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S U M M A R Y
Active volcanoes generate sonic and infrasonic signals, whose investigation provides useful
information for both monitoring purposes and the study of the dynamics of explosive phenom-
ena. At Mt. Etna volcano (Italy), a pattern recognition system based on infrasonic waveform
features has been developed. First, by a parametric power spectrum method, the features
describing and characterizing the infrasound events were extracted: peak frequency and qual-
ity factor. Then, together with the peak-to-peak amplitude, these features constituted a 3-D
‘feature space’; by Density-Based Spatial Clustering of Applications with Noise algorithm
(DBSCAN) three clusters were recognized inside it. After the clustering process, by using
a common location method (semblance method) and additional volcanological information
concerning the intensity of the explosive activity, we were able to associate each cluster to a
particular source vent and/or a kind of volcanic activity. Finally, for automatic event location,
clusters were used to train a model based on Support Vector Machine, calculating optimal
hyperplanes able to maximize the margins of separation among the clusters. After the training
phase this system automatically allows recognizing the active vent with no location algorithm
and by using only a single station.

Key words: Time series analysis, Volcano seismology, Volcano monitoring.

1 I N T RO D U C T I O N

Two of the fundamental tasks of volcano monitoring are to follow
volcanic activity and promptly recognize any changes. To achieve
such goals, reliable field measurements and advanced data anal-
ysis methods are required. Different geophysical techniques (i.e.
seismology, ground deformation, remote sensing, magnetic and
electromagnetic studies, gravimetry) are used to obtain precise mea-
surements of the variations induced by an evolving magmatic sys-
tem. In recent years, useful information to monitor the explosive
activity of volcanoes, as well as to investigate its source processes,
have been provided by studying infrasonic signals (e.g. Vergniolle &
Brandeis 1994; Ripepe & Marchetti 2002; Cannata et al. 2009a,b;
Marchetti et al. 2009). The location of the source of the infra-
sonic signals, generally coinciding with active vents, is of great
importance for volcanic monitoring. Thus, different techniques,
generally based on the comparison of the infrasonic signals us-
ing cross-correlation or semblance functions, have been developed
(e.g. Ripepe & Marchetti 2002; Garces et al. 2003; Johnson 2005;
Matoza et al. 2007; Jones et al. 2008; Montalto et al. 2010).

Over the last decades, Mt. Etna volcano (Italy) has been
characterized by a remarkable increase in the frequency of short-
lived, but violent eruptive episodes at the summit craters. Between
1900 and 1970, about 30 paroxysmal eruptive episodes occurred at

the summit craters, while there have been more than 180 since then
(Behncke & Neri 2003). The summit area of Mt. Etna is currently
characterized by four active craters: Voragine, Bocca Nuova, South-
east Crater and Northeast Crater (hereafter referred to as VOR, BN,
SEC and NEC, respectively; see Fig. 1). These craters are charac-
terized by persistent activity that can be of different and sometimes
coexistent types: degassing, lava filling or collapses, low rate lava
emissions, phreatic, phreato-magmatic or strombolian explosions
and lava fountains (e.g. Cannata et al. 2008). At Mt. Etna in 2006,
a permanent infrasound network was deployed providing useful in-
formation to monitor the explosive activity (Cannata et al. 2009a,b;
Di Grazia et al. 2009). Unfortunately, sometimes during the winter
season owing to bad weather conditions, the lack of signals from
some summit stations prevents applying the aforementioned loca-
tion algorithms. Here, we propose a new system, based on pattern
recognition techniques, able to identify at Mt. Etna the active sum-
mit crater from the infrasonic point of view using only the signal
recorded by a single station.

2 I N F R A S O U N D F E AT U R E S AT
M t . E T NA

Some recent studies have shown that the infrasonic signal at
Mt. Etna is generally composed of amplitude transients (named
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Figure 1. Digital elevation model of Mt. Etna with the location of the infrasonic sensors (triangles and squares), composing the permanent infrasound network.
The upper right inset shows the distribution of the four summit craters (VOR, Voragine; BN, Bocca Nuova; SEC, Southeast Crater; NEC, Northeast Crater).

