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Summary

Carbon monoxide (CO) is produced during the catabolism of free haem,
catalyzed by haem oxygenase (HO) enzymes, and its physiological roles
include vasodilation, neurotransmission, inhibition of platelet aggregation
and anti-proliferative effects on smooth muscle. In vivo preclinical studies
have shown that exogenously administered quantities of CO may represent an
effective treatment for conditions characterized by a dysregulated immune
response. The carbon monoxide-releasing molecules (CORMs) represent a
group of compounds capable of carrying and liberating controlled quantities
of CO in the cellular systems. This review covers the physiological and anti-
inflammatory properties of the HO/CO pathway in the central nervous
system. It also discusses the effects of CORMs in preclinical models of
inflammation. The accumulating data discussed herein support the possibility
that CORMs may represent a novel class of drugs with disease-modifying
properties in multiple sclerosis.
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Introduction

Carbon monoxide (CO) is a low-molecular-weight diatomic
gas that is generated from the oxidation of organic materials
such as wood, natural gas, coal and tobacco. Already in
1857, it was reported that CO could bind haemoglobin
molecules. Indeed, CO binds about 200 times more effec-
tively to haemoglobin than oxygen, resulting in the forma-
tion of carboxyhaemoglobin (COHb). The subsequent
decrease in oxygen release to the tissues ultimately leads to
death. CO has long been considered only a dangerous poi-
sonous gas. However, Sjoestrand observed in 1949 that CO
was an endogenous metabolic product and that its rate of
production is elevated in pathological events, such as
haemolysis [1]. More than 86% of the endogenously pro-
duced CO originates from haem degradation, while the
remainder arises from other biological processes including
lipid peroxidation and xenobiotic metabolism. However,
it was only in the late 1960s that Tenhunen and colleagues
first linked CO production to haem oxygenase (HO) activity
[2].

In humans, the production rate of CO is 16·4 mmol/h,
with a daily production of CO reaching more than 500 mmol
[3]. However, based on normal levels of COHb of 1–2%,

average physiological concentrations of CO in living tissues
are in the nanomolar range.

The direct evidence for the relevance of the HO1/CO
pathway to different homeostatic pathways came from the
first human case of HO-1 deficiency described in Japan in
1999 [4]. This HO-1-deficient patient showed leucocytosis,
anaemia, elevated serum levels of ferritin and haem, lower
serum levels of bilirubin, growth retardation, thrombocyto-
sis and hyperlipidaemia, and died at the age of 6 years.

Several in-vivo preclinical studies have shown that exog-
enously administered quantities of CO may represent an
effective treatment for conditions characterized by a dys-
regulated inflammatory response, including endotoxaemia
[5], collagen-induced arthritis [6,7], trinitrobenzene sul-
phonic acid-induced colitis [8], acute pancreatitis [9], lung
injury [10], chronic rejection and arteriosclerotic lesions
[11], improving clinical and immunological parameters.

In order to examine the therapeutic potential of CO, three
approaches have been used: direct administration of CO by
inhalation of the gas; inductors of HO-1 expression; and CO
delivery via metallo-organic carbonyl compounds [12].
These molecules, known as carbon monoxide-releasing mol-
ecules (CORMs), represent a group of compounds capable
of carrying and liberating controlled quantities of CO in
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cellular systems, thus overcoming the limitations of gaseous
CO [12].

Different CORMs show different pharmacokinetics
under physiological conditions, and are able to achieve
safe and therapeutically effective thresholds of CO without
delivering potentially toxic amounts through the respiratory
system [13].

Endogenous production of CO

The majority of CO in the mammalian organism is pro-
duced by enzymatic haem metabolism, which occurs in the
reticulo-endothelial system of the spleen and liver [14] and is
catalyzed by HO (Fig. 1). Three isoforms of HO have been
characterized, among which HO-1 represents the inducible
isoform. Increased cellular stress levels are known to
up-regulate de-novo transcription of HO-1 [15]. Conversely,
both HO-2 and HO-3 are expressed constitutively in many
mammalian cells.

