TAIWANESE JOURNAL OF MATHEMATICS
Vol. 12, No. 6, pp. 1303-1312, September 2008
This paper is available online at http://www.tjm.nsysu.edu.tw/

ON A THEORY BY SCHECHTER AND TINTAREV

Biagio Ricceri
Dedicated to Professor Wataru Takahashi on the occasion of his 65th birthday

Abstract. In this paper, we show that the beautiful theory developed by M. Schechter and K. Tintarev in [9] can be applied to the eigenvalue problem

$$
\begin{cases}-\Delta u=\lambda f(u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

when

$$
\limsup _{|\xi| \rightarrow+\infty} \frac{\int_{0}^{\xi} f(t) d t}{\xi^{2}}<+\infty
$$

and, for each λ in a suitable interval, the problem has a unique positive solution.

Here and in the sequel, X is an infinite-dimensional real Hilbert space and $J: X \rightarrow \mathbf{R}$ is a sequentially weakly continuous C^{1} functional, with $J(0)=0$.

For each $r>0$, set

$$
S_{r}=\left\{x \in X:\|x\|^{2}=r\right\}
$$

as well as

$$
\gamma(r)=\sup _{x \in S_{r}} J(x)
$$

Also, set

$$
r^{*}=\inf \{r>0: \gamma(r)>0\}
$$

In Section 2 of [9], M. Schechter and K. Tintarev developed a very elegant, transparent and precise theory whose aspects which are relevant for the present paper can be summarized as follows:
Received June 2, 2008.
2000 Mathematics Subject Classification: 35J20, 35P30, 47A75, 47J10, 47J30, 49K40, 49R50.
Key words and phrases: Global minimum, Uniqueness, Well-posedness, Nonlinear eigenvalue problem, Dirichlet problem.

Theorem A. Assume that J has no local maximum in $X \backslash\{0\}$. Moreover, let $I \subseteq] r^{*},+\infty[$ be an open interval such that, for each $r \in I$, there exists a unique $\hat{x}_{r} \in S_{r}$ satisfying $J\left(\hat{x}_{r}\right)=\gamma(r)$.

Then, the following conclusions hold:
(i) the function $r \rightarrow \hat{x}_{r}$ is continuous in I;
(ii) the function γ is C^{1} and increasing in I;
(iii) one has

$$
J^{\prime}\left(\hat{x}_{r}\right)=2 \gamma^{\prime}(r) \hat{x}_{r}
$$

for all $r \in I$.

At page 895 of [9], the authors say: "It is not yet clear, if there are general conditions providing uniqueness of the point of spherical maximum \hat{x}_{r}." Then, in the subsequent Lemma 2.14, they note that such an uniqueness does occur if J is concave.

One year after [9], Schechter and Tintarev reconsidered this question assuming it as the starting point for [10]. Actually, at page 454 of [10], after declaring that the uniqueness assumption made in Theorem A is difficult to verify in applications, they recall, as just observed in [11], that it implied by the concavity of J, but, as they say, "this condition is rather restrictive". Finally, they declare that the purpose of [10] is to give applications of Theorem A in which the uniqueness hypothesis can be verified without assuming the concavity of J.

In [7], in spite of the above recalled "pessimistic" assertions of Schecther and Tintarev, we proved that if J^{\prime} is Lipschitzian in a neighbourhood of 0 and $J^{\prime}(0) \neq 0$, then there exists an explicitly determined $\delta>0$ such that, for each $r \in] 0, \delta[$, the restriction of J to S_{r} has a unique global maximum. Therefore, the result of [7] shows that Theorem A can actually be applied to a very large class of functionals.