Figure 2. Infrasonic events recorded by EBEL station and corresponding Short Time Fourier Transform, obtained by using 2.56-s long windows overlapped
by 1.28 s. The event in (a) is a typical ‘SEC event’, the one in (b) a typical ‘NEC event’.

‘infrasonic events’), characterized by short duration (from 1 to over
10 s), impulsive compression onsets and peaked spectra with most
of energy in the frequency range 1–5 Hz (Fig. 2; Gresta et al.
2004; Cannata et al. 2009a,b). Similar features are also observed

at several volcanoes, though characterized by different volcanic
activity, such as Stromboli (Ripepe et al. 1996), Klyuchevskoj
(Firstov & Kravchenko 1996), Sangay (Johnson & Lees 2000),
Karymsky (Johnson & Lees 2000), Erebus (Rowe et al. 2000),
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Clustering and classification of infrasonic events 255

Arenal (Hagerty et al. 2000) and Tungurahua (Ruiz et al.
2006).

Since the deployment of the infrasound permanent network at
Mt. Etna in 2006, two summit craters have been recognized as
active from the infrasonic point of view: SEC and NEC (Cannata
et al. 2009a,b). The former has been characterized by sporadic
explosive activity with different intensity, from ash emission to lava
fountaining, while the latter mainly by degassing. According to
Cannata et al. (2009a,b), these craters generate infrasound signals
with different spectral features and duration: ‘SEC events’, showing
a duration of about 2 s, dominant frequency mainly higher than
2.5 Hz and higher peak-to-peak amplitude than the NEC events
(Fig. 2a); ‘NEC events’, lasting up to 10 s and characterized by
dominant frequency generally lower than 2.5 Hz (Fig. 2b).

3 DATA A C Q U I S I T I O N A N D
I N F R A S O U N D S I G NA L
C H A R A C T E R I Z AT I O N

In the following subsections (i) data acquisition and event detection,
(ii) features extraction and (iii) the semblance algorithm are briefly
described.

3.1 Data acquisition and event detection

Since 2006, the permanent infrasound network run by Istituto
Nazionale di Geofisica e Vulcanologia, Section of Catania, has been
composed of a number of stations ranging from one to eight depend-
ing on the considered period, located at distances ranging between
1.5 and 7 km from the centre of the summit area (Fig. 1). Today,
some stations are equipped with Monacor condenser microphones
MC-2005, with a sensitivity of 80 mV Pa−1 in the 1–20 Hz infra-
sonic band, while others with GRASS 40AN microphone with a
flat response with sensitivity of 50 mV Pa−1 in the frequency range
0.3–20000 Hz. The infrasonic signals are transmitted in real-time
by means of radio link to the data acquisition centre in Catania
where they are acquired at a sampling rate of 100 Hz.

At Mt. Etna we use EBEL as reference station, because it gen-
erally shows a very good signal-to-noise ratio and, unlike the other
summit stations, its maintenance is generally feasible even during
the winter season. Once the infrasound signal is recorded, the signal
portions of interest, that are the infrasonic events, have to be ex-
tracted. Then, the root mean square (rms) envelope of the infrasonic
recordings is calculated by a moving window of fixed length. Suc-
cessively, we calculate the percentile envelope on moving windows
of rms envelope. For a given time-series, the pth percentile can be
defined as the value such that at most (100 × p) per cent of the
measurements are less than this value and 100(1 – p) per cent are
greater. In light of this, the estimation of percentile enables us to
efficiently detect amplitude transients and estimate background sig-
nal level. The percentage threshold should be chosen on the basis of
both the amount of transients in the signal that have to be included
or excluded in our calculations and the signal-to-noise ratio. The
performance of this method was compared with the short time av-
erage/long time average (STA/LTA) technique (e.g. Withers 1997;
Withers et al. 1998). The lengths of short and long windows, mainly
depending on the frequency content of the investigated signal, were
fixed respectively to 2.5 and 12.5 times the dominant period of the
signal (equal to roughly 0.3 s), considered a reasonable compro-
mise between sensitivity and noise reduction (Withers 1997), and
the detection threshold to 1.7. As shown in Fig. 3, the trigger re-

sults obtained by the two methods were similar; nevertheless, the
technique based on percentile was also able to detect transients very
close to each other.