Consensus binding sites for oxidative stress-responsive
transcription factors, including nuclear factor-kB (NF-kB),
activator protein-1 (AP-1), AP-2, Sp1, upstream stimulatory
factor, c-myc/max and interleukin (IL)-6 response elements
have been found in the promoter region of the human ho-1

gene [16–18], thus suggesting a potential role for these
factors in modulating HO-1 expression.

HO-1, also known as heat shock protein 32 (HSP32), can
be induced by several factors including haem and haem
derivatives, heat shock, heavy metals, NO, oxidized lipids,
hyperoxia, lipopolysaccharides, phorbol ester, sodium arsen-
ite [19], radiation, ultraviolet, hydrogen peroxide, hypoxia,
endotoxin, platelet-derived growth factor (PDGF), trans-
forming growth factor (TGF)-b, electrophiles, okadaic acid,
methylglyoxal [20], curcumin [21], oxidative stress [22],
cytokines [IL-1, IL-6, IL-10, tumour necrosis factor
(TNF)-a, interferon (IFN)-g], shear stress [23], intensive
light, angiotensin II, glucose deprivation and by exogenous
CO [24,25]. HO-1 induction seems to be mediated by dif-
ferent signalling pathways, including cyclic adenosine-5′-
monophosphate (cAMP)-dependent mechanisms [26],
protein kinase C (PKC), Ca2-calmodulin-dependent protein
kinase and the phosphoinositol pathway [27]. Mitogen-
activated protein kinases (ERK and P38) and tyrosine phos-
phorylation have been also involved in HO-1 induction in
some tissues [28–30].

Physiological roles for CO

CO stimulates soluble guanylate cyclase (sGC) activity in
vitro by binding to the ferrous haem moiety of the enzyme
[31], probably by forming a hexaco-ordinate complex. Given
the relatively low affinity of CO for the haem-iron of sGC,
CO signalling might become relevant under oxidative stress
or pathophysiological conditions where HO-1 is signifi-
cantly induced. The mobilization of CO for signalling may
be regulated by the availability of the substrate haem for
enzymatic degradation, and the availability of active HO
enzymes, a process which, in turn, may be orchestrated by
the transcriptional activation of the ho-1 gene by stress.
Indeed, ultraviolet A (UVA) irradiation or hydrogen perox-
ide treatment of human skin fibroblasts leads to an imme-
diate release of haem from microsomal haem proteins [32].

Several physiological roles for CO have been reported
which directly involve the modulation of cGMP levels,
including vasodilation, neurotransmission, inhibition of
platelet aggregation and anti-proliferative effects on smooth
muscle [31–33]. Overexpression of HO-1 in pigs inhibits
phenylephrine-induced vasoconstriction in isolated aortic
rings. Furthermore, the effects of HO-1 expression were
subject to inhibition by ZnPPIX. The induction of guanylate
cyclase in cultured olfactory neurones by olfactory stimu-
lants can be inhibited by metalloporphyrin inhibitors of HO
such as ZnPPIX [34]. Body hyperthermia or elevation of
cGMP levels in the heart correlate with the transcriptional
induction of HO-1. cGMP increase following hypoxia is
associated with HO-1 elevation, and it can be inhibited
by SnPPIX and the CO scavenger haemoglobin [32]. Both
exogenously applied CO or hypoxia-induced CO exert
anti-proliferative effects on vascular smooth muscle cells
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O2, NADPH

H2O, NADP+

Fe3+ Carbon monoxide Biliverdin IXα

Fig. 1. Haem metabolism pathway. In the presence of haem

oxygenase enzymes, the porphyrin ring of haem is oxidized producing

equimolar amounts of carbon monoxide (CO), ferrous iron and

biliverdin. This pathway also requires nicotinamide adenine

dinucleotide phosphate (NADPH) and O2.
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(VSMC), which is associated with elevation of cGMP, and
inhibition of transcription factor E2F, a regulator of cell cycle
control [33]. Transfection of VSMC with an adenovirus
vector bearing the ho-1 gene (AdHO-1) stimulated cGMP
production, and inhibited cell proliferation in vitro by
G1/G0 arrest [34].

