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Abstract

We apply the theory of random variational inequalities to study a class of random equilibrium problems on networks. By means
of two classical test problems we treat the case of random demand and random cost and compute mean values and variances for
two special probability distributions.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The variational inequality approach to network equilibrium problems is relatively recent. The interest in this
approach is mainly due to the fact that many equilibrium problems which do not admit a direct optimization
formulation can be easily cast into the framework of variational inequalities. The wide range of applications
(economic models, traffic problems, mechanical equilibrium problems, etc.), as well as the methods and algorithms,
are comprehensively described in, for instance, [14,6,4]. On the other hand, many problems in applied sciences have
been modelled, for a long time, by equations that take into account random phenomena of various origins and,
more recently, the consideration of stochastic aspects in optimization problems has led to the field of stochastic
programming which has witnessed a rapid development in the last few decades [16]. The application of stochastic
programming to network problems is amply investigated in [10] (see also [19]), while in [18], a generalization
of the classical stochastic user equilibrium model is developed and a heuristic solution algorithm is proposed. In
contrast, to our knowledge, there are few papers which deal with the introduction of random elements into the
framework of variational inequalities (see for example [7] for the solution of stochastic variational inequalities on
a polyhedral set via the sample-path method or [9] for an infinite dimensional formulation). Our purpose in this
paper is to show how the class of random variational inequalities introduced in [9] and subsequently extended in [8]
(in order to consider random constraints) can be applied to concrete network equilibrium problems in the presence
of randomness. We would also like to point out that infinite dimensional variational inequalities have already been
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applied to transportation networks with time-dependent data [5]. The plan of the paper is the following: in Section 2
we briefly recall the formulation in [8] and explain how the initial infinite dimensional variational inequality can be
approximated, via a discretization procedure, by a sequence of finite dimensional problems; in Section 3 we briefly
describe the classical (i.e. deterministic) traffic network problem and subsequently apply our general theory of random
variational inequalities to model the traffic problem in the presence of random demand or random cost; in the last
two sections we consider the random versions of two classical test problems and, for the first of them, we apply the
discretization procedure described in Section 2 and perform extensive numerical computations to give approximations
for the mean values and the variances of the solution, while for the second we can carry out most of the computations
analytically. We stress, once more, that the purpose of this paper is not to demonstrate new theorems, but to show how
the abstract formulation in [8], based on a functional analysis approach, can be applied to the modelling of network
equilibrium problems and to their numerical solution.

2. The general theory

In this section we shall recall the formulation in [8], focusing on the aspects more related to the applications. Here,
let (Ω , P) be the sample space, with its probability P , and consider a matrix C ∈ Rm×k and a random m-vector D.
We can then introduce the random set

M(ω) := {x ∈ Rk
: x ≥ 0, Cx = D(ω)}, ω ∈ Ω .

Moreover, let A and B be two matrices in Rk×k , c ∈ Rk , and R and S two real valued random variables on Ω .
With these data, consider the problem of finding a random k-vector X̂ : Ω 7→ Rk , such that X̂(ω) ∈ M(ω) (P-almost
surely) and the following inequality holds for P-almost every elementary event ω ∈ Ω and ∀x ∈ M(ω):

S(ω)[AX̂(ω)]T
[x − X̂(ω)] + [B X̂(ω)]T

[x − X̂(ω)] ≥ R(ω)cT
[x − X̂(ω)]. (1)

If we assume that, ∀ω ∈ Ω , the matrix S(ω)A + B (not necessarily symmetric) is positive definite we obtain by
the classical Lions–Stampacchia Theorem [12] that (1) admits a unique solution for each ω. Moreover, one can prove
(cf. [8]) that the solution map ω 7→ X̂(ω) is a random variable (i.e. measurable). However, if we are looking for
solutions with finite second-order moments we need further assumptions. Thus, we can state the following theorem
which is a reformulation of Theorem 2.2 in [8] which was given there in a more abstract framework.