3.2 Infrasonic signal features extraction

Often the decomposition of a time-series into purely harmonic com-
ponents (Fourier transform case) can be impractical. In fact, the
actual oscillations observed in geophysics often decay (or grow)
exponentially with time, due to some mechanisms of energy dissi-
pation (or supply), as if the frequency were complex (Kumazawa
et al. 1990). Therefore, the spectral structure will be reasonably rep-
resented in the complex frequency space (Kumazawa et al. 1990).
Since infrasonic events can be represented as decaying complex
exponential functions, to determine their complex frequency the
Sompi method can be used (Kumazawa et al. 1990, & references
therein). This is a high-resolution spectral analysis method based
on an autoregressive (AR) filter. By this method, a given time series
is resolved into a number of ‘wave elements’ that consist of decay-
ing harmonic components, and additional noise (more details about
Sompi method are reported in the Appendix). Each wave element
is specified by two complex parameters z and α (Kumazawa et al.
1990)

z = exp(γ + iω) (1)

α = Aeiθ , (2)

where γ and ω are the real and imaginary parts of the complex
angular frequency, A and θ correspond to the real amplitude and
phase of the wave element referred to some origin point and finally
i is

√−1. Another two parameters, ordinary real frequency and
‘gradient’ or ‘growth rate’, referred as to f and g, respectively
(Kumazawa et al. 1990), are given by

f = ω/2π (3)

g = γ /2π. (4)

Finally, the ‘dissipation factor’ or ‘quality factor’ Q is defined as

Q = − f/2g. (5)

Generally, to represent a set of complex frequencies, their locations
are plotted on a 2-D plane with f and g axes. The wave elements
scattering widely in the plot, as the AR order changes, are consid-
ered noise. It is also possible to identify some wave elements densely
populated on the theoretical frequency lines that remain mainly sta-
ble as the AR order changes. They are considered dominant spectral
components (Hori et al. 1989). An example of frequency-growth
rate domain for an infrasound event recorded by EBEL station is
reported in Fig. 4. Therefore, in summary, the spectral features
of an infrasonic event can be described by the two parameters Q
and f .

Further, in addition to frequency and quality factor, the third fea-
ture used to characterize the infrasound events is the peak-to-peak
amplitude, depending on both distance source-station and energy of
the infrasonic source.
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Figure 3. (a) Three-minute long infrasound signal recorded by EBEL station, (b) corresponding rms envelope (black line) calculated by using a moving
window of 0.7 s and (c) STA/LTA values. The horizontal grey dashed line in (b) indicates the detection threshold calculated by a percentile value of 5 multiplied
by 5. The horizontal grey dashed line in (c) indicates the detection threshold fixed at 1.7. The arrows at top of (b,c) indicate the onset time of the detected
events.

3.3 Semblance algorithm

The location of the source of the infrasonic events, generally coin-
ciding with active vents, is of great importance for volcanic moni-
toring. Therefore, different location techniques, generally based on
grid searching procedures, were developed (e.g. Ripepe & Marchetti
2002; Jones et al. 2008; Johnson et al. 2010; Montalto et al. 2010).
The semblance technique is based on the semblance function that is
a measure of the similarity of multichannel data (Neidell & Taner
1971). For infrasonic events this method applies a 2-D grid search-
ing procedure over a surface covering the summit area and coincid-
ing with the topographic surface. The infrasonic source is assumed
to be in each node of the grid, and for each node the theoreti-
cal traveltimes at the sensors are first calculated. Then, infrasonic
signals at different stations are delayed and compared by the sem-
blance function. Finally, the source is located in the node where

the delayed signals show the largest semblance value. Therefore,
the semblance function is assumed representative of the probability
that a node has to be the source location (further details about the
method are reported in Montalto et al. 2010). In Fig. 5 two exam-
ples of infrasound location are reported for a SEC event and a NEC
event.

4 PAT T E R N R E C O G N I T I O N
T E C H N I Q U E S

Automatic extraction, recognition, description and classification of
patterns extracted from images and signals are important tasks in
several scientific disciplines. For instance, several studies based
on pattern recognition (hereafter referred to as PR) techniques have
been performed on seismo-volcanic signal analysis (e.g. Ohrnberger
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Figure 4. (a) Infrasound event recorded by EBEL station, and corresponding (b) frequency-growth rate plot (AR order 2–60) and (c) amplitude spectrum. The
grey area in (a) represents the window used to calculate the frequency-growth rate plot in (b). The dashed lines in (b) represent lines along which the quality
factor (Q) is constant. Clusters of points in (b) indicate dominant spectral components of the signal; scattered points represent noise.

