
Information Sciences 178 (2008) 4019–4037
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Stochastic dominance-based rough set model for ordinal classification
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a b s t r a c t

In order to discover interesting patterns and dependencies in data, an approach based on
rough set theory can be used. In particular, dominance-based rough set approach (DRSA)
has been introduced to deal with the problem of ordinal classification with monotonicity
constraints (also referred to as multicriteria classification in decision analysis). However,
in real-life problems, in the presence of noise, the notions of rough approximations were
found to be excessively restrictive. In this paper, we introduce a probabilistic model for
ordinal classification problems with monotonicity constraints. Then, we generalize the
notion of lower approximations to the stochastic case. We estimate the probabilities with
the maximum likelihood method which leads to the isotonic regression problem for a two-
class (binary) case. The approach is easily generalized to a multi-class case. Finally, we
show the equivalence of the variable consistency rough sets to the specific empirical
risk-minimizing decision rule in the statistical decision theory.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

We consider an ordinal classification problem that consists in assignment of objects to K ordered classes Clk,
k 2 Y ¼ f1; . . . ;Kg, such that if k > k0 then class Clk is higher than class Clk0 . Objects are evaluated on a set of m attributes with
ordered value sets. Here, without loss of generality, we assume that the value set of each attribute is a subset of R (even if the
scale is purely ordinal, evaluation on attributes can be numbercoded) and the order relation is a linear order P, so that each
object xi is an m-dimensional vector ðxi1; . . . ; ximÞ. It is assumed that monotonicity constraints are present in the data: a higher
evaluation of an object on an attribute, with other evaluations being fixed, should not decrease its assignment to the class.
One can induce a data model from a training set U ¼ fðx1; y1Þ; . . . ; ðxn; ynÞg, consisting of n objects (denoted with x) already
assigned to their classes (class indices denoted with y 2 Y). We also denote X ¼ fx1; . . . ; xng, and by class Clk we mean the
subset of X consisting of objects xi having class indices yi ¼ k, Clk ¼ fxi 2 X : yi ¼ kg.

Thus, ordinal classification problem with monotonicity constraints resembles a typical classification problem considered
in machine learning [10,17], but requires two additional constraints. The first one is the assumption of the ordinal scale on
each attribute and on class indices. The second constraint is the monotonicity property: the expected class index increases
with increasing evaluations on attributes. Such properties are commonly encountered in real-life applications, yet rarely
taken into account. In decision theory, a multicriteria classification problem is considered [13], which has exactly the form
. All rights reserved.
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of ordinal classification problem with monotonicity constraints. Moreover, in many different domains monotone properties
follow from the domain knowledge about the problem and should not be neglected. They have been recognized in applica-
tions such as bankruptcy risk prediction [11], breast cancer diagnosis [25], house pricing [23], credit rating [9], liver disorder
diagnosis [26] and many others.

As an example, consider the customer satisfaction analysis [15], which aims at determining customer preferences in order
to optimize decisions about strategies for launching new products, or about improving the image of existing products. The
monotonicity constraints are of fundamental importance here. Indeed, consider two customers, A and B, and suppose that
the evaluations of a product by customer A on a set of attributes are better than the evaluations by customer B. In this case,
it is reasonable to expect that also the comprehensive evaluation of this product (i.e. class, to which the product is assigned)
by customer A is better (or at least not worse) than the comprehensive evaluation made by customer B. As another example,
consider the problem of credit rating. One of the attributes could be the degree of regularity in paying previous debts by a
consumer (with ordered value set, e.g. ‘‘unstable”, ‘‘acceptable”, ‘‘very stable”); on the other hand, the class attribute could be
the evaluation of potential risk of lending money to a consumer, also with ordered value set (e.g. ‘‘high-risk”, ‘‘medium-risk”,
‘‘low-risk”); moreover, there exists a natural monotone relationship between the two attributes: the more stable the pay-
ment of the debt, the less risky the new credit is.

Despite the monotone nature of the data, it still may happen that in the training set U, there exists an object xi not worse
than another object xj on all attributes, however, xi is assigned to a class worse than xj; such situation violates the monotone
properties of the data, so we shall call objects xi and xj inconsistent. Rough set theory [19,20,22] has been adapted to deal with
this kind of inconsistency and the resulting methodology has been called dominance-based rough set approach (DRSA) [12,13].
In DRSA, the classical indiscernibility relation has been replaced by a dominance relation. Using the rough set approach to
the analysis of multicriteria classification problem, we obtain lower and upper (rough) approximations of unions of classes.
The difference between upper and lower approximations shows inconsistent objects with respect to the dominance princi-
ple. It can happen that due to the presence of noise, the data is so inconsistent, that too much information is lost, thus making
the DRSA inference model not accurate. To cope with the problem of excessive inconsistency, a variable consistency model
within DRSA has been proposed (VC-DRSA) [14].

In this paper, we look at DRSA from a different point of view, identifying its connections with statistics and statistical
decision theory. We start with the overview of the classical rough set theory and show that the variable-precision model
[31,32] comes from the maximum likelihood estimation method. Then we briefly present main concepts of DRSA. After-
wards, the main part of the paper follows: we introduce the probabilistic model for a general class of ordinal classifi-
cation problems with monotonicity constraints, and we generalize lower approximations to the stochastic case. Using
the maximum likelihood method we show how the probabilities can be estimated in a nonparametric way. It leads
to the statistical problem of isotonic regression, which is then solved by the optimal objects reassignment problem. Fi-
nally, we explain the approach as being a solution to the problem of finding a decision function minimizing the empir-
ical risk [2].

We stress that the theory presented in this paper is related to the training set only. In order to properly classify objects
outside the training set, a generalizing classification function must be constructed. We do not consider this problem here.
The aim of this paper is the analysis of inconsistencies in the dataset, handling and correcting them according to the prob-
abilistic model assumption, which comes from exploring the monotonicity constraints. This analysis can be seen as a sto-
chastic extension of DRSA. Therefore, the methodology presented here can be treated as a form of preprocessing and
improving the data.