Theorem 2.1. Let (Ω , P) be a probability space, S a bounded, real, random variable and R a real random variable
with finite second-order moments. Let the matrix s A + B (not necessarily symmetric) be positive definite (where s is
a positive constant such that S ≥ s P-a.s. (almost surely)). Moreover, assume that D is an m-dimensional random
vector with finite second-order moments. Furthermore, suppose that the random set M(ω) contains an element with
finite second-order moments. Then, there exists a unique solution to problem (1), with finite second-order moments.

Sketch of Proof. Since S(ω) ≥ s > 0, ∀ω ∈ Ω and s A + B > 0 (positive definite), the existence of a unique
solution X̂(ω) (ω ∈ Ω ) follows readily from the classical Lions–Stampacchia Theorem. Further, inserting a fixed
z0(ω) ∈ M(ω) in (1) we can derive an estimate for the real random variable ‖X̂‖ using some appropriate random
variable with finite second-order moments that only depends on the fixed z0 and the data of the problem. This gives
that the random element X̂ itself has finite second-order moments. �

Then, we can introduce the following closed convex nonvoid subset of L2
k(Ω) := L2(Ω , P, Rk):

M P
:= {V ∈ L2

k(Ω) : V ≥ 0, CV = D, P-a.s.}

and consider the following problem: Find Û ∈ M P such that, ∀V ∈ M P ,∫
Ω

{S(ω)[AÛ (ω)]T
[V (ω) − Û (ω)] + [BÛ (ω)]T

[V (ω) − Û (ω)]} dP(ω)

≥

∫
Ω

R(ω) cT
[V (ω) − Û (ω)] dP(ω). (2)
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The r.h.s. of (2) defines a continuous linear form on L2
k(Ω), while the l.h.s. defines a continuous bilinear form on

L2
k(Ω) × L2

k(Ω) which satisfies the Lions–Stampacchia Theorem. Therefore, there exists a unique solution in M P to
the problem (2) and because of uniqueness, problems (1) and (2) are equivalent.

However, in most applications, the sample space Ω is not known, while what one observes is the distribution of the
random variables involved. Hence, we consider the joint distribution P of the random vector (R, S, D) and work with
the special sample space (Rd , P), where the dimension d := 2 + m. To simplify our analysis we shall suppose that R,
S and D are independent random vectors. Let t = D(ω), r = R(ω), s = S(ω), y = (r, s, t) and consider the set

M(y) := {x ∈ Rk
: x ≥ 0, Cx = t}

for y ∈ Rd . Thus, the pointwise version of our problem now reads: Find x̂ = x̂(y) such that x̂(y) ∈ M(y), P-a.s., and
the following inequality holds for P-almost every y ∈ Rd and ∀x ∈ M(y),

s [Ax̂(y)]T
[x − x̂(y)] + [Bx̂(y)]T

[x − x̂(y)] ≥ r cT
[x − x̂(y)]. (3)

In order to obtain the integral formulation of (3), consider the space L2
k(R

d) and introduce the closed convex
nonvoid set

MP := {v ∈ L2
k(R

d) : v ≥ 0, Cv(r, s, t) = t, P-a.s.}.

This leads to the problem: Find û ∈ MP such that, ∀v ∈ MP,∫
Rd

s [Aû(y)]T
[v(y) − û(y)] + [Bû(y)]T

[v(y) − û(y)]dP(y) ≥

∫
Rd

r cT
[v(y) − û(y)]dP(y). (4)

By using the same arguments as in the ω-formulation, problems (3) and (4) are equivalent.
Without loss of generality we can suppose that R, and each component of D are nonnegative, (otherwise, we

can use the standard decomposition into the positive and negative parts). Moreover, we assume that the support
of S is the interval [s, s) ⊂ (0, ∞). Furthermore we assume that the distributions PR, PS, PD have probability
densities ϕR, ϕS, ϕDi , respectively. Hence, P = PR ⊗ PS ⊗ PD , dPR(r) = ϕR(r)dr , dPS(s) = ϕS(s)ds and
dPDi (ti ) = ϕDi (ti )dti for i = 1, . . . , m.