2001; Kohler et al. 2009). The main aspect of PR is the definition
of a set of peculiar features or descriptive elements of the analysed
objects. Given a pattern, the recognition process consists of one of
the following tasks: (i) supervised classification in which objects
are classified on the basis of inference rules acting on a set of
knowledge patterns (Joswig 1990); (ii) clustering that is the process
of grouping sets of objects into classes called clusters with no a
priori knowledge.

In the first case, the classifier design can be implemented by
several techniques, implying the definition of a metric based on
template matching or the minimum distance between pattern and
class prototype. Other classification techniques are based on geo-
metric approaches. These kinds of classifiers are based on a training
procedure that minimizes an error (such as the mean square error,
MSE) computed comparing classification output and target value. A
powerful method in classifier design is the Support Vector Machine
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Figure 5. Examples of space distribution of semblance values, calculated by locating two infrasonic events at Mt. Etna, and corresponding infrasonic signals
at four different stations shifted by the time delay that allows obtaining the maximum semblance. The red squares and stars in the top plot indicate four station
sites and the nodes with the maximum semblance value, respectively. The black lines in the top plot are the altitude contour lines from 3 to 3.3 km a.s.l.

(SVM) introduced by Vapnik (1998). This algorithm is different
from other hyperplane-based classifiers such as single layer per-
ceptron. The problem of estimating hyperplane that separates two
classes is not unique. The SVM algorithm is able to find the optimal
hyperplane that separates the classes.

Another important task in PR is the clustering problem that,
as aforementioned, is the process of grouping data without any
a priori information. Objects belonging to the same cluster will
be more similar than objects belonging to different clusters with
respect to some given similarity measures. Many clustering meth-
ods exist in literature (Berkhin 2002). These can be broadly divided
into hierarchical and partitioning. Hierarchical algorithms gradually
(dis)assemble objects into clusters. On the other hand, partitioning
algorithms learn clusters directly, trying to discover clusters either
by iteratively relocating points between subsets or by identifying
areas heavily populated with data. This second type of partition-
ing algorithms attempts to discover dense connected components
of data. Examples of algorithms belonging to such a category are:
DBSCAN, OPTICS and DENCLUE (Berkhin 2002). The system
proposed in this work uses both clustering and classification al-
gorithms to develop an automatic procedure able to discover and
classify clusters in a given feature space. The algorithm chosen
for pattern clustering and classification are DBSCAN and SVM,
respectively.

4.1 Clustering algorithm based on DBSCAN

Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN; Ester et al. 1996) is a density-based clustering algorithm

able to discover clusters of arbitrary shape in spatial databases with
noise. Clusters are defined as maximal sets of density-connected
points. Usually DBSCAN runs on data sets drawn from multidi-
mensional or metric spaces and uses a distance function to compare
objects. Given a data set D of objects, DBSCAN makes use of
the following structures and definitions (Ester et al. 1996): (i) ε-
neighbourhood, (ii) core point, (iii) directly density-reachable, (iv)
density-reachable and (v) density-connected. The ε-neighbourhood
of a point p, denoted by Nε(p), is a subset of points q in D, such
that a distance measure dist(p,q) (such as the Euclidean distance)
is lower than ε. The point p is called core point or core object
if its ε-neighbourhood has cardinality above a minimum thresh-
old called MinPts. Each point q which lies in the ε-neighbourhood
of a point p is called directly density-reachable from p (Fig. 6a).
A point q is density-reachable from a point p with respect to ε

and MinPts if there is a chain of points q1,. . ., qn such that q1 =
p, qn = q and qi+1 is directly density-reachable from qi for each
i (Fig. 6b). A point q is density-connected to a point p with re-
spect to ε and MinPts if there is a point o such that both p
and q are density reachable from o with respect to ε and MinPts
(Fig. 6c).