2. Maximum likelihood estimation in the classical variable precision rough set approach

We start with the classical rough set approach [19], which neither takes into account monotonicity constraints nor are the
classes and attribute values ordered. It is based on the assumption that objects having the same description are indiscernible
(similar) with respect to the available information. The indiscernibility relation induces a partition of the universe into blocks
of indiscernible objects, called granules [19,13]. The indiscernibility relation I is defined as
I ¼ fðxi; xjÞ 2 X � X : xit ¼ xjt 8t ¼ 1; . . . ;mg; ð1Þ
where xit is the evaluation of object xi on attribute t, as defined in previous section. The equivalence classes of I are called
granules. The equivalence class for an object x 2 X is denoted IðxÞ. Any subset S of the universe may be expressed in terms
of the granules either precisely (as a union of granules) or approximately only. In the latter case, the subset S may be char-
acterized by two ordinary sets, called lower and upper approximations. Here, we always assume, that the approximated set S
is a class Clk; k 2 Y . The lower and upper approximations of class Clk are defined, respectively, by
Clk ¼ fxi 2 X : IðxiÞ � Clkg; ð2Þ
Clk ¼ fxi 2 X : IðxiÞ \ Clk 6¼ ;g: ð3Þ
It follows from the definition, that Clk is the largest union of the granules included in Clk, while Clk is the smallest union of the
granules containing Clk [19]. It holds, that Clk � Clk � Clk. Therefore, if an object x 2 X belongs to Clk, it is also certainly an
element of Clk, while if x belongs to Clk, it may belong to class Clk.
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For application to the real-life data, some less restrictive definitions were introduced under the name variable consistency
rough sets (VPRS) [31,32,27]. The new definitions of approximations (where lower approximation is usually replaced by the
term positive region, which, however, will not be used here) are expressed in the probabilistic terms in the following way. Let
Prðy ¼ kjIðxÞÞ be a probability that an object xi from granule IðxÞ belongs to the class Clk. The probabilities are unknown, but

are estimated by frequencies Prðy ¼ kjIðxÞÞ ¼ jClk\IðxÞj
jIðxÞj . Then, the lower approximation of class Clk is defined as
Fig. 1.
At gran
Clk ¼ fx 2 X : Prðy ¼ kjIðxÞÞP ug; ð4Þ
so it is the sum of all granules, for which the probability of class Clk is at least equal to some threshold u. Similarly, the upper
approximation of class Clk is defined as
Clk ¼ fx 2 X : Prðy ¼ kjIðxÞÞP lg; ð5Þ
where l is usually set to 1� u for the complementarity reasons. An example of VPRS lower approximations for a binary-class
problem is shown in Fig. 1.

It can be shown that frequencies used for estimating probabilities are the maximum likelihood (ML) estimators under the
assumption of common class probability distribution for every object within each granule. The sketch of the derivation is the
following. Let us choose a granule G ¼ IðxÞ. Let nG be the number of objects in G, and for each class Clk, let nk

G be the number of
objects from this class in G. Then the class index y has a multinomial distribution when conditioned on granule G. Let us
denote those probabilities Prðy ¼ kjGÞ by pk

G.
Then the conditional probability of observing the n1

G; . . . ;nK
G objects in G, given p1

G; . . . ; pK
G (conditional likelihood) is the

following:
Lðp; nGjGÞ ¼
YK

k¼1

ðpk
GÞ

nk
G ; ð6Þ
so that the log-likelihood is
Lðp; nGjGÞ ¼ ln Lðn; p;GÞ ¼
XK

k¼1

nk
G ln pk

G: ð7Þ
The maximization of Lðp; nGjGÞwith additional constraint
PK

k¼1pk
G ¼ 1 leads to the well-known formula for ML estimators p̂k

G

in multinomial distribution
p̂k
G ¼

nk
G

nG
; ð8Þ
which are exactly the frequencies used in VPRS. This observation will lead us in Section 4 to the stochastic generalization of
dominance-based rough set approach. An example of VPRS lower approximations for a binary-class problem is shown in Fig. 1.

3. Dominance-based rough set approach (DRSA)

Within DRSA [12–14,6,28], we define the dominance relation � as a binary relation on X in the following way: for any
xi; xj 2 X we say that xi dominates xj, xi � xj, if xi has evaluation not worse than xj on every attribute, xit P xjt , for all
t ¼ 1; . . . ;m. The dominance relation � is a partial pre-order on X, i.e. it is reflexive and transitive. The dominance principle
can be expressed as follows. For all xi; xj 2 X it holds
q1
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Example of a two-class problem. Black points are objects from class 1, light points – from class 2. The value sets of two attributes q1; q2 are f1;2;3g.
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¼ 2=3. We see, that for precision threshold u ¼ 2=3 or lower, G5 belongs to Cl2.



1 Tho
attribut

2 We

4022 W. Kotłowski et al. / Information Sciences 178 (2008) 4019–4037
xi � xj ) yi P yj: ð9Þ
The dominance principle follows from the monotone relationship between class indices and attributes. However, in many
real-life applications the dominance principle is not satisfied, i.e. there exists at least one pair of objects violating (9). We
say, that an object xi is inconsistent if there exist another object xj, such that xi; xj violates (9). Otherwise, we say that object
xi is consistent. We will also use the following expression: object xi is consistent with xj, if a pair xi; xj satisfies (9).

The rough approximations concern granules resulting from information carried out by class indices and by attributes.
These granules are called decision and condition granules, respectively.1 The decision granules can be expressed by unions
of classes
ClPk ¼ fxi 2 X : yi P kg; ð10Þ
Cl6k ¼ fxi 2 X : yi 6 kg: ð11Þ
The condition granules are dominating and dominated sets defined, respectively, as
DþðxÞ ¼ fxi 2 X : xi � xg; ð12Þ
D�ðxÞ ¼ fxi 2 X : x � xig: ð13Þ
Let us remark that both decision and condition granules are cones in decision (Y) and condition (X) spaces, respectively.
Using class unions instead of single classes, and dominating (dominated) sets instead of single objects, is a general property
of most of the methodologies dealing with ordinal classification problem with monotonicity constraints and follows directly
from the monotone nature of the data.

Lower dominance-based approximations of ClPk and Cl6k are defined as follows:
ClPk ¼ fxi 2 X : DþðxiÞ � ClPk g; ð14Þ
Cl6k ¼ fxi 2 X : D�ðxiÞ � Cl6k g: ð15Þ
They reflect the objects which certainly belong to class union ClPk (or Cl6k ). This certainty comes from the fact, that object xi

belongs to the lower approximation of class union ClPk (respectively Cl6k ) if no other object in the dataset X contradicts it, i.e. xi

is consistent with every other object outside of ClPk (respectively Cl6k ). Otherwise, if there exists an object outside of ClPk ,
which dominates xi, then due to the dominance principle (following from the monotonicity constraints) we cannot say that
xi should belong to ClPk with certainty.