In order to give a procedure for approximating the solution û, let us introduce a sequence {πn}n of partitions of the
support G := [0, ∞) × [s, s] × Rm

+ of the random variables involved. More precisely, let πn = (π R
n , π S

n , π D
n ), where

π R
n := (r0

n , . . . , r
N R

n
n ), π S

n := (s0
n , . . . , s

N S
n

n ), π Di
n := (t0

n,i , . . . , t N
Di
n

n,i )

0 = r0
n < r1

n < · · · r
N R

n
n = n

s = s0
n < s1

n < · · · s
N S

n
n = s

0 = t0
n,i < t1

n,i < · · · t N
Di
n

n,i = n (i = 1, . . . , m)

|π R
n | := max{r j

n − r j−1
n : j = 1, . . . , N R

n } → 0 (n → ∞)

|π S
n | := max{sk

n − sk−1
n : k = 1, . . . , N S

n } → 0 (n → ∞)

|π Di
n | := max{thi

n,i − thi −1
n,i : hi = 1, . . . , N Di

n } → 0 (i = 1, . . . , m; n → ∞).

These partitions give rise to the exhausting sequence {Gn} of subsets of G, where each Gn is given by the finite
disjoint union of the intervals:

I n
jkh := [r j−1

n , r j
n ) × [sk−1

n , sk
n ) × I n

h ,

where we use the multi-index h = (h1, . . . , hm) and

I n
h :=

m∏
i=1

[thi −1
n,i , thi

n,i ).

For each n ∈ N let us now consider the space of the Rl -valued simple vector functions (l ∈ N) on Gn , extended by
0 outside of Gn :
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X l
n :=

{
vn : vn(r, s, t) =

∑
j

∑
k

∑
h

vn
jkh1I n

jkh
(r, s, t), vn

jkh ∈ Rl

}
where 1I denotes the {0, 1}-valued characteristic function of a subset I .

By this discretization procedure we arrive at a finite number of finite dimensional affine variational inequalities,
namely: For ∀n ∈ N, ∀ j, k, h find ûn

jkh ∈ Mn
jkh such that, ∀vn

jkh ∈ Mn
jkh ,

[ Ãn
k ûn

jkh]
T
[vn

jkh − ûn
jkh] ≥ [c̃n

j ]
T
[vn

jkh − ûn
jkh], (5)

where q : (r, s, t) ∈ Rd
7→ t ∈ Rm, qn

jkh = (µn
jkhq) ∈ Rm .

µn
jkhq =

1
P(I jkh)

∫
I n

jkh

q(r, s, t) dP(r, s, t).

Mn
jkh := {vn

jkh ∈ Rk
: vn

jkh ≥ 0, Cvn
jkh = qn

jkh}.

Ãn
k = sk−1

n A + B, c̃n
j = r j−1

n c.

The solutions of (5) are used to construct approximations for the infinite dimensional problem (3):

ûn =

∑
j

∑
k

∑
h

ûn
jkh 1I jkh ∈ X k

n . (6)

The convergence of these approximations is established by the following theorem [8]:

Theorem 2.2. The sequence of step functions (6) converge, in quadratic mean, to the solution of (4).

Sketch of Proof. Since Ãn
k > 0, there exist unique ûn

jkh . Since S(ω) ≥ s > 0, ∀ω ∈ Ω , the bilinear forms defined

from Ãn
k are uniformly coercive in the reflexive separable space L2

k(R
d). Therefore the sequence of the approximations

ûn admits a weak limit point, say ũ. Since the cone of componentwise nonnegative functions in L2(Rd) is weakly
closed, C defines a linear continuous map and hence a weakly continuous map in the L2 spaces, ũ can be shown
to belong to MP. To show that ũ is the desired solution, consider an arbitrary v ∈ MP. The key argument is the
construction of appropriate approximations of v, namely step functions vn of the form (6) such that the associated
vn

jkh belong to Mn
jkh and vn converges strongly to v. Then by a limit process using (5) one establishes that ũ is a

solution to (4) and by uniqueness, ũ = û. Therefore the entire sequence converges weakly to ũ. Finally to show norm
convergence, one again exploits uniform coercivity. �

The previous theorem will allow us to compute the approximate mean values and variances in the concrete problems
in the sequel.