Given D, ε and MinPts as input parameters, DBSCAN clusters
D by checking the ε-neighbourhood of each object in D. If the ε-
neighbourhood of an object p contains more than MinPts, a new
cluster with p as core object is created. DBSCAN iteratively col-
lects directly density-reachable objects from these core objects. The
process terminates when no new objects can be added to any cluster.
In such a case, the algorithm will return the set of clusters and a
special cluster containing outliers.
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Figure 6. Examples of (a) directly density-reachable, (b) density-reachable and (c) density-connected in density-based clustering. Suppose MinPts = 3. Grey
and black dots indicate the points to group into clusters, black circles delineate the area of radius ε around black dots, the arrow denotes the relation of direct
density-reachability. In (a) dot p is the so-called core point, while q is directly density-reachable from p. In (b) dot q is density-reachable from p. In (c) dot q is
density-connected to p and o is a point such that both p and q are density reachable from o (for details see Section 4.1).

Figure 7. Two-feature planes each of which with two classes of data (black squares and grey circles) and a separating line (dashed lines): the left one shows a
small margin between clusters, the right one a larger margin (redrawn from Kecman 2001).

To estimate the best clustering structure we used an internal clus-
ter validation measure called Davies–Bouldin (DB) index (Davies
& Bouldin 1979). This index is a function of the number of clusters,
the intercluster and within-cluster distances. Formally it is defined
as follows

DB = 1

n

n∑
i=1

max
i �= j

{
Sn(Qi ) + Sn(Q j )

S(Qi , Q j )

}
, (6)

where n is the number of clusters, Sn is the average distance of
all cluster objects to their cluster centre, S(Qi, Qj) is the distance
between clusters centres. Small values of DB correspond to compact
clusters whose centres are far away from each other. Thus, the
number of clusters that minimizes DB is taken as the optimal number
of clusters. Although such a clustering phase may prove expensive
(i.e. run the algorithm several times with different parameters), this
is performed only once. In the second phase, the cluster containing
outliers (i.e. the noise) is removed from the data set.

4.2 Features classification using SVM

SVMs are a popular machine learning method for solving problems
in classification and regression, able to guarantee high classifica-
tion quality (Burges 1998). In recent years, novel applications of
SVM have been performed in several research areas such as biol-
ogy (e.g. Noble 2004; Cheng et al. 2006) and volcano seismology
(e.g. Masotti et al. 2008; Langer et al. 2009). The SVM algorithm

can be summarized as follows. It first uses a non-linear mapping
to transform the original data set into a higher dimension space.
Next, it identifies a hyperplane able to maximize the margin of sep-
aration among the classes of the training set. Such a hyperplane
is called maximum marginal hyperplane (MMH). The margin in
SVMs denotes the distance from the boundary to the closest data
in the feature space (Fig. 7). With appropriate mapping, data from
two classes can always be separated by a hyperplane. The problem
of computing the MMH can be formulated in terms of quadratic
programming in the following way (Hwanjo et al. 2003).

W (α) = −
l∑

i=1

αi + 1

2

l∑
i=1

l∑
j=1

yi y jαiα j k(xi , x j ) (7)

subject to

l∑
i=1

yiαi = 0

∀i : 0 ≤ αi ≤ C.

(8)

The number of training data is denoted by l, α is a vector of l
variables, where each component αi corresponds to a training data
(xi, yi). C is the soft margin parameter controlling the influence of
the outliers (or noise) in training data.

The kernel for linear boundary function is xiyi, a scalar product of
two data points. The non-linear transformation of the feature space
is performed by replacing k(xi, yi) with an advanced kernel ϕ, such
as polynomial kernel (xT xi + 1)p or a radial basis function kernel
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Figure 8. Two classes of data in the original 2-D space (left) and in a higher-dimensional feature space (right).

exp(− 1
2σ 2 ‖x − xi‖2). The use of an advanced kernel is an attractive

computational shortcut, which avoids the expensive creation of a
complicated feature space. An advanced kernel is a function that
operates on the input data but has the effect of computing the scalar
product of their images in a usually much higher-dimensional fea-
ture space (or even an infinite-dimensional space), which allows one
to work implicitly with hyperplanes in such highly complex spaces
(Fig. 8). The extension of SVM to multiclass problems can be
performed using two different methods called one-against-one and
one-against-all. The former constructs k(k−1)/2 classifier where
each one is trained on data from two classes. The latter constructs
k SVM classifier. In this last case, the ith SVM is trained using
all training patterns belonging to ith class with positive labels and
the other with negative labels. A point is assigned to the class for
which the distance from margin is maximal. Finally, the output of
one-against-all method is the class that corresponds to SVM with
highest output value (Weston & Watkins 1999; Hsu & Lin 2002).