Notice, that for any k 2 Y , we have ClPk [ Cl6k�1 ¼ X. It is not the case with the lower approximations. Therefore we define
the boundary (doubtful) region [13] for class unions ClPk and Cl6k�1 as
Bk ¼ X n ðClPk [ Cl6k�1Þ: ð16Þ
This region reflects the area which does not belong to lower approximations of class unions ClPk and Cl6k�1. Notice, that DRSA
handles the analysis of inconsistencies by decomposition into K � 1 separate binary problems: for each k ¼ 2; . . . ;K we have
lower approximations ClPk , Cl6k�1 and boundary Bk, which together form the whole set X. Such a decomposition will also be
used in the stochastic extension of DRSA.

For the purpose of this paper, we will focus our attention on another concept from DRSA (as we shall shortly see, equiv-
alent to the notion of approximations), the generalized decision [6]. Consider an object xi 2 ClPk ; since the lower approxima-
tion of class union ClPk is a region in which objects certainly belong to ClPk , we can state that the class index of xi should be at
least k. Choosing the greatest k for which xi 2 ClPk holds (denoted by lðxiÞ), we know that the class index of xi must be at least
lðxiÞ; moreover, we cannot give more precise statement, since we are not certain that the class index of xi is at least lðxiÞ þ 1
(because xi 62 ClPk ). On the other hand, if xi 2 Cl6k , we known that the class index of xi must be at most k. By similarly choosing
the lowest k for which xi 2 Cl6t (denoted by uðxiÞ), we end up with the interval of classes ½lðxiÞ;uðxiÞ�, for which we know that
object xi must belong to. This interval is often denoted by dðxiÞ, and is called a generalized decision2:
dðxiÞ ¼ ½lðxiÞ;uðxiÞ�; ð17Þ
where
lðxiÞ ¼max k : xi 2 ClPk
� �

; ð18Þ
uðxiÞ ¼min k : xi 2 Cl6k

� �
: ð19Þ
The generalized decision reflects an interval of decision classes to which an object may belong due to the inconsistencies
with the dominance principle. Investigating the definitions of lower approximations (14) and (15) one can show, that gen-
eralized decision can be easily computed without reference to the lower approximation:
se names come from the fact, that in rough set theory the class index for a given object is called a decision value and the attributes are called condition
es.
remind that the class assignments are called decision values in rough set theory.
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lðxiÞ ¼ minfyj : xj � xi; xj 2 Xg; ð20Þ
uðxiÞ ¼maxfyj : xi � xj; xj 2 Xg: ð21Þ
Thus, lðxiÞ is the lowest class, to which objects dominating xi belong; uðxiÞ is the highest class, to which objects dominated by
xi belong. Obviously, lðxiÞ 6 yi 6 uðxiÞ for every xi 2 X, and if lðxiÞ ¼ uðxiÞ, then object xi is consistent with respect to the dom-
inance principle with every other object xj 2 X. Notice, that the wider the generalized decision, the less precise knowledge
about the object we have. The generalized decision, along with lower approximations for a binary-class problem, are shown
in Fig. 2.

Let us remark that the description with generalized decisions is fully equivalent to the description with rough approxi-
mations. Namely, dominance-based lower approximations may be expressed using the generalized decision
ClPk ¼ fxi 2 X : lðxiÞP kg; ð22Þ
Cl6k ¼ fxi 2 X : uðxiÞ 6 kg: ð23Þ
Finally, notice that the definitions of lower approximations and generalized decisions for DRSA are very restrictive. Suppose,
there exists one object dominating many other objects from a dataset, but its class index is the lowest one (e.g. due to a mis-
take). Then, many of the objects will be included into boundary regions and their generalized decision will be broadened.
Therefore, relaxed definitions of lower approximations have been introduced under the name of variable consistency DRSA
(VC-DRSA) [14,3], which allow object xi to be incorporated into lower approximations, if a high fraction of objects dominat-
ing xi (or being dominated by xi) is consistent with xi. The stochastic model introduced in the next section has similar prop-
erties, therefore it can be regarded as a sort of VC-DRSA model.

4. Stochastic model of DRSA

In this section, we introduce new definitions of lower approximations for DRSA. The definitions will be based on the prob-
abilistic model for the ordinal classification problems.

In Section 2, we have made the assumption that in a single granule IðxÞ, each object x 2 G has the same conditional prob-
ability distribution, PrðyjIðxÞÞ. This is due to the property of indiscrenibility of objects within a granule. In case of DRSA, indis-
cernibility is replaced by a dominance relation, so that a different relation between the probabilities must hold. Namely, we
conclude from the dominance principle that
xi � xj ) Prðy P kjxiÞP Prðy P kjxjÞ 8k 2 Y; 8xi; xj 2 X; ð24Þ
where Prðy P kjxiÞ is a probability (conditioned on xi) of class index at least k. In other words, if object xi dominates object xj,
the probability distribution conditioned at point xi stochastically dominates the probability distribution conditioned at xj. Eq.
(24) will be called stochastic dominance principle. It reflects the general property of a probability distribution in the problems
with monotonicity constraints. Moreover, reversing our reasoning, we can give a statistical definition of the ordinal classi-
fication problem with monotonicity constraints: it is every classification problem with ordered value sets of attributes and
classes with the probabilistic model for which (24) holds.

