G-protein coupling speci-
city (reviewed by Nicoletti et al., 2011). Group-I includes the
Glu1 and mGlu5 receptor subtypes, which are coupled to Gq11

roteins. Their activation stimulates phospholipase C-mediated
hosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2) hydrolysis
ith ensuing formation of inositol-1,3,4-trisphosphate (InsP3)

nd diacylglycerol (DAG), which, in turn, activate intracellular
a2+ release and protein kinase C (PKC), respectively (reviewed

n Hermans and Challiss, 2001). There are several splice vari-
nts of mGlu1 and mGlu5 receptors, of which mGlu1a, mGlu5a
nd mGlu5b are characterized by a long C-terminus intracellular
omain interacting with scaffolding proteins (see below). Group-II
nd -III include mGlu2 and mGlu3, and mGlu4, mGlu6, mGlu7 and
Glu8 receptor subtypes, which are all coupled to Gi/o proteins.

heir activation negatively regulates adenylyl cyclase activity and
oltage-sensitive Ca2+ channels. While mGlu1 and -5 receptors are
enerally found in the peripheral portions of postsynaptic densities,
Glu2, -3, -4, -7, and -8 receptors are mainly (but not exclusively)

ocalized on pre-synaptic terminals, where they negatively regu-
ate neurotransmitter release (reviewed by Nicoletti et al., 2011
nd Niswender and Conn, 2010).

The present review focuses on group-I mGlu receptor-mediated
ignalling pathways and their potential role in mechanisms under-
ying Intellectual Disability (ID). Pivotal work in the Fmr1 knockout
KO) mouse modelling FXS first linked group-I mGlu receptors with
D- and autism-related disorders. Several excellent reviews have
een published over the years on altered group-I mGlu recep-
or signalling and dendritic protein synthesis in FXS (Bassell and

arren, 2008; Bhakar et al., 2012; Dölen et al., 2010; Krueger
nd Bear, 2011; Waung and Huber, 2009). We  will highlight
he early FXS work to provide an historical backdrop to the

otivation of more recent work. In particular, we  will focus on
roup-I mGlu receptor signalling pathways implicated in synaptic
lasticity and cognitive functions, and their modulation by asso-
iated post-synaptic proteins. We  will also discuss the possible
mplication of group-I mGlu receptor dysfunctions in the patho-
hysiology of different disorders associated with ID and autism,
Please cite this article in press as: D’Antoni, S., et al., Dysre
tor mediated signalling in disorders associated with Intellectu
http://dx.doi.org/10.1016/j.neubiorev.2014.02.003

ased on recent results on mouse models mimicking mutations
n genes related to these pathologies, such as TSC, PTEN, SHANK3,
nd NLG-3. Recent work on the involvement of mGlu5 receptor
 . .  . . .  . .  . . .  .  . . . . . . . . .  . . .  .  . . . . . . .  .  . . . . . .  .  . .  . . . .  .  .  . . .  .  . . . .  .  . .  .  . . . . . .  .  . . .  . .  .  .  .  00

signalling in obsessive compulsive disorder (OCD) will also be dis-
cussed.

2. Group-I mGlu receptors

2.1. Structure, distribution and signal transduction pathways: an
overview

mGlu1 and mGlu5 receptors contain (i) a large NH2 extracel-
lular portion containing a Venus fly trap (VFT) glutamate binding
domain and a cysteine-rich domain, (ii) seven transmembrane �-
helices (TMD), and (iii) an intracellular COOH terminal portion,
which is the site of interaction with several bridging and reg-
ulatory proteins (Fig. 1). Similarly to the other mGlu receptor
subtypes, mGlu1 and mGlu5 receptors form functional homod-
imers stabilized by an intersubunit disulphide bridge and require
two molecules of orthosteric agonists (such as glutamate) for full
activation (Kniazeff et al., 2004; Pin et al., 2005). Recent studies car-
ried out in heterologous expression systems have shown that mGlu
receptors can also form intra-group heterodimers (e.g., mGlu1
with mGlu5 receptors), adding further complexity to the mode of
action and mechanisms of regulation of group-I mGlu receptors
(Doumazane et al., 2011). According to the current model of mGlu
receptor activation, glutamate binding to one VFT induces a con-
formational modification of the transmembrane domains which
stabilizes the dimer in an active conformation with a resulting
activation of G proteins (Gomeza et al., 1996; Pin et al., 1995).
However, group-I mGlu receptors with long C-terminal regions, i.e.
mGlu1a, mGlu5a, and mGlu5b receptors, can also display consti-
tutive activity. This results from the spontaneous formation of an
active TMD  conformation, independent of agonist binding (Goudet
et al., 2005).

mGlu1 and mGlu5 receptors show different regional and devel-
opmental expression profiles. mGlu5a receptor expression and
functional coupling to polyphosphoinositide hydrolysis is elevated
in forebrain regions during the first three postnatal weeks and
declines afterwards, whereas expression of mGlu1 receptors in
the cerebellum increases with age and is maximal in adulthood
(reviewed in Catania et al., 2007). Both mGlu1 and mGlu5 recep-
tors are present in cortical and hippocampal interneurons (van
Hooft et al., 2000) where they interact with NMDA receptors
in regulating neural oscillations and brain connectivity. mGlu5
receptors are also found in astrocytes, and their function is up-
regulated during the process of reactive gliosis (reviewed by
D’Antoni et al., 2008). Group-I mGlu receptors are mainly local-
ized post-synaptically (Romano et al., 1996; Shigemoto et al., 1997),
although a pre-synaptic localization of these receptors has also
been described (Gereau and Conn, 1995; Thomas et al., 2000). In
gulation of group-I metabotropic glutamate (mGlu) recep-
al Disability and Autism. Neurosci. Biobehav. Rev. (2014),

ized in the perisynaptic region, and can therefore be recruited
by the high levels of glutamate that are released during sus-
tained synaptic transmission (Baude et al., 1993; Nusser et al.,
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Fig. 1. Schematic representation of proteins that interact directly or indirectly with mGlu1/5 receptors and mediate receptor signalling. The COOH terminal intra-
cellular domain of group-I mGlu receptors interacts with Norbin, Calmodulin (CaM), Siah-1A, Calcineurin inhibitor protein (CAIN), Tamalin, and long (Long H) and
short  isoforms (H1a) of Homer proteins. Homer proteins interact through their amino-terminal domain with IP3 receptors, Shank, PIKE-L, drebrin, and the tran-
sient  receptor potential channel (TRPC). Homer interactions with other proteins such as ryanodine receptors, oligophrenin 1, dynamin III, Rho small GTPases are not
depicted here. The association Homer-IP3R couples IP3R to mGlu1/5 receptors and mediates intracellular Ca2+ signalling. Long H proteins regulate the TRPC chan-
nel  function by mediating the formation of the TRPC/Homer/IP3R complex. The mGlu5 receptor-dependent activation of PI3K pathway is mediated by the association
between Long H and PIKE-L. Shank-Homer interactions associate mGlu1/5 receptors to NMDA receptors through PSD95 and GKAP, and anchor mGlu/NMDA complex
to  the actin cytoskeleton through Cortactin and Drebrin. mGlu5/Homer binding is regulated by Preso1 (see text for details). Long H proteins bind the diacylglyc-
erol  lipase-alpha (DGL�) that converts DAG into 2-AG. The short Homer 1a (H1a), acting as a dominant negative modulator, competitively binds the target proteins
of  Long H such as mGlu1/5, PIKE-L, Shank, TRPC, IP3R. mGlu5 receptors also associate with eEF2K either directly or indirectly through Homer proteins. Activa-
tion  of mGlu5 receptors exerts a tight control on protein synthesis through mechanisms involving mTOR and ERK pathways, and regulation of eEF2K activity (see
text).
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994; Vidnyanszky et al., 1996). Interestingly, mGlu1/5 receptors
re also found at extrasynaptic sites with a higher frequency of
Glu5 than mGlu1 receptors (Lujan et al., 1997). mGlu5 recep-

ors have also been detected in cell nuclei where they stimulate
tdIns-4,5-P2 hydrolysis and generate nuclear InsP3 (Kumar et al.,
008; O’Malley et al., 2003). Interestingly, activation of these
uclear mGlu5 receptors induces a different set of genes as com-
ared to the activation of surface mGlu5 receptors (Jong et al.,
009).