Anti-inflammatory properties of CO

At the concentration range of 100–500 parts per million
(ppm), CO differentially and selectively inhibited the
expression of lipopolysaccharide (LPS)-induced proinflam-
matory cytokines TNF-a, interleukin-1b and macrophage
inflammatory protein-1b and increased the LPS-induced
expression of the anti-inflammatory cytokine IL-10
from macrophages [35] and the secretion of IL-2 from
activated T cells [41]. The anti-inflammatory effect
of CO is mediated by p38 kinase, but independent of
the cGMP pathway [35]. In turn, IL-10 up-regulates
HO-1 expression with consequent increase in CO pro-
duction [36]. In this manner, CO self-amplifies its anti-
inflammatory effect.

The anti-inflammatory effect of endogenous CO is related
closely to the expression of HO-1. Indeed, HO-1 null mice
show enlarged spleen and lymph nodes, high white blood
cell counts and high splenic and lymph node CD4 : CD8 T
cell ratios with numerous activated CD4 T cells, thus indi-
cating a chronic inflammatory condition [37].

One important mechanism by which the HO-1/CO
system might mediate its anti-inflammatory effect is the
down-regulation of adhesion molecules, i.e. selectin, inte-
grin and the immunoglobulin superfamily [38]. Induction
of HO-1 has indeed found to down-regulate the H2O2-
induced P-selectin expression, with consequent decreased
leucocyte binding [39].

The anti-inflammatory and cytoprotective effects elicited
by CO are mediated mainly by the activation of the mitogen-
activated protein kinase (MAPK) and the nuclear factor
(NF)-kB pathway. It has been reported that exposing mac-
rophages to 250 ppm of CO leads to reduced production of
LPS-induced granulocyte macrophage colony-stimulating
factor (GM-CSF) [40]. This effect was mediated by a
decreased phosphorylation of Ik-Ba and consequently by
the inhibition of the transcription factor NF-kB. Also,
in activated CD4 T cells, CO inhibited extracellular-
regulated kinase (ERK) phosphorylation and suppressed
cell proliferation [41].

These anti-inflammatory effects of CO were confirmed in
vivo in a model of endotoxaemia where mice were injected
with LPS with or without CO pretreatment. CO dose-
dependently inhibited LPS-induced serum TNF-a levels and
increased IL-10 production. These effects seemed to be
mediated by MAPK kinase 3 (MKK3), as CO failed to down-
regulate serum TNF-a levels or up-regulate IL-10 levels in
LPS-injected MKK3-/- mice.

The above-mentioned data suggest that the anti-
inflammatory effect exerted by CO involves the MKK3/p38
MAPK pathway.

CORMs

Although the use of small amounts of CO gas in medic-
ine might be feasible [42], gaseous compounds are gener-
ally difficult to deliver to organisms in an accurate and
safe manner. CORMs represent a good alternative to CO
gas both from a pharmaceutical perspective and in terms
of specificity of action. The preferential reactivity of
CO towards metals allows to bind CO covalently to transi-
tion metal carbonyls in order to obtain agents aimed at
delivering controlled amounts of CO to tissues and organs
under appropriate conditions [13]. In fact, CO liberated
from CORMs can be delivered precisely at given concen-
trations through all possible routes of administration,
unlike CO gas, which can be delivered effectively only by
inhalation. Also, it is evident that HbCO concentrations
do not increase to life-threatening levels when CORMs
are used at doses that are pharmacologically effective
[43,44].