Having stated the probabilistic model, we introduce the stochastic DRSA by relaxing the definitions of lower approxima-
tion of classes



4024 W. Kotłowski et al. / Information Sciences 178 (2008) 4019–4037
ClPk ¼ fxi 2 X : Prðy P kjxiÞP ag; ð25Þ
Cl6k ¼ fxi 2 X : Prðy 6 kjxiÞP ag;
¼ fx¼i 2 X : Prðy P kþ 1jxiÞ 6 1� ag; ð26Þ
where a is a fixed threshold. Thus, lower approximation of class union ClPk is a region in which objects are assigned to ClPk
with high probability (at least a). The boundary region Bk ¼ X n ðClPk [ Cl6k�1Þ is the region in which objects belong to any of
unions ClPk and Cl6k�1 with probability in the range ð1� a;aÞ. Two special cases are important. When a ¼ 1, lower approxi-
mation reflects the certain region for a given class union (contains only those objects, which surely belong to this class union)
and, as we shall shortly see, the stochastic definition boils down to the classical definition of dominance-based lower approx-
imations. When a becomes close to 1

2, only objects for which Prðy 6 k� 1jxiÞ ¼ Prðy P kjxiÞ ¼ 1
2 are in the boundary Bk,

which corresponds to the Bayes boundary between classes [10].
Assume for a while that the probabilities are known so that we can obtain lower approximations for each class union. It

may happen for an object xi, that although it does not belong to the class union ClPk , it belongs to ClPk (because its class prob-
ability satisfies Prðy P kjxiÞP a). The interpretation of this fact is the following: although the class index of xi observed in
the dataset is less than k, i.e. yi < k, such event is less likely than the event yi P k; hence we should change its class union to
the more probable one. Therefore stochastic approximations lead to reassigning the objects.

To determine, what the range of classes to which an object xi belongs with high probability should be, we must take the
greatest class index k for which xi 2 ClPk and the smallest class index k for which xi 2 Cl6k . This is exactly the generalized deci-
sion defined in (18) and (19), but using the stochastic lower approximations (25) and (26) in the definition (so that Eqs. (20)
and (21) do not hold any longer). To distinguish between the classical and stochastic definitions of the generalized decision
we will refer to the latter one as a stochastic decision. Concluding, the stochastic decision reflects the classes, to which an
object belongs with high probability, therefore it can be regarded as a sort of confidence interval. In a special case a ¼ 1 those
class intervals boil down to the generalized decisions and cover the whole probability distribution conditioned at a given
object xi – the real class of xi is inside the interval with certainty. On the other hand, such intervals may be too wide, so that
we loose information about the objects. Therefore, in real-life data, lower values of a are more appropriate.

However, the real probabilities are unknown in almost every case. Therefore, next few sections will be devoted to the
nonparametric estimation of probabilities under stochastic dominance assumption, which is a much harder task than in
the VPRS case with indiscernibility relation. Since for each k ¼ 2; . . . ;K we need to obtain two lower approximations ClPk
and Cl6k�1, we must solve K � 1 binary problems, where in each problem the ‘‘positive” class corresponds to the class union
ClPk and the ‘‘negative” class – to the class union Cl6k�1. Therefore one needs to estimate the probabilities only for the binary-
class problems. This will be considered in Sections 5–7. In Sections 8 and 9 we show, that for a given a, one can directly ob-
tain stochastic lower approximations without estimating the probabilities. Finally, in Section 10 we justify the splitting into
K � 1 binary problems, showing that it does not lead to inconsistent results.

5. Binary-class probability estimation

In this section, we will restrict the analysis to the binary classification problem, so we assume Y ¼ f0;1g (0 denotes ‘‘neg-
ative” class, while 1 – ‘‘positive”). Notice, that ClP0 and Cl61 are trivial (they are equal to X), so that only ClP1 and Cl60 are used
and will be denoted simply by Cl1 and Cl0, respectively. Finally notice, that in case of generalized decision, lðxiÞ ¼ uðxiÞ ¼ 0 for
xi 2 Cl0, lðxiÞ ¼ uðxiÞ ¼ 1 for xi 2 Cl1, and lðxiÞ ¼ 0;uðxiÞ ¼ 1 for xi 2 B, where B denotes the boundary region.

We denote p1
i ¼ Prðy P 1jxiÞ ¼ Prðy ¼ 1jxiÞ and p0

i ¼ Prðy 6 0jxiÞ ¼ Prðy ¼ 0jxiÞ. The stochastic approximations (25) and
(26) have the following form:
Clk ¼ fxi 2 X : pk
i P ag ð27Þ
for k 2 f0;1g, where a is a chosen threshold value. Notice, that for (27) to make sense, it must hold a 2 ð0:5;1�, since for any
xi, p0

i þ p1
i ¼ 1. Since we do not know probabilities pk

i , we will use their ML estimators p̂k
i instead, and the nonparametric pro-

cedure of ML estimation will be used, based only on the stochastic dominance principle. The conditional likelihood function
(probability of classes with X being fixed) is a product of binomial distributions and is given by
Lðp; yjXÞ ¼
Yn

i¼1

ðp1
i Þ

yi ðp0
i Þ

1�yi : ð28Þ
By using pi :¼ p1
i (since p0

i ¼ 1� pi), the likelihood can be written as
Lðp; yjXÞ ¼
Yn

i¼1

ðpiÞ
yi ð1� piÞ

1�yi : ð29Þ
The log-likelihood is then
Lðp; yjXÞ ¼
Xn

i¼1

yi lnðpiÞ þ ð1� yiÞ lnð1� piÞð Þ; ð30Þ
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The stochastic dominance principle (24) in binary-class case simplifies to
xi � xj ) pi P pj 8xi; xj 2 X: ð31Þ
To obtain probability estimators p̂i, we need to maximize (30) subject to constraints (31). This is exactly the problem of
statistical inference under the order restriction [24].

At the moment, we can prove the following theorem, which strongly reduces the size of the problem.

Theorem 1. Object xi 2 X is consistent with respect to the dominance principle if and only if p̂i ¼ yi.

Proof. We consider the case yi ¼ 1 (the case yi ¼ 0 is analogous). If xi is consistent, then there is no other object xj, such that
xj � xi and yj ¼ 0 (otherwise, it would violate dominance principle and consistency of xi as well). Thus, for every xj, such that
xj � xi, yj ¼ 1 and yj is also consistent (otherwise, due to transitivity of dominance, xi would not be consistent). Hence, we can
set p̂j ¼ 1 for xj and p̂i ¼ 1 for xi, and these are the values that maximize the log-likelihood (30) for those objects, while sat-
isfying the constraints (31).

Now, suppose p̂i ¼ 1 and assume the contrary, that xi is not consistent, i.e. there exists xj, xj � xi, but yj ¼ 0. Then, due to
the monotonicity constraints (31), p̂j P p̂i ¼ 1, so p̂j ¼ 1, and the log-likelihood (30) equals to minus infinity, which is surely
not the optimal solution to the maximization problem (since at least one feasible solution p̂ � 1

2 with a finite objective value
exists). h

We see, that only consistent objects have probability estimates equal to 1. Therefore, stochastic approximations with
a ¼ 1 boil down to the classical DRSA lower approximations.

