Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Francesco Punzo, ${ }^{\text {a* }} \ddagger$ David J. Watkin, ${ }^{\text {b }}$ Sarah F. Jenkinson ${ }^{\text {c }}$ and George W. J. Fleet ${ }^{\text {c }}$
${ }^{\text {a }}$ Dipartimento di Scienze Chimiche, Facoltà di Farmacia, Università di Catania, Viale A. Doria 6, 95125, Catania, Italy, ${ }^{\text {b }}$ Department of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and ${ }^{\mathbf{c}}$ Department of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
\neq Visiting Scientist at the Department of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England.

Correspondence e-mail:
francesco.punzo@chemistry.oxford.ac.uk

Key indicators

Single-crystal X-ray study
$T=190 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.031$
$w R$ factor $=0.078$
Data-to-parameter ratio $=12.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3,4-O-Isopropylidene-2-C-methyl-D-arabinono-1,5-lactone

The title δ-lactone, $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{5}$, formed in high diastereoselectivity by the Kiliani reaction of a protected 1-deoxyketose, adopts a boat conformation in which an OH group occupies a flagpole position.

Comment

Although sugars provide the largest group of readily available chiral building blocks and bioactive scaffolds (Lichtenthaler \& Peters, 2004), the potential of the Kiliani ascension of ketoses to provide readily available branched scaffolds has only just begun to be developed (Hotchkiss et al., 2004; Shallard-Brown et al., 2004 Cowley et al., 2004; van Ameijde et al., 2004). While the range of commercially available ketoses is restricted, 1-deoxyketoses may readily be generated by addition of organometallic reagents to sugar lactones. As an extension to the branching chemistry of ketoses, the protected 1-deoxyketose (1) was treated with sodium cyanide and gave a single diastereomeric product. The crystal structure reported in this paper firmly establishes that the lactone (2) was formed; none of the epimeric lactone (3) was isolated.

The δ-lactone (2) (Fig. 1) adopts a boat conformation. While there are several example of fused 3,4-ketals of δ-lactones that adopt boat conformations (Bruce et al., 1990; Bichard et al., 1991; Beacham et al., 1991), very few of them have a flagpole substituent (Wheatley et al., 1994); the hydroxy group at atom C 1 is clearly in a very hindered position, being additionally attached to a tertiary C atom. Nonetheless, as usually expected for sugar derivatives, hydrogen bonding occurs between molecules (Fig. 2 and Table 2).

Experimental

The sugar was crystallized by dissolving it in diethyl ether, adding a few drops of cyclohexane and allowing the slow competitive evaporation of the two solvents until crystals formed.

Received 23 November 2004 Accepted 9 December 2004 Online 18 December 2004

(3)

Figure 1
The molecular structure of (2), with displacement ellipsoids drawn at the 50% probability level. H-atom radii are arbitrary.

Figure 2
Partial packing diagram of (2), viewed down the b axis. Hydrogen bonds are shown as dotted lines.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{5} \\
& M_{r}=202.21 \\
& \text { Monoclinic, } P 2_{1} \\
& a=7.7315(3) \AA \\
& b=6.2859(3) \AA \\
& c=10.4209(6) \AA \\
& \beta=102.1024(17)^{\circ} \\
& V=495.19(4) \AA^{3} \\
& Z=2
\end{aligned}
$$

$D_{x}=1.356 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1264

reflections

$\theta=5-30^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=190 \mathrm{~K}$
Needle, colourless
$0.90 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection
Nonius KappaCCD diffractometer ω scans
2579 measured reflections
1527 independent reflections
1448 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.018 \\
& \theta_{\max }=30.0^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=-8 \rightarrow 8 \\
& l=-14 \rightarrow 14
\end{aligned}
$$

Refinement

Refinement on F^{2}
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.078$
$S=0.99$
1527 reflections
127 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F^{2}\right)+0.04\right.$
$+0.06 P]$,
where $P=\left[\max \left(F_{\mathrm{o}}^{2}, 0\right)+2{F_{\mathrm{c}}}^{2}\right] / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}^{\mathrm{m}} \AA^{-3}$
$\Delta \rho_{\max }=0.24 \mathrm{e}^{\mathrm{A}} \AA^{-3}$
$\Delta \rho_{\min }=-0.16 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