We then applied the method of [7] (that we first introduced in [4] and adopted in $[5,6]$ too) to prove, in [8], a very general result that we now state in a (partial) form which is enough for our purposes (with the conventions inf $\emptyset=+\infty, \sup \emptyset=-\infty$):

Theorem B. Let Y be a Hausdorff topological space and let $\Phi, \Psi: Y \rightarrow \mathbf{R}$ be such that the function $\Phi+\lambda \Psi$ has sequentially compact sub-level sets and admits a unique global minimum, say \hat{v}_{λ}, for all $\left.\lambda \in\right] a, b[$, where $-\infty \leq a<b \leq+\infty$. Set

$$
\begin{aligned}
& \eta=\max \left\{\inf _{Y} \Psi, \sup _{V_{b}} \Psi\right\} \\
& \theta=\min \left\{\sup _{Y} \Psi, \inf _{V_{a}} \Psi\right\}
\end{aligned}
$$

where V_{a} (resp. V_{b}) denotes either the set of all global minima of the function $\Phi+a \Psi$ (resp. $\Phi+b \Psi$) or the empty set according to whether a (resp. b) is finite or not. Assume that $\eta<\theta$.

Then, for every $r \in] \eta, \theta\left[\right.$, there exists $\left.\lambda_{r} \in\right] a, b\left[\right.$ such that $\hat{v}_{\lambda_{r}} \in \Psi^{-1}(r)$.
The aim of the present paper is to establish Theorem 1 below which can be regarded as the most complete fruit of a joint application of Theorems A and B.

Theorem 1. Set

$$
\rho=\limsup _{\|x\| \rightarrow+\infty} \frac{J(x)}{\|x\|^{2}}
$$

and

$$
\sigma=\sup _{x \in X \backslash\{0\}} \frac{J(x)}{\|x\|^{2}}
$$

Let a, b satisfy

$$
\max \{0, \rho\} \leq a<b \leq \sigma
$$

Assume that J has no local maximum in $X \backslash\{0\}$, and that, for each $\lambda \in] a, b[$, the functional $x \rightarrow \lambda\|x\|^{2}-J(x)$ has a unique global minimum, say \hat{y}_{λ}. Let M_{a} (resp. M_{b} if $b<+\infty$ or $M_{b}=\emptyset$ if $b=+\infty$) be the set of all global minima of the functional $x \rightarrow a\|x\|^{2}-J(x)$ (resp. $x \rightarrow b\|x\|^{2}-J(x)$ if $\left.b<+\infty\right)$. Set

$$
\alpha=\max \left\{0, \sup _{x \in M_{b}}\|x\|^{2}\right\}
$$

and

$$
\beta=\inf _{x \in M_{a}}\|x\|^{2}
$$

Then, the following assertions hold:
$\left(a_{1}\right)$ one has $r^{*} \leq \alpha<\beta$;
$\left(a_{2}\right)$ the function $\lambda \rightarrow g(\lambda)=\left\|\hat{y}_{\lambda}\right\|^{2}$ is decreasing in $] a, b[$ and its range is $] \alpha, \beta[$;
$\left(a_{3}\right)$ for each $\left.r \in\right] \alpha, \beta\left[\right.$, the point $\hat{x}_{r}:=\hat{y}_{g^{-1}(r)}$ is the unique global maximum of $J_{\mid S_{r}}$ towards which every maximizing sequence in S_{r} converges;
$\left(a_{4}\right)$ the function $r \rightarrow \hat{x}_{r}$ is continuous in $] \alpha, \beta[$;
$\left(a_{5}\right)$ the function γ is C^{1}, increasing and strictly concave in $] \alpha, \beta[$;
$\left(a_{6}\right)$ one has

$$
J^{\prime}\left(\hat{x}_{r}\right)=2 \gamma^{\prime}(r) \hat{x}_{r}
$$

for all $r \in] \alpha, \beta[$;
$\left(a_{7}\right)$ one has

$$
\gamma^{\prime}(r)=g^{-1}(r)
$$

for all $r \in] \alpha, \beta[$.