3. The random traffic equilibrium problem

The purpose of this section is to show how the formulation presented in the previous section can be applied
to the modelling of random equilibrium problems. Thus, we consider a classical equilibrium problem in a random
environment and show how to cast it in our framework. The traffic assignment problem has a relatively recent history.
For a variational inequality formulation of this equilibrium problem we refer the reader to the influential papers by
Smith [17] and Dafermos [3]. For a comprehensive treatment of models and methods we refer the reader to [15].

Let us first introduce the notation commonly used to state the standard traffic equilibrium problem from the
user point of view. A traffic network consists of a triple (N , A, W ) where N = {N1, . . . , Np} is the set of nodes,
A = (A1, . . . , An) represents the set of the directed arcs and W = {W1, . . . , Wm} is the set of the origin–destination
(O–D) pairs. The flow on the arc Ai is denoted by fi , f = ( f1, . . . , fn). We assume that each O–D pair W j is
connected by r j ≥ 1 paths whose set is denoted by Pj ( j = 1, . . . , m). All the paths in the network are grouped
in a vector (R1, . . . , Rk). We can describe the link structure of the paths by using the arc–path incidence matrix
∆ = {δir }i=1,...,n;r=1,...,k , whose entries take the value 1 if Ai ∈ Rr , 0 if Ai 6∈ Rr . To each path Rr there corresponds
a flow Fr . The path flows are grouped in a vector (F1, . . . , Fk) which is called the path (network) flow. The flow fi on
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the arc Ai is equal to the sum of the path flows which contain Ai , so that f = ∆F . Let us now introduce the cost of
going through Ai as a function ci ( f ) ≥ 0 of the flows on the network, so that c( f ) = (c1( f ), . . . , cn( f )) denotes the
vector arc cost on the network. Analogously, one can define a cost on the paths as C(F) = (C1(F), . . . , Ck(F)). In
most applications the cost Cr (F) associated with path r is just the sum of the costs on the arcs which build that path;

Cr (F) =

n∑
i=1

δir ci ( f ) (7)

or in compact form, C(F) = ∆TC(∆F). For each O–D pair W j there is a given traffic demand D j ≥ 0, so that
(D1, . . . , Dm) is the demand vector on the network. Feasible flows are flows which satisfy the demands and the
capacity constraints, i.e., which belong to the set

K := {F ∈ Rk
| F ≥ 0,ΦF = D},

where Φ is the well known O–D pair–path incidence matrix whose elements φ j,r ( j = 1, . . . , m; r = 1, . . . , k) are
set equal to 1 if the path Rr connects the pair W j , 0 otherwise.

A path flow H is called an equilibrium flow (or Wardrop Equilibrium) if H ∈ K and

∀W j ∈ W, ∀q, s ∈ Pj , there holds:

Cq(H) < Cs(H) H⇒ Hs = 0. (8)

This statement is equivalent to:

H ∈ K and [C(H)]T
[F − H ] ≥ 0 ∀F ∈ K. (9)

Roughly speaking, the meaning of Wardrop Equilibrium is that the road users choose minimum cost paths, and the
meaning of the cost is usually that of traversal time.

We can describe the traffic equilibrium problems with respect to the arc flows and cost. In the so-called link
formulation the feasible set of flows is now given by

K A := { f ∈ Rn
: f = ∆F for some F ∈ K}. (10)

We say that h ∈ K A induces a Wardrop Equilibrium if H ∈ K is a Wardrop Equilibrium. The new variational
inequality reads:

h ∈ K A and [c(h)]T
[ f − h] ≥ 0 ∀ f ∈ K A. (11)

It can be shown that if the cost is nonnegative and additive (i.e. (7) holds), the path and link formulations are equivalent.
However the two formulations give rise to different algorithms (see e.g. [1,13]).

Now, let us suppose that the cost mapping is not deterministic, but is subject to random fluctuations. Thus, we are
left with a random cost: C : Ω × K 7→ Rk . We require that the random cost satisfies the hypothesis of our general
theory, and in particular, it will be chosen affine for each ω ∈ Ω . Moreover, it is also natural to suppose that the traffic
demands are also subject to random perturbations. Thus, we are left with the random convex set

K(ω) := {F ∈ Rk
| F ≥ 0,ΦF = D(ω)}, ω ∈ Ω .