In addition to polyphosphoinositide hydrolysis, activation of
Glu1/5 receptors is also linked to other signal transduction mech-

nisms, such as mitogen-activated protein kinase/extracellular
ignal-regulated kinase (MAPK/ERK) (Peavy and Conn, 1998), phos-
holipase D (Holler et al., 1993), phospholipase A2 (Dumuis
t al., 1993), phosphoinositide 3-kinase (PI3K) (Rong et al., 2003),
ammalian target of rapamycin (mTOR) (Hou and Klann, 2004)
Please cite this article in press as: D’Antoni, S., et al., Dysre
tor mediated signalling in disorders associated with Intellectu
http://dx.doi.org/10.1016/j.neubiorev.2014.02.003

nd formation of the endocannabinoid, 2-arachidonoylglicerol
2-AG) (Jung et al., 2005). Activation of ERK and mTOR by
roup-I mGlu receptors is linked to de novo protein synthe-
is in neurons, a process that underlies long-term changes in
activity-dependent synaptic plasticity (reviewed in Waung and
Huber, 2009).

2.2. mGlu1/5 signalling pathways are modulated by associated
post-synaptic proteins

mGlu1/5 receptor-mediated signalling is modulated by several
mechanisms, including the interaction with regulatory proteins
at the intracellular C-terminal receptor domain (Fig. 1 for a
schematic representation). A distal proline-rich region of the C-
terminus domain of mGlu1a and mGlu5a/b receptors interacts
with members of the Homer family proteins, which function
as scaffolds between receptors and a number of post-synaptic
adaptor and signalling proteins (reviewed by Shiraishi-Yamaguchi
and Furuichi, 2007). The Homer protein family includes long
and short isoforms (Homer 1b, -1c, -2 and -3; and Homer
gulation of group-I metabotropic glutamate (mGlu) recep-
al Disability and Autism. Neurosci. Biobehav. Rev. (2014),

1a, respectively). All isoforms share a highly conserved N-
terminal EVH1 [enabled/vasodilator-stimulated phosphoprotein
(Ena/VASP) homology 1] domain, which interacts with proline-
rich sequences present in mGlu1a and mGlu5 receptors, and in
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 variety of signalling, adaptor, or cytoskeletal proteins, such as
he InsP3 receptors, ryanodine receptors, Shank, transient recep-
or channels (TRPC), the phosphatidylinositol-3-kinase enhancer
PIKE), dynamin III, drebrin, oligophrenin-1 and diacylglycerol
ipase-alpha (DGL�) (Feng et al., 2002; Gray et al., 2003; Jung et al.,
007; Kammermeier et al., 2000; Kim et al., 2006; Rong et al., 2003;
u et al., 1998, 1999; Yuan et al., 2003). Remarkably, most of these
roteins play a role in group-I mGlu receptor-mediated long-term
epression (LTD) (Asrar and Jia, 2013; Chae et al., 2012; Fujii et al.,
010; Holbro et al., 2009; Nadif Kasri et al., 2011; Sharma et al.,
010; Taufiq et al., 2005). The EVH1 domain is also required for
inding the eukaryotic elongation factor 2 (eEF2) kinase (eEF2K),
hich regulates the elongation step of translation (Park et al.,

008). Long Homer isotypes have a coiled-coil C-terminal domain
hat mediates formation of homotetramers linking mGlu1a and

Glu5 receptors to postsynaptic proteins (Brakeman et al., 1997;
ayashi et al., 2006; Kato et al., 1998; Xiao et al., 1998). The short
omer1a, which lacks the coiled-coil domain, cannot form dimers,

s induced in response to sustained synaptic activity and acts as a
ominant negative modulator of mGlu receptor signalling by dis-
upting protein-to-protein interactions mediated by long Homer
Kammermeier and Worley, 2007; Xiao et al., 1998). Long Homers
lso interact with Rho family GTPase proteins, namely Cdc42,
hrough their C-terminal region (Shiraishi et al., 1999). An addi-
ional mechanism regulating mGlu5 receptor-Homer interaction
nvolves Preso1, a protein which binds both Homer and mGlu5
eceptors and facilitates phosphorylation of mGlu5 receptors in
he Homer binding domain by recruiting type-5 cyclin-dependent
inase (CDK5) and ERK (Hu et al., 2012; Orlando et al., 2009)
Fig. 1).

Interaction with Homer proteins controls several functions of
Glu1/5 receptors such as the constitutive activity of mGlu5 recep-

ors (Ango et al., 2001), mGlu5 receptor trafficking and lateral
obility (Ango et al., 2001; Coutinho et al., 2001; Sergé et al.,

002), mGlu5 receptor coupling to ion channels (Kammermeier
t al., 2000), as well as coupling to signalling pathways such as
he ERK, PI3K, the DGL�/endocannabinoid system (Jung et al.,
007; Mao  et al., 2005; Ronesi and Huber, 2008; Rong et al.,
003), and eEF2K (Park et al., 2008). mGlu5 receptor/Homer

nteractions are also able to modulate NMDA receptor function
lthough the underlying mechanisms have only been partially
lucidated. mGlu5 receptors are physically linked to the NR2
ubunit of the NMDA receptor channels through a chain of anchor-
ng proteins including postsynaptic density protein 95 (PSD-95),
uanylate kinase-associated proteins (GKAPs), Shank, and Homer
Tu et al., 1999). The Homer-Shank complex is organized to form

 mesh-like flexible matrix structure, with Homer forming an
ntiparallel tetramer which exposes a pair of N-terminal EVH1
omains able to interact with other proteins (Hayashi et al., 2009)
Fig. 1). The mGlu1/5 receptor-mediated facilitation of NMDA
eceptor activity described in several experimental paradigms
reviewed in Field et al., 2011), may  tightly depend on the sta-
ility of the mGlu/Homer/Shank complex. Interestingly, activation
f both mGlu1 and mGlu5 receptors has been shown to inhibit
MDA receptor function when the mGlu/Homer/NMDA recep-

or complex is disrupted (Bertaso et al., 2010; Moutin et al.,
012).

The C-terminus domain of group-I mGlu receptors inter-
cts with tamalin (Kitano et al., 2002), norbin (Wang et al.,
009) and the calcineurin inhibitor protein (Ferreira et al., 2009)
Fig. 1). These proteins regulate cell signalling by influencing

Glu1/5 receptor trafficking and surface expression (similarly to
Please cite this article in press as: D’Antoni, S., et al., Dysre
tor mediated signalling in disorders associated with Intellectu
http://dx.doi.org/10.1016/j.neubiorev.2014.02.003

omer), and also receptor dimerization, although they do not
ffect receptor coupling to signalling molecules. The mammalian
omologue of Seven in Absentia (Siah-1A), a member of the RING-
nger-containing E3 ubiquitin ligases, can also interact with the
 PRESS
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C-terminal domain of group-I mGlu receptors and this interac-
tion promotes ubiquitination and degradation of group-I mGlu
receptors (Moriyoshi et al., 2004). Binding of mGlu5 receptors
with Siah-1A is competitively inhibited by calmodulin (Ishikawa
et al., 1999), through a mechanism which involves a PKC-mediated
phosphorylation of mGlu5 receptors (serine 901), and favours the
internalization of mGlu5 receptors (Ko et al., 2012; Lee et al.,
2008).