Before giving the proof of Theorem 1, let us recall the following proposition:
Proposition 1. ([4], Proposition 1). Let Y be a non-empty set, $\Phi, \Psi: Y \rightarrow \mathbf{R}$ two functions, and λ, μ two real numbers, with $\lambda<\mu$. Let \hat{v}_{λ} be a global minimum of the function $\Phi+\lambda \Psi$ and let \hat{v}_{μ} be a global minimum of the function $\Phi+\mu \Psi$. Then, one has

$$
\Psi\left(\hat{v}_{\mu}\right) \leq \Psi\left(\hat{v}_{\lambda}\right)
$$

If either \hat{v}_{λ} or \hat{v}_{μ} is strict and $\hat{v}_{\lambda} \neq \hat{v}_{\mu}$, then

$$
\Psi\left(\hat{v}_{\mu}\right)<\Psi\left(\hat{v}_{\lambda}\right) .
$$

Now, we prove Theorem 1.
Proof of Theorem 1. First of all, observe that, by Proposition 1, the function g is non-increasing in $] a, b[$ and $g(] a, b[) \subseteq[\alpha, \beta]$. Now, let $I \subset] a, b[$ be a nondegenerate interval. If g was constant in I, then, by Proposition 1 again, the function $\lambda \rightarrow \hat{y}_{\lambda}$ would be constant in I. Let y^{*} be its unique value. Then, y^{*} would be a critical point of the functional $x \rightarrow \lambda\|x\|^{2}-J(x)$ for all $\lambda \in I$. That is to say

$$
2 \lambda y^{*}=J^{\prime}\left(y^{*}\right)
$$

for all $\lambda \in I$. This would imply that $y^{*}=0$, and so (since $J(0)=0$) we would have $\inf _{x \in X}\left(\lambda\|x\|^{2}-J(x)\right)=0$ for all $\lambda \in I$, against the fact that $\inf _{x \in X}\left(\lambda\|x\|^{2}-\right.$ $J(x))<0$ for all $\lambda<\sigma$. Consequently, g is decreasing in $] a, b[$, and so, in particular, $\alpha<\beta$. Next, observe that

$$
\lim _{\|x\| \rightarrow+\infty}\left(\lambda\|x\|^{2}-J(x)\right)=+\infty
$$

for each $\lambda>\max \{0, \rho\}$. From this, recalling that J is sequentially weakly continuous, it clearly follows that we can apply Theorem B, taking $Y=X$ with the weak topology, $\Phi=-J, \Psi(\cdot)=\|\cdot\|^{2}$. Consequently, for every $\left.r \in\right] \alpha, \beta[$, there exists $\left.\lambda_{r} \in\right] a, b\left[\right.$ such that $\left\|\hat{y}_{\lambda_{r}}\right\|^{2}=r$. Therefore, by the strict monotonicity of g, we have $g(] a, b[)=] \alpha, \beta\left[\right.$. Now, let us prove $\left(a_{3}\right)$. Fix $\left.r \in\right] \alpha, \beta[$. Clearly, we have

$$
\left\|\hat{x}_{r}\right\|^{2}=r
$$

Since

$$
g^{-1}(r)\left\|\hat{x}_{r}\right\|^{2}-J\left(\hat{x}_{r}\right) \leq g^{-1}(r)\|x\|^{2}-J(x)
$$

for all $x \in X$, we then have

$$
J(x) \leq J\left(\hat{x}_{r}\right)
$$

for all $x \in S_{r}$. Hence, \hat{x}_{r} is a global maximum of $J_{\mid S_{r}}$. On the other hand, if v is a global maximum of $J_{\mid S_{r}}$, then

$$
g^{-1}(r)\|v\|^{2}-J(v)=g^{-1}(r)\left\|\hat{x}_{r}\right\|^{2}-J\left(\hat{x}_{r}\right)
$$

and hence, since

$$
\inf _{x \in X}\left(g^{-1}(r)\|x\|^{2}-J(x)\right)=g^{-1}(r)\left\|\hat{x}_{r}\right\|^{2}-J\left(\hat{x}_{r}\right),
$$

we have $v=\hat{x}_{r}$. In other words, \hat{x}_{r} is the unique global maximum of $J_{\mid S_{r}}$. Since the sub-level sets of the functional $x \rightarrow g^{-1}(r)\|x\|^{2}-J(x)$ are sequentially weakly compact, it is a classical remark ([2], p. 3) that any minimizing sequence of this functional in X converges weakly to \hat{x}_{r}. Now, let $\left\{w_{n}\right\}$ be any sequence in S_{r} such that $\lim _{n \rightarrow \infty} J\left(w_{n}\right)=\gamma(r)$. Then, we have