We can then state the random Wardrop conditions as follows: ∀ω ∈ Ω , H(ω) ∈ K(ω) and

∀W j ∈ W, ∀q, s ∈ Pj there holds:

Cq(ω, (H(ω))) < Cs(ω, (H(ω))) H⇒ Hs(ω) = 0. (12)

Under the natural assumption that C is nonnegative, it is evident that the random Wardrop conditions are equivalent
to the following random variational inequality: For every ω ∈ Ω , find H(ω) ∈ K(ω) such that

[C(ω, H(ω))]T
[F − H(ω)] ≥ 0 ∀F ∈ K(ω). (13)

The equivalence between Wardrop conditions and (13) is, as we have just seen, very general. Our general theory,
however, applies when the cost operator is affine (with respect to the flow variables). Moreover, we consider the case
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Fig. 1. Dafermos’s network.

where the flow and the random variables are separable. While our theoretical results can be generalized to more general
operators than the affine ones, the numerical approximation scheme sketched in Section 2 requires the separability
assumption. However this assumption is very natural in many applications where the random perturbation is treated as
a modulation of a deterministic process. Under the above-mentioned assumptions, (13) assumes the particular form:

S(ω)AT(H(ω))[F − H(ω)] ≥ R(ω)bT
[F − H(ω)], ∀F ∈ K(ω) (14)

where we have split the affine cost operator into its linear and constant parts, A ∈ Rk×k and b ∈ Rk , respectively,
while S and R are two real random variables. In Eq. (14), both the l.h.s. and the r.h.s. can be replaced with any (finite)
linear combination of affine and separable terms, where each term satisfies the hypothesis of the previous section:∑

i

Si (ω)AT
i (H(ω))[F − H(ω)] ≥

∑
j

R j (ω)bT
j [F − H(ω)], ∀F ∈ K(ω). (15)

Hence, in the traffic network, we could consider the case where the random perturbation has a different weight
for each path. We can then transform the problem in the image space of the random variables involved and apply the
approximation procedure. For the sake of clarity we shall consider two concrete networks of small dimension: the first
is the classical test-problem of Dafermos, where we allow for the demand to be a random vector, while the cost is
deterministic. In the second example we shall consider the celebrated Braess network, with one random parameter in
the cost function.

4. Dafermos’s network

The network considered by Dafermos [3] consists of two nodes x and y connected by two two-way links and by one
one-way link. Thus, there are five links {A1, A2, A3, A4, A5} which we order according to Fig. 1, and five associated
flows: { f1, f2, f3, f4, f5}. In our random version, the travel demands are nonnegative random variables:

d(x, y) = α, d(y, x) = β

(In [3], α = 210, β = 120.)
The link cost functions are given by:

c1 = 10 f1 + 5 f2 + 1000

c2 = 2 f1 + 20 f2 + 1000

c3 = 10 f3 + 5 f5 + 950

c4 = 20 f4 + 3000

c5 = f3 + 25 f5 + 1300.

The linear part of the operator defined by the previous equations is associated with a (not symmetric) positive
definite matrix, so that the variational inequality that we shall consider in the sequel has a unique solution, for each
value of α and β. The conservation of flows implies that: f1 + f3 + f4 = α, f2 + f5 = β.
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Let:

K (α, β) := { f ∈ R5
: f1 + f3 + f4 = α, f2 + f5 = β, f j ≥ 0, ∀ j = 1 . . . 5}, (α, β) ∈ R2

+.

If P is the probability of (α, β), the pointwise variational inequality associated with our network is:
Find h = h(α, β), such that h(α, β) ∈ K (α, β), P-almost surely, and ∀(α, β) ∈ R2

+, ∀ f ∈ K (α, β):

c[h(α, β)]T
[ f − h(α, β)] ≥ 0. (16)

Since we want to solve (16) by the discretization method described in [9,8], we must solve the corresponding
deterministic, finite dimensional, problem for each fixed α and β. We use the direct method described in [13] which is
very effective for problems where the number of independent flow components is not too large. Moreover, by writing
our code in MAPLE, we are able, in the affine case under examination, to get exact results (the only error being
the final rounding error). In our case, because of the conservation law, the components f1 and f2 can be obtained
from f3, f4, f5, so that, following [13], we transform the original five-dimensional V.I. in an equivalent reduced
three-dimensional V.I. where the constraints set is the polytope given by:

MP (α, β) := {( f3, f4, f5) ∈ R3
: f3 + f4 ≤ α, f5 ≤ β, f3, f4, f5 ≥ 0}.