Using Theorem 1 we can set p̂i ¼ yi for each consistent object xi 2 X and optimize (30) only for inconsistent objects, which
usually gives a large reduction of the problem size (number of variables). In the next section, we show that solving (30) boils
down to the isotonic regression problem.

6. Isotonic regression

The problem of isotonic regression [24] appears naturally during the analysis of statistical inference when the order con-
straints are present. For the purpose of this paper we consider the simplified version of the problem. It is defined in the fol-
lowing way [24]. Let X ¼ fx1; . . . ; xng be a finite set with some pre-order (reflexive and transitive) relation �� X � X. Suppose
also that y : X ! R is some function on X, where yðxiÞ is shortly denoted by yi. Any function p : X ! R is called isotonic, if
pi P pj whenever xi � xj (where we again used the shorter notation pi instead of pðxiÞ). A function y� : X ! R is an isotonic
regression of y if it is the optimal solution to the problem
minimize
Xn

i¼1

ðyi � piÞ
2
;

subject to xi � xj ) pi P pj 81 6 i; j 6 n; ð32Þ
so that it minimizes the squared error in the class of all isotonic functions p. In our case, the ordering relation � is the dom-
inance relation, the set X and values of function y on X, i.e. fy1; . . . ; yng will have the same meaning as before.

Although squared error seems to be arbitrarily chosen, it can be shown that minimizing many other error functions yields
to the same function y� as in the case of (32). Clearly, we sketch below the assumptions and the content of the theorem,
which leads to the so called generalized isotonic regression. Details can be found in [24].

Suppose that U is a convex function finite on an interval I containing the range of function y on X, i.e. yðXÞ � I and U
has value þ1 elsewhere. Let / be a nondecreasing function on I such that, for each u 2 I, /ðuÞ is a subgradient of U, i.e.
/ðuÞ is a number between the left derivative of U at u and the right derivative of U at u. For each u; v 2 I define the function
DUðu; vÞ by
DUðu; vÞ ¼ UðuÞ �UðvÞ � ðu� vÞ/ðvÞ: ð33Þ
Then the following theorem holds

Theorem 2 [24]. Let y� be an isotonic regression of y on X, i.e. y� solves (32). Then it holds
mxi2XDUðyi; f ðxiÞÞP
X

xi2X
DUðyi; y

�ðxiÞÞ þ
X
xi2X

DUðy�ðxiÞ; f ðxiÞÞ ð34Þ
for any isotonic function f with the range in I, so that y� minimizes
X
xi2X

DUðyi; f ðxiÞÞ ð35Þ
in the class of all isotonic functions f with range in I. The minimizing function is unique if U is strictly convex.
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Theorem 2 states, that for any convex function U satisfying the assumptions, the isotonic regression function minimizes
also the function DU. Thus, Theorem 2 can be used to show that the isotonic regression provides a solution for a wide variety
of restricted estimation problems in which the objective function does not look like least squares at all [24]. Here, this prop-
erty will be used to solve the problem (30) under the order restrictions (31).

Let I ¼ ½0;1� and define U to be [24]
UðuÞ ¼
u ln uþ ð1� uÞ lnð1� uÞ for u 2 ð0;1Þ;
0 for u 2 f0;1g

�
ð36Þ
(see Fig. 3). One can show that U is indeed convex on I. Then, the first derivative / is given by
/ðuÞ ¼
�1 for u ¼ 0;
ln u� lnð1� uÞ for u 2 ð0;1Þ;
þ1 for u ¼ 1:

8><
>: ð37Þ
Then DUðu; vÞ for u; v 2 ð0;1Þ is given by
DUðu; vÞ ¼ u ln uþ ð1� uÞ lnð1� uÞ � u ln v� ð1� uÞ lnð1� vÞ: ð38Þ
It is easy to check, that DUðu; vÞ ¼ 0 if u ¼ v ¼ 1 or u ¼ v ¼ 0, and that DUðu; vÞ ¼ þ1 for u ¼ 0; v ¼ 1 or u ¼ 1; v ¼ 0. Now
suppose that we want to minimize the function

Pn
i¼1DUðyi; f ðxiÞÞ between all isotonic functions f in the range I ¼ ½0;1�. Then

the first two terms in (38) depend only on yi, so they can be removed from the objective function, thus leading to the problem
of minimizing:
�
Xn

i¼1

yi ln f ðxiÞ þ ð1� yiÞ lnð1� f ðxiÞÞð Þ ð39Þ
between all isotonic functions f in the range I. By denoting pi :¼ f ðxiÞ and multiplying by �1 (for maximization) we end up
with the problem of maximizing (30) subject to constraints (31).

To summarize, we can find solution to the problem (30) subject to (31) by solving the problem of isotonic regression (32).
An example of isotonic regression can be found in Fig. 4.

Suppose A is a subset of X and f : X ! R is any function. We define Avðf ;AÞ ¼ 1
jAj
P

xi2Af ðxiÞ to be the average value of f on
the set A. Now suppose y� is the isotonic regression of y. By a level set of y�, denoted ½y� ¼ a�, we mean the subset of X on
which y� has constant value a, i.e. ½y� ¼ a� ¼ fx 2 X : y�ðxÞ ¼ ag. The following theorem holds.

Theorem 3 [24]. Suppose y� is the isotonic regression of y. If a is any real number such that the level set ½y� ¼ a� is not empty, then
a ¼ Avðy; ½y� ¼ a�Þ.

Theorem 3 states, that for a given x, y�ðxÞ equals to the average of y over all the objects having the same value y�ðxÞ. In
other words, if we divide X into disjoint subsets such that for any subset all of the objects have the same value of y�ðxÞ (so
that those subsets are level sets), then y�ðxÞmust be equal to the average value of y within this subset. Since there is a finite
number of divisions of X into level sets, we conclude there is a finite number of values that y� can possibly take. In our case,
since yi 2 f0;1g, all values of y� must be of the form r

rþs, where r is the number of objects from class Cl1 in the level set, while s
is the number of objects from Cl0.
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Fig. 3. Function UðuÞ ¼ u ln uþ ð1� uÞ lnð1� uÞ.
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7. Minimal reassignment problem

In this section we briefly describe the problem of minimal reassignment, introduced in [8]. We focus only on the binary
problem. Comparing to [8], the notation for decision variables was unified with the notation used in this paper.