$$
\lim _{n \rightarrow \infty}\left(g^{-1}(r)\left\|w_{n}\right\|^{2}-J\left(w_{n}\right)\right)=\inf _{x \in X}\left(g^{-1}(r)\|x\|^{2}-J(x)\right)
$$

and so $\left\{w_{n}\right\}$ converges weakly to \hat{x}_{r}. But then, since $\lim _{n \rightarrow \infty}\left\|w_{n}\right\|=\left\|\hat{x}_{r}\right\|$ and X is a Hilbert space, we have $\lim _{n \rightarrow \infty}\left\|w_{n}-\hat{x}_{r}\right\|=0$ by a classical result. Let us prove that $r^{*} \leq \alpha$. Arguing by contradiction, assume that $\alpha<r^{*}$. Choose $r \in] \alpha, \min \left\{r^{*}, \beta\right\}[$. Then, since γ is non-decreasing in $] 0,+\infty[$ (see Lemma 2.1 of [9]) and J is continuous, we would have $\gamma(r)=0$, and so $J\left(\hat{x}_{r}\right)=0$, and this would contradict the fact that $\inf _{x \in X}\left(g^{-1}(r)\|x\|^{2}-J(x)\right)<0$ since $g^{-1}(r)<\sigma$. At this point, we are allowed to apply Theorem A taking $I=] \alpha, \beta[$. Consequently, the function γ is C^{1} and increasing in $] \alpha, \beta\left[\right.$, and $\left(a_{4}\right),\left(a_{6}\right)$ come directly from (i), (iii) respectively. Fix $r \in] \alpha, \beta\left[\right.$ again. Since \hat{x}_{r} is a critical point of the functional $x \rightarrow g^{-1}(r)\|x\|^{2}-J(x)$, we

$$
2 g^{-1}(r) \hat{x}_{r}=J^{\prime}\left(\hat{x}_{r}\right)
$$

and then $\left(a_{7}\right)$ follows from a comparison with $\left(a_{6}\right)$. Finally, from $\left(a_{7}\right)$, since g^{-1} is decreasing in $] \alpha, \beta[$, it follows that γ is strictly concave there, and the proof is complete.

The following two remarks show two very broad classes of functionals to which Theorem 1 can be applied.

Remark 1. If J^{\prime} is Lipschitzian in X, with Lipschitz constant L, then, for each $\lambda>\frac{L}{2}$, the functional $\lambda\|x\|^{2}-J(x)$ is coercive and has a unique global minimum in X ([4]).

Remark 2. If the derivative of J is compact and if, for some $\lambda>\rho$, the functional $x \rightarrow \lambda\|x\|^{2}-J(x)$ has at most two critical points in X, then the same functional has a unique global minimum in X. Indeed, if this functional had at least two global minima, taken into account that it satisfies the classical PalaisSmale condition ([11], Example 38.25), it would have at least three critical points by Corollary 1 of [3].

Remark 2, in particular, allows a systematic application of Theorem 1 to boundary value problems admitting a unique non-zero solution, provided that the involved non-linearity has, for instance, a linear growth. Note that the specific case treated in the already recalled [10] falls in this setting.

The remainder of the paper is just devoted to this point.
So, from now on, $\Omega \subset \mathbf{R}^{n}$ is an open, bounded and connected set, with sufficiently smooth boundary, and X denotes the space $H_{0}^{1}(\Omega)$, with the usual norm

$$
\|u\|=\left(\int_{\Omega}|\nabla u(x)|^{2} d x\right)^{\frac{1}{2}}
$$

Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a continuous function satisfying

$$
\sup _{\xi \in \mathbf{R}} \frac{|f(\xi)|}{1+|\xi|^{p}}<+\infty
$$

where $0<p<\frac{n+2}{n-2}$ if $n>2$ and $0<p<+\infty$ if $n=2$, and with no growth condition if $n=1$. For each $u \in X$, set

$$
J_{f}(u)=\int_{\Omega} F(u(x)) d x
$$

where

$$
F(\xi)=\int_{0}^{\xi} f(t) d t
$$

From classical results, the functional J_{f} is C^{1} and J_{f}^{\prime} is compact, and so J_{f} is sequentially weakly continuous.