Regulation of group-I mGlu receptor signalling also involves
mechanisms of receptor desensitization which are mediated by
PKC and G-proteins-coupled receptor kinases (GRKs). PKC phos-
phorylates multiple sites in the second intracellular loop and
C-terminus domains of mGlu1 and mGlu5 receptors, and medi-
ates both homologous and heterologous desensitization of mGlu
receptors (Catania et al., 1991; Gereau and Heinemann, 1998).
NMDA receptor activation potentiates mGlu5 receptor function
by reversing this mechanism of PKC-mediated receptor desensi-
tization (Alagarsamy et al., 1999, 2005). Of note, a PKC-mediated
phosphorylation of a particular threonine residue (T840) that is
present in mGlu5 but not mGlu1 receptors, generates the oscilla-
tory pattern of Ca2+ release from the intracellular stores (Kawabata
et al., 1996), but has no impact on mGlu5 receptor desensitization.
Phosphorylation by GRK2, GRK4, and GRK5, mediates homologous
desensitization of mGlu1 receptors, whereas homologous desen-
sitization of mGlu5 receptors is mediated by GRK2 and GRK3
(reviewed by Iacovelli et al., 2013).

2.3. Group-I mGlu receptors and mechanisms underlying activity
dependent synaptic plasticity

Activation of mGlu5 receptors is involved in the induction of
NMDA receptor-dependent Long Term Potentiation (LTP), induc-
tion of protein synthesis dependent LTD, and in mechanisms
regulating depotentiation, i.e. the activity-dependent persistent
reversal of previously established synaptic LTP.

Pivotal work in mice lacking mGlu5 receptors showed decreased
NMDA-dependent LTP in the CA1 region and dentate gyrus (DG) of
the hippocampus, and impaired hippocampal-dependent learning
paradigms, such as learning acquisition in the water maze and con-
textual fear conditioning (Lu et al., 1997). The importance of mGlu5
receptors in potentiating NMDA currents and its role in facilitating
NMDA receptor-dependent LTP has been confirmed in several stud-
ies (Attucci et al., 2001; Awad et al., 2000; Jia et al., 1998; Mannaioni
et al., 2001; Pisani et al., 2001). mGlu5 receptor activation is also
required for in vivo LTP and formation of working and reference
memory, as shown by the use of the mGlu5 receptor negative
allosteric modulator (NAM), 2-methyl-6-(phenylethynyl)pyridine
(MPEP), in freely moving rats (Naie and Manahan-Vaughan, 2004).
Potentiation of NMDA currents by mGlu5 receptor activation is
mediated by the sequential activation of the focal adhesion kinase
CAKb/Pyk2 and the tyrosine kinase, Src, with ensuing tyrosine
phosphorylation of NMDA receptor subunits (Huang et al., 2001;
Kotecha et al., 2003; Lu et al., 1999). Recent data suggest that a tem-
porally coincident activation of group-I mGlu and NMDA receptors
resulting into synaptic potentiation is critically dependent on the
long Homer-mediated mGlu-NMDA receptor complex (Sylantyev
et al., 2013).

While co-activation of mGlu5 and NMDA receptors induces LTP,
activation of either mGlu1/5 or NMDA receptors alone induces LTD
in the hippocampus (reviewed by Gladding et al., 2009). Group-I
mGlu receptor-dependent LTD in particular, is altered in different
mouse models of ID/autism. While a detailed discussion of mGlu-
gulation of group-I metabotropic glutamate (mGlu) recep-
al Disability and Autism. Neurosci. Biobehav. Rev. (2014),

LTD mechanisms is beyond the scope of this review, there have
been several excellent reviews focused on mGlu-LTD (Asrar and
Jia, 2013; Gladding et al., 2009; Lüscher and Huber, 2010). It is
believed that mGlu-LTD and NMDA-LTD use different induction
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echanisms. mGlu-LTD is critically dependent on local protein syn-
hesis in dendrites (Waung and Huber, 2009). Although protein
ynthesis is also involved in LTP and NMDA-LTD, in the partic-
lar case of mGlu-LTD new protein synthesis is required in a
ery short time window (within 5–10 min) (Huber et al., 2000).
xpression of mGlu-LTD is ultimately caused by the endocytosis
f AMPA receptors, which is triggered by several mechanisms also
nvolving de novo synthesis of “LTD proteins”, such as the striatal
nriched tyrosine phosphatase (STEP) which dephosphorylates the
MPA receptor subunit, GluA2 (Moult et al., 2006; Zhang et al.,
008). Other candidate proteins are Arc/Arg3.1, which regulates
MPA receptor endocytosis by interacting with endophylin2/3 and
ynamin (Chowdhury et al., 2006; Park et al., 2008; Waung et al.,
008), and microtubule-associated protein 1b (Map1b), which

nteracts with GRIP1 (Davidkova and Carroll, 2007).
The biochemical cascades linking group-I mGlu receptor acti-

ation to protein synthesis have been the object of intense
nvestigation and have been extensively reviewed elsewhere
Bhakar et al., 2012; Waung and Huber, 2009). It is established
hat activation of group-I mGlu receptors leads to protein synthesis
hrough ERK and mTOR signalling pathways; however the mech-
nisms which facilitate the translation of specific mRNAs are not
lear. An interesting model recently proposed is that while acti-
ation of mTOR is required for increasing rate of overall mRNAs
ranslation at synapse, ERK activation may  control the translation
f specific mRNAs, such as those encoding “LTD proteins” (Bhakar
t al., 2012). In this context, the interaction of mGlu5 receptors with
omer may  function as a molecular switch that regulates coupling

o pathways regulating translation at different levels of initiation
mTOR and ERK) and elongation (eF2K) (Park et al., 2008; Ronesi
t al., 2012).

In addition to a protein synthesis-dependent form of LTD, acti-
ation of group-I mGlu receptors triggers a form of LTD which is
ediated by endocannabinoid formation and is independent of

rotein-synthesis (see below).

. Dysregulation of mGlu5 receptor-mediated mechanisms
n FXS

.1. Local translation of synaptic mRNAs

FXS is the most common inherited form of ID and a leading
enetic cause of autism (Abrahams and Geschwind, 2008; Kelleher
nd Bear, 2008). In addition to ID, FXS patients have a higher
ncidence of epilepsy and hypersensitivity to sensory stimuli, two
eatures that are common in autism (Berg and Plioplys, 2012; Gilby
nd O’Brien, 2013). FXS is caused by the absence of the RNA bind-
ng protein fragile X mental retardation protein (FMRP), which
egulates different aspects of RNA metabolism, including mRNA
rafficking, stability and translational regulation (Maurin et al., this
ssue). No major brain malformation have been found in FXS; how-
ver, a higher density of dendritic spines, which appear long and
mmature, have been reported in both FXS patients and in the Fmr1
O mouse model of the disease (Irwin et al., 2001; Nimchinsky
t al., 2001). FXS was first linked to group-I mGlu receptors when
MRP was shown to be rapidly synthesized in synaptoneurosomes
n response to group-I mGlu agonists (Weiler et al., 1997). This find-
ng motivated subsequent studies that revealed enhanced group-I