Thus, the new variational inequality reads: Find h = h(α, β) ∈ MP such that, ∀ f ∈ MP :

Γ3(h)( f3 − h3) + Γ4(h)( f4 − h4) + Γ5(h)( f5 − h5) ≥ 0 (17)

where:

Γ3(h) = 25h310h4 + 10h5 − 10α − 5β − 50

Γ4(h) = 10h3 + 30h4 + 5h5 − 10α − 5β + 2000

Γ5(h) = 3h3 + 2h4 + 45h5 − 2α − 20β + 300.

If the solution of the reduced V.I. is not in the interior of the polytope, the method, loosely speaking, is based on
looking for the solution on the faces.

Thus, fix N ∈ N and assume that α ∈ [α0, αN ] and β ∈ [β0, βN ], I := [α0, αN ] × [β0, βN ] and consider the
decompositions:

α0 < α0 +
αN − α0

N
< α0 + 2

αN − α0

N
< · · · < αN

β0 < β0 +
βN − β0

N
< β0 + 2

βN − β0

N
< · · · < βN .

Let I n
jk = [α j−1, α j ) × [βk−1, βk), ∀ j, k = 1, 2, . . . , N . For each value of j and k we solve the finite dimensional

variational inequality corresponding to the values α j−1 and βk−1, respectively, and denote with hN (α j−1, βk−1) the
three-dimensional solution vector:

hN (α j−1, βk−1) = (hN
3 (α j−1, βk−1), hN

4 (α j−1, βk−1), hN
5 (α j−1, βk−1)).

Hence, ∀(α, β) ∈ I N
jk we define the (constant) function: h I N

jk
(α, β) = hN (α j−1, βk−1). Now, we can define a

simple (i.e. piecewise constant) vector function on I :

hN (α, β) =

N∑
j,k=1

hN (α j−1, βk−1)1I N
jk
(α, β) (18)

where 1A(x) denotes the characteristic function of a set A.
Let us recall [8] that the sequence of step functions in (18) approximates the solutions of (16) in quadratic mean,

so that it is meaningful, for each N , to compute mean values and variances. Thus, for each component i and for each
N , the mean value is given by:

〈hN
i 〉 =

∫
I

hN
i (α, β)dP(α)dP(β) =

N∑
j,k=1

hN (α j−1, βk−1)

∫
I N

jk

dP(α)dP(β)
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Table 1
Mean values corresponding to various approximations for α ∈ [9, 11] and β = 14

N 〈h3〉 〈h4〉 〈h5〉

10 4.280000 0 0.008888
100 4.298000 0 0.010888
500 4.299600 0 0.011066

1 000 4.299800 0 0.011088
2 000 4.299980 0 0.011100
3 000 4.299933 0 0.011133
4 000 4.299950 0 0.011105
5 000 4.299960 0 0.011106

10 000 4.299980 0 0.011108
15 000 4.299986 0 0.011109
20 000 4.299990 0 0.011110
22 000 4.299990 0 0.011110

Table 2
Variances corresponding to various approximations for α ∈ [9, 11] and β = 14

N σ 2
3 σ 2

4 σ 2
5

10 18.324800 0 0.000158
100 18.479468 0 0.000200
500 18.493226 0 0.000204

1 000 18.494946 0 0.000205
2 000 18.495906 0 0.000205
3 000 18.496093 0 0.000205
4 000 18.496236 0 0.000205
5 000 18.496322 0 0.000205

10 000 18.496494 0 0.000205
15 000 18.496552 0 0.000205
20 000 18.496580 0 0.000205
22 000 18.496558 0 0.000205

and the variances are given, as usual, by:

σ2N
i = 〈( hN

i (α, β) )2
〉 − 〈hN

i (α, β)〉2.