For $\lambda>0$, we consider the problem
$\left(P_{\lambda}\right)$

$$
\begin{cases}-\Delta u=\lambda f(u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

As usual, a weak solution of $\left(P_{\lambda}\right)$ is any $u \in X$ such that

$$
\int_{\Omega} \nabla u(x) \nabla v(x) d x=\lambda \int_{\Omega} f(u(x)) v(x) d x
$$

for all $v \in X$.
Hence, the weak solutions of $\left(P_{\lambda}\right)$ are exactly the critical points in X of the functional $u \rightarrow \frac{1}{2}\|u\|^{2}-\lambda J_{f}(u)$.

A classical solution of $\left(P_{\lambda}\right)$ is any $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$, zero on $\partial \Omega$, which satisfies the equation pointwise in Ω. If f is locally Hölder continuous, then the weak solutions of $\left(P_{\lambda}\right)$ are classical.

Let us also recall that if f is zero in $]-\infty, 0[$ and non-negative in $[0,+\infty[$, then any non-zero classical solution of the problem is positive in Ω.

Consequently, if f is zero in] $-\infty, 0$ [and non-negative and locally Hölder continuous in $\left[0,+\infty\left[\right.\right.$, and if problem $\left(P_{\lambda}\right)$ has a unique positive classical solution u, then u turns out to be the only non-zero weak solution of $\left(P_{\lambda}\right)$.

The result about problem $\left(P_{\lambda}\right)$ coming out from Theorem 1 reads as follows:
Theorem 2. Set

$$
\begin{aligned}
\rho_{f} & =\liminf _{\|u\| \rightarrow+\infty} \frac{J_{f}(u)}{\|u\|^{2}} \\
\sigma_{f} & =\sup _{u \in X \backslash\{0\}} \frac{J_{f}(u)}{\|u\|^{2}}
\end{aligned}
$$

and

$$
\gamma_{f}(r)=\sup _{\|u\|^{2}=r} J_{f}(u)
$$

for all $r>0$. Let a, b satisfy

$$
\max \left\{0, \rho_{f}\right\} \leq a<b \leq \sigma_{f}
$$

Assume that J_{f} has no local minima in $X \backslash\{0\}$ and that, for each $\left.\lambda \in\right] a, b[$, the problem

$$
\begin{cases}-\Delta u=\frac{1}{2 \lambda} f(u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has a unique non-zero weak solution, say \hat{u}_{λ}. Let M_{a} (resp. M_{b} if $b<+\infty$ or $M_{b}=\emptyset$ if $b=+\infty$) be the set of all global minima in X of the functional $u \rightarrow a\|u\|^{2}-J_{f}(u)$ (resp. $u \rightarrow b\|u\|^{2}-J_{f}(u)$ if $\left.b<+\infty\right)$. Set