The first in class compound is the dimethylsulphoxide
(DMSO)-soluble metal carbonyl complex tricarbonyldichlo-
roruthenium(II) dimer {[Ru(CO)3Cl2]2},known as CORM-2.
This compound, when in contact with reduced deoxymyo-
globin or deoxyhaemoglobin rapidly transfers ca. one CO
equivalent to the protein haem forming carboxymyoglobin
(COMb) or carboxyhaemoglobin (COHb), respectively.
CORM-3 {[Ru(CO)3Cl(glycinate]} and CORM-A1
[Na2(H3BCO2)] are instead water-soluble CO-releasing
agents [46],with different chemical structures and properties.
In the same reaction with deoxymyoglobin, CORM-3 has a
short half-life (<1 min), while CORM-A1, a boron-
containing carboxylic acid, releases CO in a pH-dependent
manner which under physiological conditions attains a half-
life of 21 min [13]. The pharmacokinetic differences of these
two compounds explain why CORM-3 elicits a prompt and
rapid vasodilatory effect, whereas CORM-A1 promotes mild
vasorelaxation and hypotension [45]. (Fig. 2)

The effects of these CORMs include cardioprotection
against both ischaemia and myocardial infarction [46];
reduction of cardiac graft rejection and positive inotropic
effects on the heart [46,47]; attenuation of the acute inflam-
matory response and amelioration of neuroinflammatory
responses in microglia [48–50]; reduction of histamine
release from guinea pig mast cells and human neutrophils
[51]; anti-hypertensive effects and inhibition of platelet
aggregation [52]; vasodilatation and anti-apoptotic effects in
the cerebral circulation [53,54]; reduction of hepatic leu-
cocyte sequestration and systemic inflammatory response
during severe burn injury [55]; mitigation of photocarcino-
genesis in the skin [56]; and improved kidney function fol-
lowing cold ischaemia occurring during organ preservation

The dose makes the poison

181© 2012 The Authors
Clinical and Experimental Immunology © 2012 British Society for Immunology, Clinical and Experimental Immunology, 167: 179–187



and protection against cisplatin-induced nephrotoxicity
[57,58].

The HO1 and CO axis in inflammatory and
degenerative events of the CNS: friends or foes?

HO-2 is expressed widely in the central nervous system
(CNS) where it is present in mitral cells in the olfactory bulb,
pyramidal cells in the cortex and hippocampus [34], as well
as in granule cells of the dentate gyrus, in the thalamus and
hypothalamus, cerebellum and caudal brainstem. It is
thought that HO-2 may protect these neurones from oxida-
tive stress by reducing lipid peroxidation through the
catabolism of free haem. Conversely, HO-1 expression has
been found in both neuronal and non-neuronal cells of the
forebrain, diencephalon, cerebellum and brainstem regions.
The relevance of HO-1 expression, however, becomes more
evident in certain pathological conditions, such as Alzhe-
imer’s disease (AD), Parkinson’s disease and multiple scle-
rosis (MS). Both neuronal and non-neuronal CNS cells
rapidly up-regulate HO-1 in response to stress [59]. Upon
cerebral ischaemia, transgenic mice that overexpress HO-1
in neurones exhibit diminished tissue staining for lipid per-
oxidation end-products, enhanced expression of the anti-
apoptotic factor bcl-2 and reduced infarct volumes in
comparison with wild-type mice [60]. Glial HO-1 expres-
sion has also been shown in traumatic brain injury animal
models to contribute to neuroprotection. Also, cerebellar
granule cells collected from HO-1 transgenic mice appear to
be relatively resistant to glutamate and H2O2-related oxida-
tive stress [61].

Increased HO-1 expression has been reported in AD
brains in association with neurofibrillary tangles [62,63],

senile plaques and glial fibrillary acidic protein-positive
astrocytes [64]. This HO-1 up-regulation could be induced
by the increased free haem levels associated with neuronal
death and may represent a compensatory mechanism to
convert haem into the anti-oxidant molecules, biliverdin
and bilirubin [64]. Furthermore, substantia nigral dopamin-
ergic neurones of Parkinson’s disease patients exhibit
up-regulated HO-1 in response to oxidative stress [65].