(For the sake of simplicity we are assuming that the two probabilities involved represent independent random
variables.)

In the tables that follow we show several computations, in the case of uniform distribution of the random variables
involved. Some comments are in order. At first, to show the effectiveness of our approximation technique, we fix the
value of one random variable, e.g. β = 14, let α ∈ [9, 11], and test our algorithm up to N = 22 000. The numerical
approximations for the mean values and variances are shown in Tables 1 and 2, respectively. Let us notice that,
although α varies in a relatively small interval, the solutions of the (22 000) finite dimensional variational inequalities
are distributed on a rather bigger interval, as one can deduce from the analysis of the variance corresponding to h3.
This is the generic situation where the probabilistic approach is of much interest. On the other hand, for some values
of the random variables we can get particularly stable solutions of the corresponding finite dimensional variational
inequality. This is the case, for instance, if we let our random variables vary around the reference values in [3] (cf.
Table 3). Since this time we are discretizing both random variables (and moreover on intervals bigger than the previous
one), our discretization is too coarse to obtain numerical convergence as good as in the previous case, however the
reference values in [3] are very special in that, as we can notice from Table 3, the mean values of the solutions approach
the values 90, 0, 50 obtained when α = 210 and β = 120, i.e., in the center of I . Another generic situation is reported
in Tables 4 and 5.
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Table 3
Mean values and variances corresponding to the approximations in the interval [205, 215] × [115, 125], for N = 10, 100, 200, 220

〈h3〉 〈h4〉 〈h5〉

89.7922 0 49.7694
89.9794 0 49.9769
89.9896 0 49.9884
89.9905 0 49.9895

σ 2
3 σ 2

4 σ 2
5

1.2765 0 1.6212
1.2892 0 1.6374
1.2893 0 1.6375
1.2893 0 1.6375

Table 4
Mean values corresponding to various approximations in the interval [10, 20] × [15, 25]

N 〈h3〉 〈h4〉 〈h5〉

10 9.9766 0 1.9793
30 10.7290 0 2.0921
50 10.8332 0 2.1178
70 10.8744 0 2.1290

100 10.9077 0 2.1372
120 10.9207 0 2.1404
140 10.9299 0 2.1427
160 10.9363 0 2.1445
180 10.9407 0 2.1459
200 10.9451 0 2.1469
220 10.9486 0 2.1478
250 10.9525 0 2.1489
500 10.9664 0 2.1529

Table 5
Variances corresponding to various approximations in the interval [10, 20] × [15, 25]

N σ 2
3 σ 2

4 σ 2
5

10 11.0191 0 1.4079
30 5.0781 0 1.5536
50 4.3368 0 1.5719
70 4.0224 0 1.5792

100 3.7618 0 1.5851
120 3.6559 0 2.1427
140 3.5854 0 1.5890
160 3.5376 0 1.5901
180 3.5053 0 1.5908
200 3.4708 0 1.5916
220 3.4417 0 1.5922
250 3.4123 0 1.5929
500 3.3057 0 1.5988

5. Braess’s network

Our description of Braess’s network follows [2], but the equilibrium problem is formulated as a variational
inequality and not as a parametric complementarity problem. We shall employ again the direct method and let the
parameter be a nonnegative random variable. Thanks to the simplicity of this problem we can carry out analytically
all the steps of the direct method, which for the reader’s convenience are reported in detail. The network is depicted
in Fig. 2: there are five links: {A1, A2, A3, A4, A5}, and one origin–destination pair. The traffic demand is 6 and the
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Fig. 2. Braess’s network.

three paths (or routes) joining the pair (O, D) are labelled as follows:

R1 = (A1, A4), R2 = (A2, A5), R3 = (A1, A3, A5).

The link cost function is:

c1( f ) = 10 f1

c2( f ) = f2 + 50

c3( f ) = f3 + λ, λ ≥ 0

c4( f ) = f4 + 50

c5( f ) = 10 f5.

The relation between the link flows, f , and the path flows, F , is:

f1 = F1 + F3

f2 = F2

f3 = F3

f4 = F1

f5 = F3 + F4.