$$
\alpha_{f}=\max \left\{0, \sup _{u \in M_{b}}\|u\|^{2}\right\}
$$

and

$$
\beta_{f}=\inf _{u \in M_{a}}\|u\|^{2}
$$

Then, the following assertions hold:
(b_{1}) one has $\alpha_{f}<\beta_{f}$;
(b_{2}) the function $\lambda \rightarrow g_{f}(\lambda):=\left\|\hat{u}_{\lambda}\right\|^{2}$ is decreasing in $] a, b[$ and its range is $] \alpha_{f}, \beta_{f}[;$
(b_{3}) for each $\left.r \in\right] \alpha_{f}, \beta_{f}\left[\right.$, the function $\hat{v}_{r}:=\hat{u}_{g_{f}^{-1}(r)}$ is the unique global maximum of $\left(J_{f}\right)_{\mid S_{r}}$ towards which every maximizing sequence in S_{r} converges ;
(b_{4}) the function $r \rightarrow \hat{v}_{r}$ is continuous in $] \alpha_{f}, \beta_{f}[$;
$\left(b_{5}\right)$ the function γ_{f} is C^{1}, increasing and strictly concave in $] \alpha_{f}, \beta_{f}[$;
$\left(b_{6}\right)$ for each $\left.r \in\right] \alpha_{f}, \beta_{f}\left[\right.$, the function \hat{v}_{r} is the unique non-zero solution of the problem

$$
\begin{cases}-\Delta u=\frac{1}{2 \gamma_{f}^{\prime}(r)} f(u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

$\left(b_{7}\right)$ one has

$$
\gamma_{f}^{\prime}(r)=g_{f}^{-1}(r)
$$

for all $r \in] \alpha_{f}, \beta_{f}[$;
(b_{8}) for each $\left.\lambda \in\right] a, b[$, there exists a unique $r \in] \alpha_{f}, \beta_{f}\left[\right.$ such that $\lambda=\gamma_{f}^{\prime}(r)$ and $\hat{u}_{\lambda}=\hat{v}_{r}$.

Proof. If $\lambda \in] a, b\left[\right.$, the functional $u \rightarrow \lambda\|u\|^{2}-J_{f}(u)$ is coercive and has negative infimum in X, and hence \hat{u}_{λ} turns out to be the unique global minimum of it. At this point, we are allowed to apply Theorem 1 taking $J=J_{f}$. So, each $\left(b_{i}\right)$, with $i<8$, follows directly from the corresponding $\left(a_{i}\right)$. Concerning (b_{8}), it is clear that, for each $\lambda \in] a, b[$, the unique $r \in] \alpha_{f}, \beta_{f}[$ with the claimed property is $g_{f}(\lambda)$.

Remark 3. The hypotheses of Theorem 2 are most general but do not deal directly with f. It is therefore useful to point out some conditions, involving directly f, which imply them. To this end, let λ_{1} denote the first eigenvalue of the problem

$$
\left\{\begin{array}{l}
-\Delta u=\lambda u \quad \text { in } \Omega \\
u_{\mid \partial \Omega}=0 .
\end{array}\right.
$$

Recall that $\|u\|_{L^{2}(\Omega)} \leq \lambda_{1}^{-\frac{1}{2}}\|u\|$ for all $u \in X$. Now, set

$$
\tilde{\rho}_{f}=\limsup _{|\xi| \rightarrow+\infty} \frac{F(\xi)}{\xi^{2}}
$$

and

$$
\tilde{\sigma}_{f}=\liminf _{\xi \rightarrow 0^{+}} \frac{F(\xi)}{\xi^{2}} .
$$

It is easily seen that

$$
\rho_{f} \leq \frac{\tilde{\rho}_{f}}{\lambda_{1}}
$$

and that

$$
\sigma_{f} \geq \frac{\tilde{\sigma}_{f}}{\lambda_{1}}
$$

Moreover, it is clear that $\sigma_{f}>0$ when $\sup _{\xi \in \mathbf{R}} F(\xi)>0$. Consequently, Theorem 2 is potentially applicable when $\max \left\{0, \tilde{\rho}_{f}\right\}<\tilde{\sigma}_{f}$ or when $\tilde{\rho}_{f} \leq 0$ and $\sup _{\xi \in \mathbf{R}} F(\xi)>0$. Further, note that J_{f} has no local maxima in X if either $f(0) \neq 0$ or f is zero in $]-\infty, 0]$ and positive in $] 0,+\infty[$ (see [10], p. 456).