Glu receptor-induced long-term synaptic LTD in hippocampal
A1 slices from Fmr1 KO mice (Huber et al., 2002). mGlu-LTD

n wild type rodents requires rapid dendritic protein synthesis
Please cite this article in press as: D’Antoni, S., et al., Dysre
tor mediated signalling in disorders associated with Intellectu
http://dx.doi.org/10.1016/j.neubiorev.2014.02.003

see above) and mGlu-LTD in Fmr1 KO slices, in addition to being
nhanced, is independent of new protein synthesis (Hou et al.,
006; Nosyreva and Huber, 2006). A major function of FMRP is to
uppress translation of its target mRNAs. Recent work shows that
 PRESS
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FMRP suppresses the steady state translation of several proteins
implicated in mGlu-LTD, and, upon group-I mGlu receptor activa-
tion, FMRP is dephosphorylated, ubiquitinated and degraded. This
derepresses translation of its mRNA targets and contributes to rapid
translational activation of proteins necessary for LTD such as Arc
(Nalavadi et al., 2012; Niere et al., 2012). Therefore, in FXS there is
an enhanced steady state level of proteins that promote LTD which
likely underlies the LTD alterations associated with FXS.

It is important to note that FMRP directly interacts with >800
mRNAs, and 1/3 of these encode synaptic proteins (Darnell et al.,
2011). As a consequence, there are many other synaptic pheno-
types associated with FXS, some of which are likely independent
of mGlu function (Pfeiffer and Huber, 2009 and Portera-Cailliau,
2012). However, the number and breadth of distinct phenotypes
in FXS that are mediated by abnormal group-I mGlu receptor func-
tion are quite remarkable and illustrate that group-I mGlu receptor
dysfunction is a large contributor to the pathophysiology of FXS
(reviewed in Bhakar et al., 2012; Krueger and Bear, 2011). New data
also demonstrate that group-I mGlu receptor dysfunction may  also
contribute generally to the pathophysiology of autism and related
disorders.

3.2. mGlu5 receptor-dependent activation of endocannabinoid
signalling

Endocannabinoids are ubiquitous modulators of cognitive func-
tions and have received much attention as possible targets for
diverse CNS diseases including psychiatric disorders (Campos et al.,
2012). Several studies have recently addressed the question of
whether endocannabinoid signalling activated by mGlu5 receptors
might be altered in FXS. These reports show a dysregulation of the
mGlu5 receptor-mediated endocannabinoid signalling; however,
results are different depending on the brain area examined as well
as on the endocannabinoid regulation of excitatory or inhibitory
synaptic transmission, underscoring the complexity of the endo-
cannabinoid system in the brain.

Activation of mGlu5 receptors increases levels of the endo-
cannabinoid, 2-arachidonylglycerol (2-AG), via a sequential
recruitment of PLC-�, which produce DAG, and DGL�, which con-
verts DAG into 2-AG (Jung et al., 2005; Maccarrone et al., 2008;
Varma et al., 2001). As mentioned before, coupling of mGlu5 recep-
tors to DGL� is mediated by Homer proteins (Jung et al., 2007).
2-AG works as a retrograde messenger at several synapses and
activates CB1 cannabinoid receptors on presynaptic terminals,
thereby inhibiting neurotransmitter release at both excitatory and
inhibitory synapses (depolarization-induced suppression of excita-
tion and inhibition, respectively) (Chevaleyre et al., 2006). Evidence
indicates that group-I mGlu receptor-induced, endocannabiniod-
mediated regulation of both excitatory and inhibitory synapses is
affected in FXS, but in opposite directions.

In medium spiny neurons of the ventral striatum and pyramidal
neurons of the prefrontal cortex mGlu5 receptor-dependent forma-
tion of 2-AG is responsible for a form of LTD which is independent of
protein synthesis (Lafourcade et al., 2007; Robbe et al., 2002). Jung
and collaborators (2012) reported a marked deficit of this mGlu5-
mediated 2-AG dependent form of LTD in both ventral striatum
and prefrontal cortex of Fmr1 KO mice, which was normalized by
pharmacological enhancement of 2-AG signalling. These authors
propose that impairment of this form of LTD in FXS is caused by
the uncoupling of 2-AG formation from mGlu5 receptors, which
is likely due to a physical disruption of the multiprotein complex
linking mGlu5 receptors to DGL-� at the perisynaptic annulus of
gulation of group-I metabotropic glutamate (mGlu) recep-
al Disability and Autism. Neurosci. Biobehav. Rev. (2014),

dendritic spines. They found that in the brain of Fmr1 KO mice
DGL-� is concentrated at the neck of dendritic spines rather than
being localized close to the membrane in the perisynaptic region.
This intracellular retention might be caused by an altered targeting
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f the mRNA encoding DGL-�, which is linked to FMRP, and may
e incorrectly translated. Alternatively, or in addition, disruption
f long Homer-DGL-� binding may  cause intracellular retention
f the enzyme (Jung et al., 2007) and deficits in mGlu-activated
etrograde 2-AG signalling at excitatory synapses (Roloff et al.,
010). The mGlu5 receptor is known to be uncoupled from the long
omer scaffolding proteins in FXS (Giuffrida et al., 2005; Ronesi
t al., 2012). An interesting possibility is that Homer scaffolds to
ther proteins are also disrupted in FXS which affects the func-
ion and localization of multiple Homer binding proteins, such as
GL-�.

In the hippocampus, activation of mGlu5 receptors on pyramidal
ells of the CA1 region triggers the formation of endocannabi-
oids, which inhibit GABA release by acting retrogradely on
B1 receptors. CB1 receptors are abundantly expressed on
re-synaptic terminals of GABAergic/Cholecystokinin positive

nterneurons (Katona et al., 1999; Wilson and Nicoll, 2001).
n enhanced mGlu5/endocannabinoid-mediated responses at
ABAergic synapses has been detected in the CA1 region of Fmr1 KO
ice (Zhang and Alger, 2010). Similar findings have been reported

n striatal neurons, where the mGlu5/endocannabinoid-dependent
nhibition of mIPSC frequency is markedly enhanced in Fmr1 KO

ice (Maccarrone et al., 2010). Interestingly both MPEP binding
nd DGL activity are also enhanced in the striatum of Fmr1 KO
ice (Maccarrone et al., 2010). Another possibility is that the

pposite phenotypes of endocannabinoid regulation at inhibitory
nd excitatory synapses in FXS may  be explained by the mis- or
e-localization of DGL-� within spines. Indeed, many inhibitory
ynapses occur adjacent to spine necks and GABAergic presynap-
ic terminals are thought to receive 2-AG synthesized from DGL-�
t spine necks. In contrast, DGL-� localized near the spine head is
xpected to concentrate 2-AG near excitatory pre-synaptic termi-
als (Yoshida et al., 2006). The redistribution of DGL-� away from
he spine head to the spine neck in FXS may  redistribute 2-AG
way from excitatory synapses and towards inhibitory synapses;
his leads to the distinct phenotypes that depend on the type of
ynapse.

In line with a potential involvement of the endocannabinoid
ignalling in the pathophysiology of FXS, translational studies
howed that both acute and chronic administration of the CB1
eceptor antagonist, rimonabant, reverted the deficit of object
ecognition memory consolidation test, similarly to chronic treat-
ents with the mGlu5 receptor NAM MTEP and the mTOR

nhibitor, sirolimus. Interestingly, rimonabant and MPEP produced
dditive effects in correcting the increased phosphorylation of
70S6K (Thr381) and Akt (Ser473) and the altered spine mor-
hology in FXS mice, suggesting in this case an independence of
he mGlu5 and the endocannabinoid pathways (Busquets-Garcia
t al., 2013). These data are not consistent with the evidence
hat 2-AG boosting with an inhibitor of monoacylglycerol lipase
n Fmr1 KO mice corrects the increased locomotor activity in
he open field and anxiety-like behaviour in the elevated plus

aze (Jung et al., 2012). Because endocannabinoid regulation
f distinct synapse types is differentially affected in FXS, it is
nlikely that general inhibition or activation of the endocannabi-
oid system will rescue all phenotypes. Therefore, development
f therapeutics to target endocannabinoid function selectively
t excitatory or inhibitory synapses could be useful for treating
XS.