Oligodendrocytes are extremely sensitive to oxidative
stress [66] mediated by reactive oxygen species (ROS) that
arise from extensive elaborations of membranes [66]
because of the relatively low levels of anti-oxidant defences,
such as superoxide dismutase and catalase [67]. Conversely,
experimental evidences show that ROS are a key feature
of inflammatory demyelinating disease. Indeed, ROS are
produced massively both in experimental autoimmune
encephalomyelitis (EAE) and MS [68] and damage to lipid
membranes by ROS has been observed in EAE and MS [69].
A recent study by Dallas and co-workers has also gained
insight into the possible mode of action by which CO may
exert its protective effects against oxidant-induced apoptosis
in inflammatory and degenerative events of the CNS [70].
An early step in this process is the loss of intracellular K(+)
via K(+) channels, and evidence indicates that K(v)2·1 is of
particular importance in this regard, being inserted rapidly
into the plasma membrane in response to apoptotic stimuli.
The authors demonstrate that CO reversibly inhibits
K(v)2·1. Channel inhibition by CO involves ROS and protein
kinase G activity. Overexpression of K(v)2·1 in HEK293 cells
increases their vulnerability to oxidant-induced apoptosis,
and this is reversed by CO. In hippocampal neurones, CO
selectively inhibits K(v)2·1, reverses the dramatic oxidant-
induced increase in K(+) current density and provides
marked protection against oxidant-induced apoptosis.
Hence, these results provide a novel mechanism to account
for the neuroprotective effects of CO against oxidative
apoptosis, which has potential for therapeutic exploitation
to provide neuronal protection in situations of oxidative
stress.

However, other experimental evidences suggest that the
up-regulated expression of HO1 in inflammatory and
degenerative pathologies of the CNS may represent a
pathogenetic event (Fig. 3).

Mehindate et al. [71] measured HO-1 mRNA levels and
mitochondrial uptake of [(55)Fe]Cl(3)-derived iron in rat
astroglial cultures exposed to IL-1b or TNF-a alone or in
combination with the HO-1 inhibitors, tin mesoporphyrin
(SnMP) or dexamethasone (DEX), or IFN-b. HO-1 expres-
sion in astrocytes was evaluated by immunohistochemical
staining of spinal cord tissue derived from MS and control
subjects. IL-1b or TNF-a promoted sequestration of non-
transferrin-derived (55)Fe by astroglial mitochondria. HO-1
inhibitors, mitochondrial permeability transition pore
(MTP) blockers and anti-oxidants significantly attenuated
cytokine-related mitochondrial iron sequestration in these
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cells. IFN-b decreased HO-1 expression and mitochond-
rial iron sequestration in IL-1b- and TNF-a-challenged
astroglia. The percentage of astrocytes co-expressing HO-1
in affected spinal cord from MS patients (57·3% � 12·8%)
was significantly greater (P < 0·05) than in normal spinal
cord derived from control subjects (15·4% � 8·4%). These
data indicate that HO-1 is over-expressed in MS spinal
cord astroglia and may promote mitochondrial iron deposi-
tion in MS plaques and that, in MS, IFN-b may attenuate
glial HO-1 gene induction and aberrant mitochondrial iron
deposition accruing from exposure to proinflammatory
cytokines.