To conclude, we show a sample of application of Theorem 2.
Proposition 2. Let $g \in C^{1}\left(\left[0,+\infty[)\right.\right.$. Assume that $g(0)=0, g^{\prime}(0)>0$, $g(\xi)>0$ for all $\xi>0, \lim _{\xi \rightarrow+\infty} \xi g^{\prime}(\xi)=0, \lim _{\xi \rightarrow+\infty} g(\xi)$ exists and is finite and positive. Let f defined by

$$
f(\xi)= \begin{cases}g(\xi) & \text { if } \xi \geq 0 \\ 0 & \text { if } \xi<0\end{cases}
$$

Then, the conclusions of Theorem 2 hold with $a=0$, with some $\left.b \in] 0, \frac{g^{\prime}(0)}{2 \lambda_{1}}\right]$ and with $\beta_{f}=+\infty$.

Proof. By [1], there exists $\lambda^{*}>0$ such that, for every $\mu>\lambda^{*}$, the problem

$$
\begin{cases}-\Delta u=\mu g(u) & \text { in } \Omega \\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has a unique solution. Consequently, if $\lambda \in] 0, \frac{1}{2 \lambda^{*}}$, the problem

$$
\begin{cases}-\Delta u=\frac{1}{2 \lambda} f(u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has a unique non-zero weak solution. Of course, we have $\rho_{f} \leq 0$ and $\tilde{\sigma}_{f}=$ $\frac{g^{\prime}(0}{2}$. At this point, we are allowed to apply Theorem 2 taking $a=0$ and $b=$ $\min \left\{\frac{1}{2 \lambda^{*}}, \frac{g^{\prime}(0)}{2 \lambda_{1}}\right\}$. Moreover, we have $\beta_{f}=+\infty$ since J_{f} has no global maxima.

For instance, Proposition 2 can be applied to the function

$$
g(\xi)=\operatorname{arctg} \xi+c \frac{\xi^{q}}{\xi^{p}+1}
$$

where $1 \leq q \leq p$ and $c \geq 0$.
Remark 4. Note that Theorem 2 applies also when f is zero in $]-\infty, 0]$ and $\xi \rightarrow \frac{f(\xi)}{\xi}$ is positive and decreasing in $] 0,+\infty[$. This is just the case treated in [10]. Another case where Theorem 2 applies is when $f(0) \neq 0$ and f is Lipschitzian (see [4]).

References

1. E. N. Dancer, On the number of positive solutions of weakly non-linear elliptic equations when a parameter is large, Proc. London Math. Soc., 53 (1986), 429-452.
2. A. L. Dontchev and T. Zolezzi, Well-posed optimization problems, Lecture Notes in Mathematics, 1543, Springer-Verlag, 1993.
3. P. Pucci and J. Serrin, A mountain pass theorem, J. Differential Equations, 60 (1985), 142-149.
4. B. Ricceri, Uniqueness properties of functionals with Lipschitzian derivative, Port. Math. (N.S.), 63 (2006), 393-400.
5. B. Ricceri, On the existence and uniqueness of minima and maxima on spheres of the integral functional of the calculus of variations, J. Math. Anal. Appl., 324 (2006), 1282-1287.
6. B. Ricceri, On the well-posedness of optimization problems on spheres in $H_{0}^{1}(0,1)$, J. Nonlinear Convex Anal., 7 (2006), 525-528.
7. B. Ricceri, The problem of minimizing locally a C^{2} functional around non-critical points is well-posed, Proc. Amer. Math. Soc., 135 (2007), 2187-2191.
8. B. Ricceri, Well-posedness of constrained minimization problems via saddle-points, J. Global Optim., 40 (2008), 389-397.
9. M. Schechter and K. Tintarev, Spherical maxima in Hilbert space and semilinear elliptic eigenvalue problems, Differential Integral Equations, 3 (1990), 889-899.
10. M. Schechter and K. Tintarev, Families of 'first eigenfunctions' for semilinear elliptic eigenvalue problems, Duke Math. J., 62 (1991), 453-465.
11. E. Zeidler, Nonlinear functional analysis and its applications, Vol. III, SpringerVerlag, 1985.
[^0]
[^0]: Biagio Ricceri
 Department of Mathematics, University of Catania,
 Viale A. Doria 6,
 95125 Catania,
 Italy
 E-mail: ricceri@dmi.unict.it