We define the reassignment of an object xi 2 X as changing its class index yi. Moreover, by minimal reassignment we mean
reassigning the smallest possible number of objects to make the set X consistent (with respect to the dominance principle). One
can see, that such a reassignment of objects corresponds to indicating and correcting possible inconsistencies in the dataset. We
denote the minimal number of reassigned objects from X by R. To compute R, one can formulate a linear programming problem.
Such problems were already considered in [5] (under the name isotonic separation, in the context of binary and multi-class clas-
sification) and also in [4] (in the context of boolean regression). In [8] the similar problem was formulated, but with a different
aim. An example of minimal reassignment for an illustrative binary problem is shown in Fig. 5.

Assume yi 2 f0;1g. For each object xi 2 X we introduce a binary variable di which is to be a new class index for xi. The
demand that the class indices must be consistent with respect to the dominance principle implies:
xi � xj ) di P dj 81 6 i; j 6 n: ð40Þ
Notice, that (40) has the form of the stochastic dominance principle (31). The reassignment of an object xi takes place if
yi 6¼ di. Therefore, the number of reassigned objects (which is also the objective function for minimal reassignment problem)
is given by
R ¼
Xn

i¼1

jyi � dij ¼
Xn

i¼1

ðyið1� diÞ þ ð1� yiÞdiÞ; ð41Þ
where the last equality is due to the fact, that both yi; di 2 f0;1g for each i. Finally, notice that the matrix of constraints (40) is
totally unimodular [5,18,8], so we can relax the integer condition for di reformulating it as 0 6 di 6 1, and get a linear pro-
gramming problem.
minimize
Xn

i¼1

ðyið1� diÞ þ ð1� yiÞdiÞ

subject to xi � xj ) di P dj 81 6 i; j 6 n;

0 6 di 6 1 81 6 i 6 n

ð42Þ
We will rewrite the problem (42) in a slightly different form
minimize
Xn

i¼1

jyi � dij;

subject to xi � xj ) di P dj 81 6 i; j 6 n;

ð43Þ
where the last constraint 0 6 di 6 1 has been dropped, because if there were any di P 1 (or di 6 0) in any feasible solution,
we could decrease their values down to 1 (or increase up to 0), obtaining a new feasible solution with smaller value of the
objective function of (43).

Comparing (43) with (32), we notice that, although both problems emerged in different context, they look very similar
and the only difference is in the objective function. In (32) we minimize L2-norm (sum of squares) between vectors y and
p, while in (43) we minimize L1-norm (sum of absolute values). In fact, both problems are closely connected, which will
be shown in the next section.

8. Relationship between isotonic regression and minimal reassignment

To show the relationship between isotonic regression and minimal reassignment problems we consider the latter to be in
a more general form, allowing the cost of reassignment to be different for different classes. The weighted minimal reassign-
ment problem is given by
minimize
Xn

i¼1

wyi
jyi � dij;

subject to xi � xj ) di P dj 81 6 i; j 6 n;

ð44Þ
where wyi
are arbitrary, positive weights associated with classes. The following results hold

Theorem 4. Suppose p̂ ¼ fp̂1; . . . ; p̂ng is an optimal solution to the problem of isotonic regression (32). Choose some value
a 2 ½0;1� and define two functions
lðxÞ ¼
0 if x 6 a;
1 if x > a;

�
ð45Þ
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and
uðxÞ ¼
0 if x < a
1 if x P a

�
ð46Þ
where x 2 R (see Fig. 6). Then the solution d̂l ¼ fd̂l
1; . . . ; d̂l

ng given by d̂l
i ¼ lðp̂iÞ for each i 2 f1; . . . ;ng and the solution

d̂u ¼ fd̂u
1; . . . ; d̂u

ng given by d̂u
i ¼ uðp̂iÞ for each i 2 f1; . . . ;ng are the optimal solutions to the problem of weighted minimal reassign-

ment (44) with weights
w0 ¼ a;
w1 ¼ 1� a:

ð47Þ
Moreover, if d̂ ¼ fd̂1; . . . ; d̂ng is an optimal integer solution to the problem of weighted minimal reassignment with weights (47), it
must hold d̂l

i 6 d̂i 6 d̂u
i , for all i 2 f1; . . . ;ng. In particular, if d̂l � d̂u, then the solution of the weighted minimal reassignment prob-

lem is unique.

Proof. Let us define a function UðuÞ on the interval I ¼ ½0;1� in the following way:
UðuÞ ¼
aðu� aÞ for x P a;
ð1� aÞða� uÞ for x < a:

�
ð48Þ
It is easy to check, that UðuÞ is a convex function, but not a strictly convex function. U has derivative /ðuÞ ¼ a� 1 for
u 2 ½0;aÞ and /ðuÞ ¼ a for u 2 ða;1�. At point u ¼ a, UðuÞ is not differentiable, but each value in the range ½a� 1;a� is a sub-
gradient of UðuÞ.

First, suppose we set /ðaÞ ¼ a� 1. We remind, that
DUðu; vÞ ¼ UðuÞ �UðvÞ � ðu� vÞ/ðvÞ: ð49Þ
Now, assume u 2 f0;1g. To calculate DUðu; vÞ, we need to consider four cases, depending on what the values of u and v are

1. u ¼ 0, v > a; then UðuÞ ¼ að1� aÞ, UðvÞ ¼ aðv� aÞ, /ðvÞ ¼ a, so that DUðu; vÞ ¼ a.
2. u ¼ 0, v 6 a; then UðuÞ ¼ að1� aÞ, UðvÞ ¼ ð1� aÞða� vÞ, /ðvÞ ¼ a� 1, so that DUðu; vÞ ¼ 0.
3. u ¼ 1, v > a; then UðuÞ ¼ að1� aÞ, UðvÞ ¼ aðv� aÞ, /ðvÞ ¼ a, so that DUðu; vÞ ¼ 0.
4. u ¼ 1, v 6 a; then UðuÞ ¼ að1� aÞ, UðvÞ ¼ ð1� aÞða� vÞ, /ðvÞ ¼ a� 1 so that DUðu; vÞ ¼ 1� a.