.3. mGlu5 signalling pathways underlying neuronal network
xcitability and cortical oscillations
Please cite this article in press as: D’Antoni, S., et al., Dysre
tor mediated signalling in disorders associated with Intellectu
http://dx.doi.org/10.1016/j.neubiorev.2014.02.003

Alterations in cortical network activity may  underlie both
ognitive and behavioural dysfunctions in FXS and other disor-
ers characterized by ID and autism. Furthermore, an imbalance
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between local recurrent excitation and inhibition might be the
basis for the sensory hypersensitivity and increased susceptibility
of epileptic seizures associated with FXS and other developmen-
tal disorders. Enhanced mGlu5 receptor function is implicated in
audiogenic seizures and specific hyperexcitability of specific cir-
cuits in the sensory neocortex and hippocampal CA3 neurons in
Fmr1 KO mice.

One of the most robust phenotypes in the Fmr1 KO mice
is audiogenic seizures, or seizures in response to a loud noise
(Musumeci et al., 2007, 2000). Pharmacological antagonism of
mGlu5 completely blocks audiogenic seizures in Fmr1 KO mice
(Yan et al., 2005). Similarly, genetic reduction of mGlu5, by crossing
mice that are heterozygous for mGlu receptor 5 (Grm5+/−) with
Fmr1 KO mice reduces the incidence and severity of audiogenic
seizures (Dolen and Bear, 2008). One of the first evidence for mGlu-
mediated hyperexcitability of specific circuits is the work of Wong
and colleagues showing that blockade of GABAergic inhibition in
area CA3 of Fmr1 KO hippocampal slices leads to prolonged epilep-
tiform bursts of action potentials in comparison to the short bursts
observed in slices from wild type mice. These prolonged bursts
are blocked by the mGlu5 receptor antagonist, MPEP, as well as by
inhibitors of protein synthesis or the ERK pathway (Bianchi et al.,
2009; Chuang et al., 2005). Strong activation of mGlu5 receptors
with an agonist is required in wild type animals to generate the
bursts. Therefore, weaker synaptic activation of mGlu5 is sufficient
to trigger the epileptiform bursts and translation of proteins that
lead to the prolonged epileptiform bursts (Chuang et al., 2005).
Similar mechanisms may  underlie audiogenic seizures in Fmr1 KO
mice because inhibitors of the ERK pathway, applied acutely in
vivo, also block seizures (Osterweil et al., 2013, 2010).

Studies in slices and in vivo somatosensory, barrel cortex have
identified alterations in spontaneous oscillations of circuit activ-
ity that reflect hyperexcitable circuits. Persistent activity states,
or UP states, were found to be longer in duration in neocortical
slices obtained from Fmr1 KO mice. UP states are depolarized fir-
ing states of neurons that are driven by recurrent excitation and
occur synchronously among all neurons in a cortical region (Haider
and McCormick, 2009; Sanchez-Vives et al., 2010). When UP states
occur spontaneously and repeatedly, they underlie the neocorti-
cal “slow oscillation” (<1 Hz) during slow wave sleep and may  be
involved in long-term memory consolidation (Crunelli and Hughes,
2010; Ji and Wilson, 2007; Marshall and Born, 2007; Marshall
et al., 2006). Therefore, altered UP states may  modify the slow
oscillation in FXS which, in turn, may  lead to impaired cognition.
Prolonged UP states are caused by deletion of Fmr1 in excitatory
neurons and are mediated by enhanced mGlu5 receptor signalling.
Genetic reduction and pharmacological blockade of mGlu5, but not
mGlu1, receptors rescue the prolonged UP states as measured in
acute slices of neocortex or in vivo of anesthetized Fmr1 KO mice
(Hays et al., 2011). Importantly, this mGlu5-dependent phenotype
of Fmr1 KO mice does not depend on rapid mRNA translation (Hays
et al., 2011), but does depend on ERK activation (Collins, Gibson
and Huber, unpublished) implicating an mGlu5 and ERK-dependent
post-translational mechanism in circuit hyperexcitability. Recent
work indicates that a disruption of the mGlu5-Homer interactions
leads to circuit hyperexcitability and seizures. Peptide-mediated
disruption leads to prolonged UP states in wild type neocortical
slices, and restoration of mGlu5-long Homer scaffolds in Fmr1 KO
mice, by deleting Homer1a, shortens UP states to wild type lev-
els and reduces the incidence of audiogenic seizures (Ronesi et al.,
2012). These results suggest that mGlu5 receptors, when disrupted
from Homer scaffolds lead to enhanced mGlu5-driven ERK activity,
which causes circuit hyperexcitability. Identification of the chan-
nels and/or synaptic mechanisms that are regulated by mGlu5 and
gulation of group-I metabotropic glutamate (mGlu) recep-
al Disability and Autism. Neurosci. Biobehav. Rev. (2014),

ERK is an important goal to understand and treat the etiology of
circuit dysfunction in FXS.
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mGlu5-Homer uncoupling and ID/autism related disorders
The core of pathophysiological mechanisms underlying FXS
and ID/autism-related disorders has been related to dysfunc-
tional protein synthesis at synapses. Recent evidence suggests
however that some relevant phenotypes might depend also on
other mechanisms. Here, we highlight findings which suggest
that mGlu5-Homer uncoupling may  be a mechanism underly-
ing the physiopathology of ID- and autism-related disorders.
mGlu5 receptors are less associated with constitutive long
Homer in synaptosomal preparations from forebrain of Fmr1
KO mice, suggesting alterations in mGlu5 receptor trafficking,
localization and function (Giuffrida et al., 2005). Disruption of
mGlu5-Homer interaction by a cell-permeable Tat-peptide con-
taining the proline-rich motif of the mGlu5 receptor C-terminal
inhibits group-I mGlu receptor activation of the PI3K-mTOR
pathway, but does not affect ERK pathway, and inhibits mGlu-
LTD (Ronesi and Huber, 2008). In Fmr1 KO mice, activation of
group-I mGlu receptors fails to activate mTOR  pathway and
induces LTD independently of Homer interaction (Ronesi and
Huber, 2008). Interestingly, mGlu5-Homer interaction exerts
an inhibitory control on eEF2K, which in turn phosphorylates
eEF2, thus slowing the elongation step of translation and
inhibiting general protein synthesis. This step is believed to
favour the rapid synthesis of specific proteins, i.e. Arc (Park
et al., 2008).
Deletion of Homer1a, which shifts the equilibrium towards
mGlu5-Homer association, restored increased rate of total pro-
tein synthesis in Fmr1 KO mice to wild type levels, but did not
correct increased mGlu-dependent LTD nor increased levels of
“LTD proteins” (Ronesi et al., 2012). Thus, disruption of mGlu5-
Homer interaction is not involved in the abnormal translational
control of FMRP target mRNAs. In contrast, Homer1a deletion
corrected prolonged UP states and open field activity pheno-
types and reduced susceptibility to audiogenic seizures in Fmr1
KO mice (Ronesi et al., 2012).
Increased cortical excitability, seizures and anxiety are frequent
in autism related disorders. While increased mGlu-LTD is a
“specific” phenotype of FXS, disruption of mGlu5-Homer may
underlie symptoms which are in common with other disorders.
Recent data which identified rare and potentially deleterious
Homer1 single-nucleotide variants (SNV) in a population of
non syndromic autism are in line with this view (Kelleher et al.,
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2012; see Section 5 for details).