4.3 Learning phase

In the proposed system, the learning phase merges together re-
sults of clustering and classification analysis (Fig. 9). The tech-
niques described in Section 4.1 and 4.2 are applied on infrasound
event features together with geophysical information used to ‘label’
the recognized clusters. About 665 events, recorded during 2007
September–November at EBEL station, were detected and filtered
in frequency range 0.5–5 Hz. The feature extraction from the de-
tected events was performed by Sompi method (Section 3.2) using
2-s long windows of infrasonic signal recorded at EBEL station
and AR order equal to two. The sharply monochromatic nature
of the investigated signals justifies the choice of this low order
(Lesage 2008). Frequency and quality factor of the events, together
with peak-to-peak amplitude, constituted the feature space and are
plotted in Fig. 10. Then, to discover clusters in this space, ‘data
clustering’ techniques based on DBSCAN algorithm (Section 4.1)
were applied. Using such an algorithm we found three main clus-
ters (called cluster 1, 2 and 3) and other outlier points that can
be considered as noise (Fig. 11). Points belonging to each cluster
are related to infrasonic events that were located using Semblance
location method (Section 3.3). In accordance with Cannata et al.
(2009b), during 2007 September–November, two infrasonic sources
were found, NEC and SEC. In particular, a cluster was composed
of events generated by NEC (cluster 1) and the other two by SEC.

Figure 9. Scheme of the learning system.

Figure 10. Feature space with frequency, quality factor and peak-to-peak
amplitude of the infrasound events recorded at EBEL station during 2007
September–November 2007.

Such last two clusters were related to different kinds of explosive
activity at SEC. In particular, the events belonging to cluster 3 were
coincident with ‘more visible’ explosions, characterized by a rele-
vant presence of ash, whereas the events of cluster 2 were hardly
visible in the monitoring video-camera recordings (Cannata et al.

C© 2011 The Authors, GJI, 185, 253–264

Geophysical Journal International C© 2011 RAS



Clustering and classification of infrasonic events 261

Figure 11. Clustering of the feature space reported in Fig. 10. The clusters
are indicated with blue (cluster 1) and green circles (cluster 3) and light
green triangles (cluster 2), the outliers with black diamonds.

Figure 12. Basic scheme of K-Fold Cross-validation (see Section 4.3 for
details).

2009b). Features clustering together with labels provide the patterns
for SVM learning process.

As mentioned in Section 4.2, optimization of parameters C (regu-
larization parameter) and σ (radial basis function kernel parameter)
is a key step in SVM learning because their values determine classi-
fication performance (Devos et al. 2009). As a consequence, model
selection is applied with the aim of finding the best pair of param-
eters C and σ that minimizes the error rate estimated as the ratio
between misclassified and hit patterns. These parameters can be
chosen using a cross-validation (CV) approach (Hastie et al. 2002),
which is a statistical method for learning algorithms evaluation
and model selection. In particular, in K-fold CV the available data
set is partitioned into K subsets or ‘folds’: K–1 folds are used for
SVM learning purpose, and the remaining fold for model validation
(Fig. 12). Thus, K iteration of learning and validation are performed
and for each ith iteration the training process is carried out using
K−1 folds and the ith fold for validation (Fig. 12). All SVM training
algorithms are computed using one-against-all method (see Section
4.2). Since we worked on a small data set, a simple exhaustive grid
search can be performed (Hsu et al. 2007). In particular, C was
systematically changed in the range [1–100] with a step of 10, σ in
the range [0.1–10] with a step of 0.5 and a K-fold CV with K =
10 was used. The entire procedure can be summarized as follows
(Fig. 13): (1) a grid value of C and σ is defined; (2) for each pair of
C and σ values, a mean error rate is computed averaging the error
rate values obtained by the K SVM models; (3) the pair of C and σ

Figure 13. Best SVM model selection using K-Fold Cross-validation (see
Section 4.3 for details).

with the minimum error rate is selected; (4) such a pair is used to
train the final SVM model with the whole data set, comprising all
the K folds. Here, the best parameter values were C = 1 and σ =
0.1, for which mean CV error minimized to 0.6 per cent.