Stahnke et al. [71] have analysed autopsy and biopsy
brain samples of patients with MS and acute disseminated
leucoencephalomyelitis (ADEM) and spinal cord lesions of
mouse EAE, which was induced actively by immunization
with myelin oligodendrocyte glycoprotein (MOG35-55)
peptide, for the presence of HO-1. HO-1 was observed in
glial cells during different stages: (i) during acute phases of
mainly inflammatory diseases (EAE and ADEM) expression
of HO-1 was prominent in microglia/macrophages and
astrocytes and up-regulation correlated with inflammation;
and (ii) in early MS lesions HO-1 was expressed in oligo-
dendrocytes. Furthermore, in glial cell cultures, they have
shown that up-regulation of HO-1 in oligodendrocytes was
paralleled by severe morphological damage. Oligodendro-
cytes underwent apoptotic cell death at a concentration of
hydrogen peroxide (50–200 mM), which did not affect
astrocytes or microglia. Using oligodendroglial OLN-93
cells, they demonstrated that oxidative stress led to mito-
chondrial impairment and the disorganization of the
microtubule network. Zinc protoporphyrin, an inhibitor of
HO-1, augmented the cytotoxic consequences of hydrogen
peroxide in OLN-93 cells. Based on these data the authors
suggest that stress-induced HO-1 initially plays a protective

role, while its chronic up-regulation might contribute to
oligodendroglial cell death rather than providing protection
[71].

Can the HO1 and CO axis represent potential
therapeutic targets in MS?

MS is an autoimmune-mediated disease that affects the CNS
and is characterized by inflammatory lesions, demyelination
and axonal loss. Common symptoms of MS include weak-
ness, fatigue, sensory impairment and poor cognition [72].
Currently, first-line therapy for different clinical forms of MS
includes type I interferons (IFN-b) and glatiramer acetate
(Copaxone), natalizumab, cyclophosphamide, mitoxantrone
and, more recently, fingolimod. These drugs have different
effects on the function and proliferation of macrophage and
T cells, influence their migration to the CNS and seem to
shift the cytokine secretory profile towards a type 2, type 3
profile [73–75]. However, their effectiveness is still limited
and the relapse rates and the number of new lesions are
reduced by only 30–40%. In addition, most of these drugs
have several side effects and are costly, and prolonged treat-
ment with IFN-b and natalizumab induce production of
neutralizing antibodies that limit their therapeutic efficacy.
EAE, the animal model for MS, can be induced in susceptible
rodent strains by active immunization of myelin antigens
and has been used largely as an in-vivo tool to dissect patho-
genetic mechanisms of the human disease counterpart as
well as to provide proof of concept studies for the in-vivo
efficacy of test compounds that may be worthy of develop-
ment for the clinical setting. Interestingly, all current thera-
pies approved for MS ameliorate the EAE disease course
[76]. Thus, as new therapeutic interventions for MS are
strongly required, the EAE models offer a practical tool for
evaluating the effectiveness of novel putative pharmacologi-
cal approaches.

Neuroinflammation shares several similarities with
inflammation in peripheral tissues and, indeed, increased
levels of HO-1, linked probably to a physiological anti-
inflammatory and cytoprotective response have been
observed in the CNS in MS [71,77] and EAE [78]. In agree-
ment with this hypothesis, Liu et al. [78] have shown high
expression of HO-1 in lesions of EAE, and demonstrated
that haemin, an inducer of HO-1, significantly inhibited
EAE. In contrast, SnMP treatment, which inhibits HO-1,
markedly exacerbated the clinical course of EAE. These data
suggest that endogenous HO-1 plays an important protec-
tive role in EAE, and that targeted induction of HO-1 over-
expression may represent a novel treatment option for MS.