. mGlu5 signalling to translation and plasticity are altered
n different models of ID/autism

Pivotal work in the FXS mouse model highlighted changes in
rotein synthesis-dependent and protein synthesis-independent
ynaptic plasticity mediated by mGlu5 receptors, as described
bove. This work has been extended recently to other mouse mod-
ls of both ID and autism and suggests that mGlu5-dependent
lastic changes may  also be central in the pathophysiology of these
isorders. These results are summarized in Table 1.

.1. Tuberous sclerosis complex (TSC)

TSC is a multi-systemic disease characterized by predisposition
o tumour formation in several organs and developmental prob-
ems. The occurrence of cortical tubers and subependymal nodules
n the brain is associated with seizures and cognitive impairment.
utism is also prevalent in TSC being present in 25–50% of patients

Wiznitzer, 2004). TSC is an autosomal dominant disorder caused
Please cite this article in press as: D’Antoni, S., et al., Dysre
tor mediated signalling in disorders associated with Intellectu
http://dx.doi.org/10.1016/j.neubiorev.2014.02.003

y mutations in the genes TSC1 and TSC2, encoding the tumour sup-
ressor proteins, hamartin (TSC1) and tuberin (TSC2). These two
roteins behave as GAPs (GTPase-activating proteins) of the small
TP-binding protein, Rheb (Ras homologue enriched in brain),
 PRESS
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thereby restraining the activation of mTORC1 (mammalian tar-
get of rapamycin complex 1) (Huang and Manning, 2008). Hence,
a defective activity of hamartin and tuberin causes hyperactiv-
ity of mTORC1 with resulting enhancement of phosphorylation of
p70S6K, mRNA translation, and cell growth. Work in mouse mod-
els of TSC indicates that cognitive dysfunction may  occur in the
absence of brain lesions and epilepsy (Goorden et al., 2007). By
analogy with Fmr1 KO mice, it was  initially hypothesized that an
increased mGlu5 receptor-dependent LTD could also be associated
with TSC. In contrast, mGlu5 receptor-dependent LTD was rather
abolished in the CA1 region following acute post-synaptic loss of
TSC1 (Bateup et al., 2011). A similar reduction of mGlu5 receptor-
dependent LTD was found in a mouse model of TSC carrying a
heterozygous loss of mutation in Tsc2 in the absence of changes
in basal synaptic transmission and NMDA receptor-dependent-
LTD (Auerbach et al., 2011). mGlu5 receptor-dependent LTD (but
not NMDA receptor-dependent LTD) was  also impaired in a dif-
ferent mouse model of TSC, carrying a deletion of amino acid
residues 1617–1655 and a substitution of amino acid residues
1679–1742 (�RG transgenic mouse), which interfere with the
ability of TCS2 to hydrolyse GTP-bound to Rap1 and Rheb (Chévere-
Torres et al., 2012). Thus, a reduction of mGlu5 receptor-dependent
LTD has been consistently found in different mouse models of
TSC. The biochemical mechanisms underlying these effects are
unclear. While a constitutive up-regulation of mTOR signalling,
which is indicative of an increased protein synthesis, was  found
in a conditional Tsc1 KO mouse (Bateup et al., 2011), a reduction
of 35S-methionine incorporation and newly synthesized Arc pro-
tein was  detected in the hippocampus of Tsc2−/+ mice (Auerbach
et al., 2011). This apparent discrepancy was explained by the sup-
pressive activity exerted by mTORC-dependent proteins over the
synthesis of a set of other proteins that are regulated by mGlu5
receptors and sustain LTD (Auerbach et al., 2011). Accordingly,
rapamycin restored mGlu5 receptor-dependent LTD, but its effect
was abolished by the protein synthesis inhibitor cycloheximide
(Auerbach et al., 2011). Thus, the biochemical mechanism under-
lying reduced mGlu-LTD in Tsc2−/+ mice involves a reduction of
synthesis of “LTD proteins”, which is opposite to that respon-
sible for increased mGlu5 receptor-dependent LTD in Fmr1 KO
mice. Interestingly, the mGlu5 receptor positive allosteric modula-
tor (PAM), 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)-benzamide
(CDPPB), restored mGlu5 receptor-dependent-LTD in Tsc2-/+ mice
and mice carrying both Fmr1 and Tsc2 deletion showed nor-
mal  mGlu5 receptor-dependent LTD (Auerbach et al., 2011). This
finding has important implications for the pathophysiology of ID
associated with autism because deviation in opposite direction in
similar biochemical mechanisms might underlie common patho-
logical phenotypes. In addition, the appropriate treatment for a
specific autism-spectrum disorder may  be detrimental for another
disorder.

4.2. Macrocephaly/autism syndrome

The tumour-suppressor gene, phosphatase and tensin homolog
(PTEN) is a well established candidate gene in autism. PTEN
germline loss of function mutations have been found in a subset
of children affected by macrocephaly, autism spectrum disorders
and ID, and PTEN mutation are present in about 5–10% of autis-
tic patients (McBride et al., 2010; Zhou and Parada, 2012). PTEN is
an established tumour suppressor gene that is mutated in several
types of cancers, and encodes for a phosphatidylinositol-3,4,5-
trisphosphate 3-phosphatase which behaves as an inhibitor of the
gulation of group-I metabotropic glutamate (mGlu) recep-
al Disability and Autism. Neurosci. Biobehav. Rev. (2014),

PI3K/mTOR/AKT pathway. A conditional KO mouse in which Pten
is selectively ablated in granule cells of the dentate gyrus, and
in pyramidal neurons of the CA3 region shows features resem-
bling the human condition, such as abnormal social interaction

650

651

652

653

dx.doi.org/10.1016/j.neubiorev.2014.02.003


Please
 

cite
 

th
is

 
article

 
in

 
p

ress
 

as:
 

D
’A

n
ton

i,
 

S.,
 

et
 

al.,
 

D
ysregu

lation
 

of
 

grou
p

-I
 

m
etabotrop

ic
 

glu
tam

ate
 

(m
G

lu
)

 
recep

-
tor

 
m

ed
iated

 
sign

allin
g

 
in

 
d

isord
ers

 
associated

 
w

ith
 

In
tellectu

al
 

D
isability

 
an

d
 

A
u

tism
.

 
N

eu
rosci.

 
B

iobeh
av.

 
R

ev.
 

(2014),
h

ttp
://d

x.d
oi.org/10.1016/j.n

eu
biorev.2014.02.003

A
R

T
IC

L
E

 IN
 P

R
E

S
S

G
 M

odel
N

B
R

 1893
 1–14

8
 

S.
 D

’A
ntoni

 et
 al.