We can then obtain the cost in the path variables:

C1(F) = c1( f ) + c4( f ) = 11F1 + 10F3 + 50

C2(F) = c2( f ) + c5( f ) = 10F3 + 11F2 + 50

C3(F) = c1( f ) + c3( f ) + c5( f ) = 10F1 + 10F2 + 21F3 + λ.

The set of feasible flows is given by:

K = {(F1, F2, F3) ∈ R3
: F1, F2, F3, ≥ 0, F1 + F2 + F3 = 6}.

The network equilibrium problem on Braess’s network is equivalent to the following variational inequality problem:
Find H ∈ K such that ∀H ∈ K :

3∑
r=1

Cr (H)(Fr − Hr ) ≥ 0. (19)

Let us observe that because the smallest eigenvalue of the symmetric part of the matrix associated with the cost
operator C is 3.77, it follows that the matrix is positive definite and (19) has a unique solution.

Since F1 = 6 − F2 − F3, we can reduce the dimension and consider the following equivalent representation of K :

K̃ = {(F2, F3) ∈ R2
: F2, F3 ≥ 0, F2 + F3 ≤ 6}.
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Thus, the original variational inequality is equivalent to the following reduced variational inequality:
Find H ∈ K̃ such that ∀F ∈ K̃ :

(22H2 + 11H3 − 66)(F2 − H2) + (11H2 + 12H3 − 56 + λ)(F3 − H3) ≥ 0. (20)

The solution of the system:{
22H2 + 11H3 − 66 = 0
11H2 + 12H3 − 56 + λ = 0

gives:

H2 =
16 + λ

13
, H3 =

2(23 − λ)

13
. (21)

This solution is feasible, i.e. belongs to K̃ provided that λ ∈ [0, 23]. Since F1 = 6 − F2 − F3 we can recover, for
λ ∈ [0, 23], the solution of the full dimensional variational inequality:

H1 =
16 + λ

13
, H2 =

16 + λ

13
, H3 =

2(23 − λ)

13
. (22)

If the system does not have feasible solutions, the solution of the variational inequality, which does exist and is
unique, has to be found in one of the three (two-dimensional) faces of K̃ . Let us consider the face defined by the
equation F3 = 0, and reduce once more the dimension in (20). The one-dimensional feasible set is given by:

F2 ∈ R : 0 ≤ F2 ≤ 6

and the our problem is now:
Find H2 : 0 ≤ H2 ≤ 6 such that ∀F2 : 0 ≤ H2 ≤ 6 we have:

(22H2 − 66)(F2 − H2) ≥ 0

which is satisfied by the feasible point H2 = 3. Moreover, we can check that (H2, H3) = (3, 0) satisfies (20). Thus,
as the last step, we can recover the solution of the original three-dimensional variational inequality, which, for λ ≥ 23
is:

(H1, H2, H3) = (3, 3, 0).

Let us now suppose that the parameter is a nonnegative random variable uniformly distributed in a given interval,
for example in [0, 100]. In this case an easy computation yields for the mean values and for the variances the following
results:

〈H1〉 = 〈H2〉 = 2.7965, 〈H3〉 = 0.4069

σ 2(H1) = σ 2(H2) = 0.1980, σ 2(H3) = 0.8160.

We can also suppose that our random parameter follows the log-normal distribution [11], which is used
for numerous applications to model nonnegative random phenomena. It is also known as the Galton–McAlister
distribution and, in economics, is sometimes called the Cobb–Douglas distribution, where it has been used to model
production data. Thus, let:

gµ,σ 2(x) =
1

√
2πσ

e−
(x−µ)2

2σ2

be the normal distribution, then the log-normal distribution is defined by:{
(1/x)gµ,σ 2 (log x), if x > 0
0, if x ≤ 0.

If we fix, for example, µ = 0.5 and σ = 2, the numerical evaluation of the mean values and variances yields:

〈H1〉 = 〈H2〉 = 0.7408, 〈H3〉 = 2.2586

σ 2(H1) = σ 2(H2) = 2.6276, σ 2(H3) = 0.4207.
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