Chora et al. [79] have provided clear-cut evidence that
HO-1 orchestrates the pathological outcome of EAE. Induc-
tion of EAE in Hmox1(-/-) mice leads to increased CNS
demyelination, paralysis and mortality compared with wild-
type mice. Induction of HO-1 by cobalt protoporphyrin IX
(CoPPIX) administration reversed paralysis and disease
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Mitochondrial

permeability
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Fig. 3. Potential mechanisms of action of carbon monoxide (CO) in

neuroinflammation and neurodegenerative disorders. The beneficial

effects of CO seems to occur at multiple cellular and molecular levels,

including redox control, modulation of proliferation and of the

immune response.
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relapse. The protective effect of HO-1 was associated with
inhibition of major histocompatibility complex (MHC) class
II expression by antigen-presenting cells (APCs) and inhibi-
tion of CD4+ and CD8+ T cell accumulation, proliferation
and effector function within the CNS. Exogenous CO
administration mimicked these effects, suggesting that CO
represents the key molecule that mediates the protective
action of HO-1. In addition, the HO-1 system seemed to
stabilize the blood–spinal cord barrier, thus limiting the
infiltration of leucocytes [80].

Along the same lines, we have demonstrated recently that
the water-soluble CORM-A1 prevents clinical and histologi-
cal signs of EAE in mice with proteolipid protein (PLP)-
induced EAE [81]. The early prophylactic treatment with
CORM-A1 significantly reduced both the cumulative score
and the duration of the disease compared to vehicle-treated
controls. Moreover, the incidence of the disease in the mice
treated with CORM-A1 was lower than in the vehicle-treated
mice. These protective effects were maintained for a signifi-
cant period of time after interruption of the treatment. Inter-
estingly, the level of protection exerted by the prophylactic
treatment with CORM-A1 was superior to that reached by the
reference compound dexamethasone. A trend of reduction in
the cumulative scores, disease duration and cumulative inci-
dence was also observed in mice treated with CORM-A1
under the late prophylactic regimen. Significant reduction in
the infiltration of polymorphonucleated cells in the spinal
cord was also observed in the mice treated prophylactically
with CORM-A1. Interestingly, the levels of COHb reached at
a dose of 2 mg/kg used in this EAE study never exceeded 3%
COHb levels, which are relatively safe and only slightly above
basal values, indicating that CORM-A1 can exert its thera-
peutic activity within a range of COHb levels far lower than
those considered to be toxic to humans.

That HO-1 and CO may play a significant role in reducing
neuroinflammation is demonstrated further by a paper from
Pamplona et al. [82], showing a marked suppressive effect of
HO-1 and CO in the pathogenesis of murine cerebral
malaria, which is a condition of the CNS that shares some
immunoinflammatory pathways similar to EAE.

It is, however, important to mention that in apparent con-
tradiction with all these data which point to a beneficial
effect of endogenous or exogenous up-regulation of the
HO1/CO axis in EAE and MS, Chakrabarty et al. have dem-
onstrated that the administration of the putative inhibitor
[tin-protoporphyrin IX (Sn-PP IX)] of HO-1 to SJL mice
during active disease attenuated clinical scores, weight loss
and some signs of pathology in comparison to vehicle
treatment. Glutathione levels were greater in treated EAE
mice than in those receiving vehicle, indicating lower oxida-
tive stress in the former group. These data suggest that inhi-
bition of HO-1 attenuated disease and suppressed free
radical production. In the SJL murine model of EAE,
extravasated blood is present in the CNS, and iron released
by HO-1 from this haem source may not be sequestered

adequately by ferritin, allowing for iron-mediated tissue
damage [83]. Thus, HO-1 may act to amplify the disease
process in this model. The reasons for these diverging results,
that may lend support to the previously discussed concept of
the HO1 system as pathogenetic effector in EAE and MS, are
difficult to understand and require confirmation from inde-
pendent studies and in different rodent models of EAE.
None the less, these data advocate caution regarding the
possibility that during EAE and MS development endog-
enous HO1 may orchestrate immunoinflammatory events
in a dicothomic and possibly concentration-dependent
fashion, and that excessive up-regulation of the HO1 system
in this setting may become proinflammatory. Because this
dicothomic action has not so far been reported with the end
product of HO1, CO, this would favour targeting the devel-
opment of CO, rather than HO1 for the treatment of MS.