 /
 N

euroscience
 and

 Biobehavioral
 R

eview
s

 xxx
 (2014)

 xxx–xxx

Table 1
Summary of evidence suggesting involvement of group-I mGlu receptors in syndromic and non syndromic form of ID/autism.Q2

DiseasE Gene OMIM
number

Model mGlu1/5-LTD Signalling pathways to
protein synthesis

mGlu1/5
receptors
proteins
expression

References

Fragile X syndrome FMR1 #300624 Fmr1 KO mouse ↑ mGlu5-LTD
(hippocampus),1 ↑
mGlu1-LTD (cerebellum),2

↓ mGlu5-LTD (eCB
dependent, ventral
striatum
and prefrontal cortex),3 ↑
mGlu5-LTD
(eCB dependent, striatum)4

↑ mTOR (basal),5–7 ↓
mTOR DHPG induced,8

- ERK (basal and DHPG
induced)9

↑ mGlu54,10,11 1Huber et al., 2002;
2Koekkoek et al., 2005;
3Jung et al., 2012;
4Maccarrone et al.,
2010;
5Gross et al., 2010;
6Sharma et al., 2010;
7Busquets-Garcia et al.,
2013;
8Ronesi and Huber,
2008;
9Osterweil et al., 2010;
10Lohith et al., 2013;
11Spatuzza et al.,
unpublished

Tuberous  sclerosis
complex

TSC1 #191100 Tsc1 conditional KO mouse
(deletion of Tsc1 in a
subset of hippocampal CA1
neurons)

↓ mGlu5-LTD
(hippocampus)

↑ mTOR (basal)1 ↑ mGlu12

↑ mGlu52

1Bateup et al., 2011;
2Boer et al., 2008

TSC2 #613254 �RG transgenic mouse
carrying a deletion and a
substitution in Tsc2 which
interferes with both the
GAP domain and
rabaptin-5 binding motif

↓ mGlu5-LTD
(hippocampus)

↑ ERK (basal)
-  mTOR

N.D. Chévere-Torres et al.,
2012

Tsc2 +/− mouse ↓ mGlu5-LTD
(hippocampus)

- ERK (basal and DHPG
induced)

N.D. Auerbach et al., 2012

Macrocephaly/autism
syndrome

PTEN  #605309 Pten conditional KO mouse
(ablation of Pten in the
granule cells of the dentate
gyrus, pyramidal neurons
of the hippocampal CA3
and select populations of
postmitotic neurons in the
cortex

↓ mGlu5-LTD
(hippocampus)1

↑ mTOR (basal)2 N.D. 1Takeuchi et al., 2013;
2Kwon et al., 2006

Phelan McDermid
syndrome

SHANK 3 #606232 Shank knockdown
(cultured hippocampal
neurons)

↓ mGlu5-LTD ↓ ERK (DHPG induced) ↓ mGlu5 Verpelli et al., 2011

Obsessive–compulsive
disorder

SAPAP 3 #164230 Sapap3 KO mouse ↑ mGlu5-LTD
(eCB dependent, striatum)1

N.D. ↑ mGlu5
(striatum)2

1Chen et al., 2011;
2Wan  et al., 2011

Non-syndromic
form of autism

NLGN3 *300336 Nlgn3 KO mouse absent mGlu1-LTD
(cerebellum)

N.D. ↑ mGlu1
(cerebellum
and thalamus)

Baudoin et al., 2012

↑ increased; ↓ reduced; - unchanged.
eCB: endocannabinoid; DHPG: (RS)-3,5-dihydroxyphenylglycine; LTD: long term depression; N.D.: not determined.

dx.doi.org/10.1016/j.neubiorev.2014.02.003
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nd exaggerated responses to sensory stimuli, as well as macro-
ephaly and neuronal hypertrophy (Kwon et al., 2006). A reduction
f group-I mGlu receptor-dependent LTD and an increased theta
urst-induced LTP were detected at the perforant path/dentate
yrus granule cells synapses before the onset of morphological
efects in Pten-deficient mice. These forms of synaptic plasticity are
I3 kinase- and protein synthesis-dependent, and their early dys-
egulation supports the hypothesis of a synaptic defect in autism.
nterestingly, while the increased LTP is transient during develop-

ent, the defect in mGlu5 receptor-dependent LTD is permanent
n these mice, indicating a requirement of PTEN for these forms of
lasticity, at least at these synapses (Takeuchi et al., 2013).

.3. Phelan McDermid/22q13 deletion

Accumulating evidence suggests that molecular defects of
HANK proteins are associated with autism (Jiang and Ehlers, 2013).
HANK/ProSAP proteins (SHANK1, 2 and 3) are postsynaptic scaf-
olding proteins that regulate the size of dendritic spines and
he recruitment of post-synaptic receptor complexes. Importantly,
HANK proteins function as a molecular link between mGlu1/5
eceptors and NMDA receptors through a chain of interacting pro-
eins including mGlu1/5 receptors, long Homers, Shank, GKAP,
nd GluN2 subunits of NMDA receptors (Fig. 1). Mutations of
HANK3/PROSAP2 gene are cause of 22q13 deletion/Phelan Mc
ermid syndrome, a neurodevelopmental disorder characterized
y developmental delay, hypotonia, language impairment, mild
D and autistic features (Phelan, 2008). Furthermore, mutations of
HANK3 are the most frequent among the rare variants found in
utism (for review see Betancur and Buxbaum, 2013; Bourgeron,
009) and have also been detected in non syndromic form of ID
Gong et al., 2012). More recently, SHANK1 and SHANK2 have been
lso implicated in autism (Berkel et al., 2010; Sato et al., 2012).
everal mutant mice for all Shank family genes have been created
nd all of them exhibit abnormalities in social behaviour resem-
ling autistic features (Jiang and Ehlers, 2013; Wang et al., 2014).
lutamatergic transmission and synaptic plasticity is variously

mpaired in most of these models although a specific involvement
f mGlu receptor mediated transmission has not been identified.
owever, in Shank 1 and Shank 3 mutant mice a reduction of
omer1 proteins might implicate an alteration of mGlu5-mediated

ignalling in these mutant mice (Hung et al., 2008; Peç a et al.,
011; Wang et al., 2011), whereas only NMDA receptor medi-
ted signalling appear to be impaired in Shank 2 mutant mice
Won  et al., 2012). In contrast with evidence from Shank mutant

ice in which single splice variants are affected, a recent in vitro
tudy, in which the expression of all the major Shank3 splice vari-
nts have been knocked down through RNA interference, suggests
hat dysfunctional mGlu5 receptor signalling might be involved
n the pathophysiology of 22q13 deletion/Phelan Mc Dermid syn-
rome (Verpelli et al., 2011). They found that knockdown of Shank3
auses a specific reduction in the expression of mGlu5 recep-
ors, whereas levels of NMDA and AMPA receptor subunits, Homer
nd GKAP were unchanged. The lower mGlu5 receptor expres-
ion was associated with a reduced DHPG-stimulated ERK1/2 and
REB phosphorylation and mGlu5 receptor-dependent decrease of
EPSC frequency, a form of mGlu5 receptor-dependent LTD in cul-

ured neurons. Interestingly, defects in mGlu5 receptor-dependent
RK1/2 phosphorylation were not rescued by overexpression of
wo Shank3 carrying mutations that have been found in patients
ith autism (Durand et al., 2007), suggesting that alteration of
Glu5 receptor signalling might be a common mechanism in Phe-
Please cite this article in press as: D’Antoni, S., et al., Dysre
tor mediated signalling in disorders associated with Intellectu
http://dx.doi.org/10.1016/j.neubiorev.2014.02.003

an Mc  Dermid disease and non syndromic form of autism linked
o Shank3 mutations. The observed reduction of mGlu5 receptor-
ependent ERK1/2 phosphorylation in Shank3-deficient neurons
as corrected by enhancement of mGlu5 receptor activity induced
 PRESS
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by the selective PAM, CDPPB. While in disorders associated to
SHANK3 mutation mGlu5 PAMs might work by restoring the func-
tion of mGlu5 receptors, they may  also be beneficial in other forms
of ASD, such as those caused by mutations of SHANK2 where they
promote the mGlu5-mediated enhancement of NMDA function
(Won  et al., 2012).