Using the definition (45) of function l, we can comprehensively write those results as
DUðu; vÞ ¼ wujlðvÞ � uj ð50Þ
for u 2 f0;1g, where wu are given by (47). Thus, according to Theorem 2, p̂ is the optimal solution to the problem
minimize
Xn

i¼1

wyi
jlðpiÞ � yij; ð51Þ

subject to xi � xj ) pi P pj 81 6 i; j 6 n: ð52Þ
Notice, that d̂l ¼ lðp̂Þ is also the optimal solution to the problem (51) and (52), because l is a nondecreasing function, so if p̂
satisfies constraints (52), then so does d̂l. Moreover, lðlðxÞÞ ¼ lðxÞ, so the value of the objective function (51) is the same for
both p̂ and d̂l. But d̂l is integer, and for integer solutions problems (51), (52) and (44) are the same, so d̂l is a solution to the
problem (44) with the lowest objective value among all the integer solutions to this problem. But, from the analysis of the
unimodularity of constraints matrix of (44) we know that if d̂l is the solution to (44) with the lowest objective value among
the integer solutions, it is also the optimal solution, since there exists an optimal solution to (44), which is integer.

Now, setting /ðaÞ ¼ a, we repeat the above analysis, which leads to the function u instead of l and shows, that also d̂u is
the optimal solution to the problem (44).

We now prove the second part of the theorem. Assume v 2 f0;1g and fix again /ðaÞ ¼ a� 1. To calculate DUðu; vÞ, we
consider again four cases, depending on what the values of u and v are

1. u > a, v ¼ 0; then UðuÞ ¼ aðu� aÞ, UðvÞ ¼ að1� aÞ, /ðvÞ ¼ a� 1, so that DUðu; vÞ ¼ u� a > 0.
2. u P a, v ¼ 1; then UðuÞ ¼ aðu� aÞ, UðvÞ ¼ að1� aÞ, /ðvÞ ¼ a, so that DUðu; vÞ ¼ 0.
3. u 6 a, v ¼ 0; then UðuÞ ¼ ð1� aÞða� uÞ, UðvÞ ¼ að1� aÞ, /ðvÞ ¼ a� 1, so that DUðu; vÞ ¼ 0.
4. u < a, v ¼ 1; then UðuÞ ¼ ð1� aÞða� uÞ, UðvÞ ¼ að1� aÞ, /ðvÞ ¼ a, so that DUðu; vÞ ¼ a� u > 0.

From Theorem 2 it follows that
Xn

i¼1

DUðyi; f ðxiÞÞP
Xn

i¼1

DUðyi; p̂iÞ þ
Xn

i¼1

DUðp̂i; f ðxiÞÞ ð53Þ
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for any isotonic function f in the range ½0;1�. Notice that if the last term in (53) is nonzero, then f cannot be optimal to the
problem (51) and (52) (since then p̂ has strictly lower cost than f).

Suppose now that d̂ is an optimal integer solution to the minimal reassignment problem (44). But then it is also the
solution to the problem (51) and (52) with the lowest objective value between all the integer solutions (since both problems
are exactly the same for integer solutions). Since d̂l is the optimal solution to the problem (51) and (52) and it is integer (so
that there exists an integer solution which is optimal), d̂ is also the optimal solution to this problem. Then, however, the last
term in (53) must be zero, so for each i 2 f1; . . . ;ng it must hold DUðp̂i; d̂iÞ ¼ 0 (since all those terms are nonnegative). As d̂ is
integer, it is clear from the above analysis of DUðu; vÞ for v being integer, that it may only happen, if the following conditions
hold:
Fig. 4.
p̂i , whe

Fig. 5.
d̂ ¼ fd̂1

which d
p̂i > a) d̂i ¼ 1; ð54Þ
p̂i < a) d̂i ¼ 0 ð55Þ
for all i 2 f1; . . . ;ng. From the definitions of d̂l and d̂u it follows, that for p̂i ¼ a it holds that d̂l
i ¼ 0 and d̂u

i ¼ 1, for p̂i > a it
holds d̂l

i ¼ d̂u
i ¼ 1 and for p̂i < a it holds d̂l

i ¼ d̂u
i ¼ 0. From this and from (54) and (55) we conclude that
d̂l
i 6 d̂i 6 d̂u

i ð56Þ
for all i 2 f1; . . . ;ng, for any optimal integer solution d̂ to the problem (44). h
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Theorem 4 clearly states, that if the optimal value for a variable p̂i in the isotonic regression problem (32) is greater (or
smaller) than a, then the optimal value for the corresponding variable d̂i in the weighted minimal reassignment problem (44)
with weights (47) is 1 (or 0). In particular, for a ¼ 1

2 we have w0 ¼ w1 ¼ 1, so we obtain the reassignment problem (43). Com-
paring Figs. 4 and 5, one can see this correspondence (notice, that for objects x7; x8 we have p̂7 ¼ p̂8 ¼ 1

2 and thus there are
two optimal solutions for minimal reassignment problem — see description under the Fig. 5).

It also follows from Theorem 4, that if a cannot be taken by any p̂i in the optimal solution p̂ to the isotonic regression
problem (32), the optimal solution to the weighted minimal reassignment problem (44) is unique. It follows from the The-
orem 3, that p̂ can take only finite number of values,which must be of the form r

rþs, where r < n1 and s < n0 are integers (n0

and n1 are numbers of objects from class 0 and 1, respectively). Since it is preferred to have a unique solution to the reas-
signment problem, from now on, we always assume that a was chosen not to be of the form r

rþs (in practice it can easily be
done by choosing a to be a simple ratio, e.g. 2=3 and adding some small number �). We call such value of a to be proper.

It is worth noticing that the weighted minimal reassignment problem is easier to solve than the isotonic regression. It is
linear, so that one can use linear programming, it can also be transformed to the network flow problem [5] and solved in
Oðn3Þ. In the next section, we show, that to obtain stochastic lower approximations, one does not need to solve the isotonic
regression problem, but only two reassignment problems instead. In other words, one does not need to estimate probabil-
ities and can directly estimate stochastic lower approximations.