C1-C2	$1.5284(18)$	O4-C5	$1.4312(16)$
C1-C11	$1.5318(19)$	C5-O6	$1.4314(16)$
C1-O13	$1.4334(15)$	C5-C7	$1.522(2)$
C1-C14	$1.5237(17)$	C5-C8	$1.508(2)$
C2-C3	$1.5468(18)$	C9-O10	$1.4581(18)$
C2-O6	$1.4261(16)$	O10-C11	$1.3367(16)$
C3-O4	$1.4268(16)$	C11-O12	$1.2124(17)$
C3-C9	$1.509(2)$		
C2-C1-C11	$108.66(10)$	O4-C5-O6	$103.66(10)$
C2-C1-O13	$106.76(10)$	O4-C5-C7	$111.02(13)$
C11-C1-O13	$106.76(11)$	O6-C5-C7	$110.14(13)$
C2-C1-C14	$111.22(11)$	O4-C5-C8	$109.15(13)$
C11-C1-C14	$111.17(12)$	O6-C5-C8	$108.63(12)$
O13-C1-C14	$112.04(10)$	C7-C5-C8	$113.74(14)$
C1-C2-C3	$113.22(11)$	C5-O6-C2	$106.26(9)$
C1-C2-O6	$107.54(10)$	C3-C9-O10	$111.94(11)$
C3-C2-O6	$103.56(10)$	C9-O10-C11	$119.10(11)$
C2-C3-O4	$104.50(10)$	C1-C11-O10	$117.08(12)$
C2-C3-C9	$113.06(11)$	C1-C11-O12	$124.42(12)$
O4-C3-C9	$109.33(13)$	O10-C11-O12	$118.49(13)$
C3-O4-C5	$108.01(10)$		

Table 2
Hydrogen-bond geometry ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 13-\mathrm{H} 3 \cdots \mathrm{O} 12^{\mathrm{i}}$	0.94	1.87	$2.8103(14)$	175

Symmetry code: (i) $-x+1, y+\frac{1}{2},-z+1$.
The multi-scan technique (Otwinowski \& Minor, 1997) was used to correct for changes in the illuminated volume of the long needle crystal. In the absence of significant anomalous scattering effects, Friedel pairs were merged. The absolute configuration was assigned from the known configuration of the starting material in the synthesis. The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry $(\mathrm{C}-\mathrm{H}=0.97-1.01 \AA$ and $\mathrm{O}-\mathrm{H}=0.94 \AA)$, after which they were refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for those bonded to C atoms, and $U_{\text {iso }}(\mathrm{H})=0.05 \AA^{2}$ for the hydroxy group.

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZOISCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics:

CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

References

Ameijde, J. van, Cowley, A. R., Fleet, G. W. J., Nash, R. J., Simone, M. I. \& Soengas, R. (2004). Acta Cryst. E60, o2140-o2141.
Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435-435.
Beacham, A. R., Bruce, I., Choi, S., Doherty, O., Fairbanks, A. J., Fleet, G. W. J., Skead, B. M., Peach, J. M., Saunders, J. \& Watkin, D. J. (1991). Tetrahedron Asymmetry, 2, 883-900.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Bichard, C. J. F., Fairbanks, A. J., Fleet, G. W. J., Ramsden, N. G., Vogt, K., Doherty, O., Pearce, L. \& Watkin, D. J. (1991). Tetrahedron Asymmetry, 2, 901-912.

Bruce, I., Fleet, G. W. J., Girdhar, A., Haraldsson, M., Peach, J. M. \& Watkin, D. J. (1990). Tetrahedron, 46, 19-32.

Cowley, A. R., Fleet, G. W. J., Simone, M. I. \& Soengas, R. (2004). Acta Cryst. E60, o2142-o2143.
Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. \& Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.

Lichtenthaler, F. W. \& Peters, S. (2004). Compt. Rend. Chim. 7, 6590.

Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Shallard-Brown, H. A., Harding, C. C., Watkin, D. J., Soengas, R., Skytte, U. P. \& Fleet, G. W. J. (2004). Acta Cryst. E60, o2163-o2164.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.
Wheatley, J. R., Beacham, A. R., Lilley, P. D., Watkin, D. J. \& Fleet, G. W. J. (1994). Tetrahedron Asymmetry, 5, 2523-2534.