4.4. Obsessive compulsive disorder (OCD)

Another interesting example of mutations of scaffolding pro-
teins affecting mGlu5 signalling and possible involvement of
dysfunctional mGlu5 mediated transmission in autism related dis-
orders is the Sapap3 KO model of obsessive-compulsive disorder
(OCD). Symptoms of OCD are thought to be related to the repet-
itive behaviours which are a hallmark of autism. SAP90/PSD-95
associated proteins (SAPAPs, also referred to as GKAPs) are scaffold-
ing proteins linking NMDA/PSD95 complex to mGlu/Homer (Kim
et al., 1997; Takeuchi et al., 1997; Tu et al., 1999). SAPAP3 is one of
four isoforms and is highly expressed in the striatum. Mice carry-
ing a deletion of Sapap3 gene exhibit features resembling obsessive
compulsive behaviour such as excessive grooming, excessive anx-
iety, facial lesions and positive response to fluoxetine (Welch
et al., 2007). In this mouse model, an excessive endocannabi-
noid mediated depression was detected at excitatory synapses of
striatal medium spiny neurons which was caused by increased
mGlu5 receptor expression/activity (Chen et al., 2011). MPEP was
shown to correct the excessive eCB-mediated plasticity and both an
increased surface expression of mGlu5 receptors and an increased
intracellular calcium release in response to the mGlu1/5 recep-
tor orthosteric agonist DHPG was  detected in Sapap3 mice. Thus,
SAPAP3 like Homer proteins can regulate the expression of mGlu5
receptors. Intriguingly this phenotype is similar to that described in
the striatum of FXS mouse model by Maccarrone et al. (2010) and
may  underlie compulsive-repetitive behaviour in different disor-
ders. The increased mGlu5 receptor activity is also responsible for
an increased AMPA receptor endocytosis that is independent on
endocannabinoids (Wan  et al., 2011), pointing again to common-
ality with mGlu5-dependent AMPA receptor endocytosis observed
in FXS (Nakamoto et al., 2007). It would be interesting to know
whether this effect is caused by an increased mGlu5-mediated stri-
atal protein synthesis. Furthermore, the mechanisms which lead
to the increased expression of mGlu5 receptors in the absence of
SAPAP3 are unknown.

4.5. Non-syndromic autism

A further evidence that group-I mGlu receptors may  be involved
in non-syndromic form of autism is provided by a recent study car-
ried out on the neuroligin-3 (Nlgn3) KO mouse model of autism
(Baudouin et al., 2012). NLGN genes encode post-synaptic adhe-
sion molecules (neuroligin 1–4) involved in post-synaptic assembly
and regulation of synaptic transmission via interaction with pre-
synaptic neurexins (Craig and Kang, 2007). Mutations in both
neuroligin and neurexin genes have been found to be associated
with non-syndromic forms of autism; for Nlgn3, a R451C point
mutation and deletion have been identified in several patients with
autism, and a Nlgn3 KO and Nlgn R451C knockin mice exhibit
features of autistic behaviour. Nlgn3 KO mice exhibit a striking
increase in the expression of mGlu1 receptors in the cerebellum
which is associated with an occlusion of group-I mGlu receptor
induced LTD at parallel fibres–Purkinje cell synapses (Baudouin
et al., 2012).
gulation of group-I metabotropic glutamate (mGlu) recep-
al Disability and Autism. Neurosci. Biobehav. Rev. (2014),

Other work implicates enhanced mGlu5 receptor function in
autistic like behaviours in mice. The BTBR mouse is an inbred
mouse strain that shows robust behaviours analogous to autism in
humans, such as reduced social interaction, repetitive behaviours
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nd altered vocalizations (McFarlane et al., 2008). Recent studies
emonstrated that mGlu5 receptor antagonists reversed the repet-

tive behaviours and enhanced social interactions in the BTBR mice
Silverman et al., 2012, 2010) suggesting that dysfunction of mGlu5
eceptors leads to behaviours with face validity for autism.

. Group-I mGlu receptor expression/signalling may  be a
ommon feature of syndromic and non syndromic autism

The first studies aimed at investigating the expression of mGlu5
eceptor in the brain of Fragile X mouse models revealed no changes
n levels of protein expression in hippocampal homogenates (Huber
t al., 2002) and forebrain synaptosomes (Giuffrida et al., 2005).
ore recent evidence, however, suggests that changes in the

xpression of mGlu5 receptors may  be associated with FXS. Accord-
ngly, an increased MPEP binding has been found in the striatum
f Fmr1 KO mice (Maccarrone et al., 2010). We  have also found
hat mGlu5 expression is up-regulated in a region- and age-specific

anner in a mouse model of FXS (Spatuzza, D’Antoni, Catania,
npublished). The possibility that mGlu5 receptors might be up-
egulated is further strengthened by the evidence that mGlu5
RNA directly interacts with FMRP (Darnell et al., 2011). Interest-

ngly, a striking up-regulation of mGlu5 receptors in children with
utism has been associated with a reduction of FMRP, further cor-
oborating the idea that FMRP might be a key regulator of mGlu5
xpression (Fatemi et al., 2011). A recent study, using in-vitro radio-
igand binding assays and Western blotting reports a marginally
ignificant increase in mGlu5 receptor density (+16%) and a sta-
istically significant increase in mGlu5 receptor expression in the
ostmortem prefrontal cortex of FXS patients or carriers, compared
ith age- and sex-matched controls without neurological disorders

Lohith et al., 2013).
An increased expression of mGlu1/mGlu5 receptors has been

etected in human specimens from TSC, namely in dysplastic neu-
ons and in giant cells within cortical tubers, as well as in tumour
ells within subependymal giant-cell tumours (Boer et al., 2008).

An involvement of group-I mGlu receptor signalling in autism
s also suggested by a recent work which identified rare and
otentially deleterious Homer1 single-nucleotide variants (SNV)
xclusively in a population of non syndromic autism cases
ompared to ethnically-matched controls, by high-throughput
ultiplex sequencing (Kelleher et al., 2012). Interestingly, all of

he identified missense mutations alter residues which are con-
erved among mammalian species; two of these SNV localize to
he EVH domain of Homer1, one is located in a proline rich domain
hich is also important for interaction with mGlu receptor or
omer1 homo-multimerization, and a fourth one is located in the
′ untranslated region within a cluster of predicted microRNA bind-

ng sites, with possible consequences in HOMER1 mRNA translation
nd protein expression (Kelleher et al., 2012).

. Conclusion

Several lines of evidence point to a major involvement of mGlu
eceptor signalling as a common pathway in several disorders asso-
iated to ID and autism. mGlu-receptor mediated plasticity, namely
Glu-LTD, has been studied as an important read-out of mGlu

eceptor activation in different brain regions in several ID/autism
ouse models and found either increased or decreased. Work in

XS shows that while some phenotypes are critically dependent
n mGlu-activated protein synthesis others implicate additional
Please cite this article in press as: D’Antoni, S., et al., Dysre
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echanisms such as endocannabinoid signalling and mGlu1/5-
omer coupling. Finally, an increased expression of mGlu1/5

eceptor protein has been detected both in human specimens and
ouse models. Although more studies are necessary to dissect
 PRESS
avioral Reviews xxx (2014) xxx–xxx

the molecular mechanisms which lead to changes in mGlu1 and
5 receptor expression in autism, these studies suggest that group-I
mGlu receptors may  be key regulators of autistic endophenotypes
in syndromic forms of autism and may  be targeted by therapeutic
intervention in non syndromic forms of autism.
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