4.4 Testing phase and final system

To verify the system, the trained SVM is tested by classifying new
unknown infrasonic events and then assigning them to their source
crater. The reliability is verified using events not analysed during the
previous learning phase (Section 4.3). To this end, a new test data
set of about 610 events, recorded during 2 months, 2007 August and
December, was used and labelled by location algorithm based on
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Table 1. Confusion matrix calculated in the testing phase. Each column
represents the instances in the predicted class (based on the SVM model),
while each row represents the instances in the actual class (based on the pre-
viously attributed labels). Thus, the entries on the diagonal (bold numbers)
count the events in which prediction agrees with known labels, whereas the
other entries the misclassified events.

Predicted

Cluster 1 Cluster 2 Cluster 3

ACTUAL Cluster 1 476 9 6
Cluster 2 9 15 8
Cluster 3 8 33 46

semblance method (Section 3.3). Moreover, the events belonging
to cluster 2 and cluster 3 were labelled using information related
to the intensity of the explosive activity (Cannata et al. 2009b).
The quality of classification is quantified using confusion matrix
(Table 1), where each column represents the instances in the pre-
dicted class (based on the SVM model), while each row represents
the instances in the actual class (based on the previously attributed
labels). Thus, the entries on the diagonal count the events in which
prediction agrees with known labels, whereas the other entries the
misclassified events. 63 elements were wrong assigned, providing
an error rate of about 11.97 per cent. Misclassifications were mostly
concentrated in the second and third classes that are related to the
two different explosion activities of SEC crater. Indeed, such a dis-
tinction is qualitative and not clearcut, hence many halfway events
can be misclassified. If we do not take into account the distinction
between clusters 2 and 3, and consider them as a single cluster, the
error decreases to 5.25 per cent.

Finally, the proposed system can be summarized as follows
(Fig. 14): (i) triggering procedures is performed on buffer of ac-
quired signal; (ii) then, if events are found, the system evaluates
whether there is a sufficient number of stations for semblance lo-

cation algorithm; (iii) if the number of stations is not sufficient,
alternative ‘single station’ location is performed by extracting sig-
nal features and classifying them using the trained SVM. It is also
worth noting that SVM classifier is also applied offline on local-
izable events to evaluate its performance in distinguishing NEC
events (cluster 1) from SEC events (clusters 2 and 3). In this
case, events belonging to clusters 2 and 3 are simply considered
SEC events and then labelled based on the source vent, with no
further distinction depending on the type of explosive activity. This
task is carried out by comparing the results of the classifier with the
location parameters provided by the semblance algorithm. By the
inspection of the obtained error rate, a new clustering execution is
necessary when classification of new signals is not aligned with that
of infrasonic network classifier. This may be caused by the creation
of a new active vent or by the changing activity of a pre-existing
vent; in such a case the system must be updated.

5 C O N C LU S I O N S

At active volcanoes the detection and location of explosive activity
is generally obtained by videocameras and thermal sensors (Har-
ris et al. 1997; Bertagnini et al. 1999). However, the efficiency of
such instruments is severely reduced or inhibited in case of poor
visibility caused by clouds or gas plumes. In these cases, the de-
tection and characterization of explosive activity by infrasound is
very useful (e.g. Cannata et al. 2009a) and some techniques, based
on infrasound signals recorded by arrays or networks, were devel-
oped to locate the source of this signal and therefore the active
vent (e.g. Ripepe & Marchetti 2002). All these techniques require
that most of the stations work properly and that the noise level is
low. Unfortunately, sometimes during winter season, because of bad
weather conditions, the possible lack of signals from some summit
stations prevents applying the aforementioned standard location al-
gorithms. At Mt. Etna, the events at a single vent for a certain type of

Figure 14. Flow chart of the proposed location system.
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activity maintain their features stable over time (Cannata et al.
2009b). Therefore, once the link between event characteristics and
vent is known we can understand which crater is active and which
volcanic activity is going on by simply extracting the features of
the infrasonic signal at a single station (dominant frequency, quality
factor and peak-to-peak amplitude). In the light of this, a system,
whose learning phase is based on clustering (DBSCAN) and classi-
fication techniques (SVM), together with geophysical information,
was developed. After the training phase this system automatically
allows recognizing the active vent, with no location algorithm and
by using only a single station with a success of ∼95 per cent.