Although the precise mechanistic mode of action by
which HO1 and CO may exert their beneficial effects in EAE
remains to be demonstrated, Chora et al. have provided con-
vincing in-vitro and in-vivo evidence that the beneficial
effect of HO-1 induction may occur at the level of antigen
presentation, in particular through induction of HO-1
expression in dendritic cells (DC). In their study, induction
of HO-1 leads to specific inhibition of MHC class II in
APCs, including dendritic cells (DC), microglia and CNS-
infiltrating macrophages. Induction of HO-1 expression in
microglia suppressed signal transducer and activator of tran-
scription 1 (STAT1) phosphorylation as well as MHC class II
transactivator (CIITA) expression, two critical events for
MHC class II expression in APCs. Mice lacking the CIITA
show tissue-specific impairment of MHC class II expression,
as well as in the reactivation of myelin-reactive T helper (Th)
cells in the CNS [84]. This effect is likely to contribute to the
overall protective effect of HO-1 induction, as MHC class II
expression in microglia is thought to be involved in EAE
pathogenesis and progression (reviewed in [85]).

Another possibility could be that HO-1 promotes the
accumulation of regulatory T cells and/or up-regulates their
activity within the CNS and/or in the periphery. This would
be consistent with widespread evidence that regulatory T
cells can control the pathogenesis of EAE [86] as well as with
the hypothesis that HO-1 expression may control regulatory
T cell function. This point, however, remains to be clarified,
as despite its ability to suppress ongoing EAE, induction of
HO-1 failed to modulate the number of CNS-infiltrating
regulatory T cells [79].

Chora et al. [79] have also shown that upon induction of
HO-1 in APCs, the effector function of myelin-reactive Th
cells in the CNS is modulated in a manner that suppresses
their pathogenicity with consequent suppression of neuroin-
flammatory, i.e. IFN-g, but not neuroprotective, i.e. IL-10
and TNF-a cytokine expression by CNS-infiltrating Th cells
[79]. It also remains to be studied whether HO-1 prevents
EAE progression not only by immunomodulation but
also by its cytoprotective properties on oligodendrocytes or

P. Fagone et al.

184 © 2012 The Authors
Clinical and Experimental Immunology © 2012 British Society for Immunology, Clinical and Experimental Immunology, 167: 179–187



neurones in the CNS [87]. Such an effect would be consistent
with the observed arrest of EAE progression [88], as well as
with previous observation that cytoprotection afforded by
HO-1 can prevent the rejection of transplanted organs [89].

Conclusions

The use of controlled amounts of CO in preclinical experi-
mental models of disease has produced some interesting data
indicating that its therapeutic delivery to mammals could
alleviate multiple pathological conditions, and in particular
inflammatory disorders.

To date, there is clear evidence that the HO system plays an
important role in neuroinflammatory disorders such as MS
and its animal counterpart, and that controlled CO delivery
through CORMs may represent a useful therapeutic tool for
the treatment of these diseases. Indeed, CORM-A1 treat-
ment exerts significant immunomodulatory effects in the
PLP-induced EAE model in mice. The prolonged prophylac-
tic treatment with CORM-A1 improved the clinical and his-
tological signs of relapsing–remitting EAE. This was evident
from the reduced cumulative score, shorter duration and
lower incidence of the disease and reduced inflammatory
infiltration of the spinal cords compared to vehicle-treated
animals.

The results generated in the last few years indicate that
CORMs exert effective anti-inflammatory effects in multiple
pathological conditions characterized by an altered immune
response. Even though caution must be exercised when
translating pathogenic concepts and pharmacological data
from rodent EAE to human MS, the multiple converging and
independent in-vitro and in-vivo data that have been
generated and that we have discussed herein highlight the
immunopharmacological properties of the HO1, and, in
particular, of the CO system in CNS neuroinflammation,
and lend strong support to the possibility that CORMs may
represent a novel class of drugs with disease-modifying
properties in MS and, as such, are worthy of being developed
further for their application in this clinical setting.
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