It should be noted, however, that in a volcano as Etna, charac-
terized by almost continuous eruptive activity with different styles
and topographical variations of the summit area, the vent geometry
can change and consequently also the infrasound spectral features.
Therefore, spectral characterization and source location must be
considered complementary, especially when long lasting periods
are investigated.
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A P P E N D I X : S O M P I M E T H O D

Time-series modelling consists of estimating the governing dynam-
ics of the hypothetical linear system that has yielded the given
time-series data (Kumazawa et al. 1990). In these approaches, a
signal is considered as the impulse response of an AR or an autore-
gressive moving average (ARMA) filter. In general, ARMA filter is
a discrete-time system that takes an input sequence xn and produces
an output sequence yn. This kind of system can be described by a
linear-constant difference equation

xn =
p∑

k=1

ak xn−k −
q∑

k=1

bk yn−k, (A1)

where {ak} and {bk} are the system coefficients, p and q are the
order of the AR and MA parts of the filter, respectively. The co-
efficients of the AR filter can be obtained by solving the modified
Yule–Walker equation (Marple 1987) and the coefficients of the MA
filter can be estimated using the Durbin method (Kay 1988; Mars
et al. 2004). As argued in Lesage (2008), this process is affected by
numerical instabilities and long computation time. Furthermore, the
deconvolution of the AR part alone gives good estimation of the du-
ration and spectral content of the considered signals (Lesage 2008).
To estimate the AR coefficients, the Sompi method (Kumazawa
et al. 1990) can be implemented. Unlike the traditional spectral es-
timators in real frequency space, this method yields a line-shaped
spectrum in complex frequency space. The basic concepts of the
AR model and the formulation based on the maximum likelihood
principle lead to a model estimation algorithm different from other
AR methods (Fukao and Suda 1989; Kumazawa et al. 1990). By
Sompi analysis, a time-series is deconvoluted into a linear combina-
tion of coherent oscillation with decaying amplitude and additional
noise. Let (xn) time-series that can be considered the sum of signal
(un) and Gaussian white noise (en)

xn = un + en, (A2)

where un is described as a set of decaying sinusoids

un =
∑

k

{Ck(zk)n + C∗
k (z∗

k )n} (A3)

and zk is defined as

zk = exp(2π (gk + i fk)
t), (A4)

where 
t is the sampling step and the symbol ∗ represents the
complex conjugate. In eq. (A3) Ck represents the complex amplitude
of the kth sinusoid at the complex frequency given by fk−igk and i
is

√−1. The time-series (ui) is defined as the sequence satisfying
the AR equation

m∑
j=−m

a j ui− j = 0, (A5)

where (aj; j = −m, . . . . , m) are real AR coefficients. An exhaustive
treatment about aj coefficients estimations is reported in Hori et al.
(1989), Fukao and Suda (1989) and Kumazawa et al. (1990). Briefly,
a way to compute the coefficients aj that satisfy eq. (A5) is the
minimization of the functional S

S =
N−m∑

i=−N+m

⎛
⎝ m∑

j=−m

a j xi− j

⎞
⎠

2

(A6)

under the condition
m∑

j=−m

a2
j = 1. (A7)

This minimization problem leads to an eigenvalue problem where
coefficients aj are the eigenvectors corresponding to minimum
eigenvalues. Now, once the aj are calculated, the Sompi charac-
teristic equation is defined as

m∑
j=−m

a j z
− j = 0. (A8)

The roots zk and z∗
k of eq. (A8) give the complex frequencies ex-

pressed in eq. (A4). Let (xi) a time-series, Sompi method extracts m
wave elements characterized by a complex frequency fk – igk where
fk is the frequency, gk is the growth rate.
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