9. Summary of stochastic DRSA for binary-class problem

We begin with reminding the definitions of lower approximations of classes (for a two-class problem) with threshold a
Fig. 7.
regions
Clk ¼ fxi 2 X : pk
i P ag ð57Þ
Black points are objects from class 0, light points — from class 1. Lower approximations for threshold a ¼ 0:6 were shown on the chart (dashed
): Cl0 ¼ fx1; x2; x3; x4; x5g, Cl1 ¼ fx6; x9; x10g. Notice, that x7; x8 do not belong to any lower approximation, so they are at the boundary between classes.
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for k 2 f0;1g. The probabilities pk are estimated using the ML approach and from the previous analysis it follows that the set
of estimators p̂ is the optimal solution to the isotonic regression problem.

As it was stated in the previous section we choose a to be proper, so that the definition (57) can be equivalently stated
as
Cl1 ¼ fxi 2 X : p̂i > ag;
Cl0 ¼ fxi 2 X : 1� p̂i > ag ¼ fxi 2 X : p̂i < 1� ag;

ð58Þ
where we replace the probabilities by their maximum likelihood estimators and we use ‘‘>” instead of ‘‘P”, since proper
values of a cannot be taken by any p̂i. It follows from Theorem 4, that to obtain Cl0 and Cl1, we do not need to solve isotonic
regression. Instead we solve two weighted minimal reassignment problems (44), the first one with weights w0 ¼ a and
w1 ¼ 1� a, the second one with w0 ¼ 1� a and w1 ¼ a. Then, objects with new class indices (optimal assignments)
d̂i ¼ 1 in the first problem form Cl1, while objects with new class indices d̂i ¼ 0 in the second problem form Cl0. It is easy
to show that the boundary between classes is composed of objects for which new class indices are different in these two
problems (see Fig. 7).
10. Extension to the multi-class case

Till now, we focused only on the binary problems in case of DRSA. However, the theory should also be valid for more gen-
eral problems, when the number of classes equals to an arbitrary number K.

The first idea is to use the multinomial probability distribution for each point xi, fp1
i ; . . . ; pK

i g. Then, using the maximum
likelihood method, we obtain the problem of the following form. We maximize:
Lðp; yjXÞ ¼ ln Lðp; yjXÞ ¼
Xn

i¼1

lnðpyi
i Þ; ð59Þ
which is the extension of (30), subject to the constraints
xi � xj ) pk
i P pk

j 8k 2 Y;8xi; xj 2 X: ð60Þ
Unfortunately, there is a serious problem with (59) – it has an objective function, which is not strictly convex, so that the
problem may not have a unique solution. It is usually the case, that at a certain point xi there is only one object, i.e. it is
not a common situation that xi ¼ xj for some i; j 2 f1; . . . ; ng. Then, usually we have only one value yi to estimate the full
probability distribution fp1

i ; . . . ; pK
i g at point xi, from which the lack of strict convexity follows.

Here we propose a different approach, which always gives a unique solution and is based on the sequence of two-class
(binary) problems, as was already noted in Section 4. By using the unions of classes, DRSA is naturally incorporated to this
procedure.

Suppose we have a K-class problem. Suppose, we want to calculate the lower approximations of upward union for class k,
ClPk , and the lower approximation of downward union for class k� 1, Cl6k�1. Then we set the ‘‘negative” class to be Cl0 ¼ Cl6k�1,
and the ‘‘positive” class to be Cl1 ¼ ClPk . Having obtained the binary problem, we can solve it and get the lower approxima-
tions Cl6k�1 and ClPk . Repeating the process K � 1 times for k ¼ 2; . . . ;K , we obtain the whole set of lower approximations for
upward and downward unions (see Fig. 8).

Thus, we divide the problem into K � 1 binary problems. This procedure gives a unique solution, since each binary sub-
procedure gives a unique solution. Notice, that for the procedure to be consistent, it must follow that for any k0 > k, ClP

k0
� ClPk

and Cl6k � Cl6
k0

. In other words, the solution has to satisfy the property of inclusion that is one of the fundamental properties
considered in rough set theory. Fortunately, the relation always holds. First we need to prove the following lemma:

Lemma 5. Let p̂ be the optimal solution to the isotonic regression problem (32) for class indices y. Suppose, we introduce a new
vector of class indices y0, such that y0i P yi for all i 2 f1; . . . ;ng. Then, p̂0, the isotonic regression of y0 (the optimal solution to the
isotonic regression problem for values y0), has the following property: p̂0i P p̂i, for all i 2 f1; . . . ;ng.

Proof. Assume the contrary: let p̂0 be the isotonic regression of y0, and let i be such that p̂0i < p̂i. Define two other solutions, p̂þ

and p̂� in the following way:
p̂þi ¼maxfp̂i; p̂0ig; ð61Þ
p̂�i ¼minfp̂i; p̂0ig: ð62Þ
Notice that p̂þ 6¼ p̂0 and p̂� 6¼ p̂, since for some i, p̂0i < p̂i. We show that p̂þ; p̂� are feasible solutions, i.e. they satisfy constraints
of (32). Suppose xi � xj. Then, since p̂; p̂0 are feasible, it follows that p̂i P p̂j and p̂0i P p̂0j. But from definition of p̂þi we have, that
p̂þi P p̂i and p̂þi P p̂0i, so it also holds that p̂þi P p̂j and p̂þi P p̂0j. Then, p̂þi P maxfp̂j; p̂0jg ¼ p̂þj .

Similarly, from the definition of p̂�j we have, that p̂�j 6 p̂j and p̂�j 6 p̂0j, so it also holds that p̂�j 6 p̂i and p̂�j 6 p̂0i. But then
p̂�j 6 minfp̂i; p̂0ig ¼ p̂�i . Thus, both p̂þ; p̂� are feasible.
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Fig. 8. Example of a three-class case. Black points are from class 1, green — from class 2, while light — from class 3. The threshold a ¼ 0:6. On the upper
chart, the solution to the binary problem Cl61 vs. ClP2 is shown (in brackets there are shown the assignments of new labels in two weighted minimal
reassignment problems, as described in Section 9). We see, that Cl61 ¼ fx1; x5g;ClP2 ¼ fx4; x6; x7; x8; x9; x10g. On the lower chart, the solution to the problem
Cl62 vs. ClP3 is shown. Notice, that Cl62 ¼ fx1; x2; x3; x4; x5; x6g;ClP3 ¼ fx9; x10g. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Let us denote the objective function of (32) as Fðy; pÞ ¼
Pn

i¼1ðyi � piÞ
2. Then, we have
Fðy0; p̂þÞ � Fðy0; p̂0Þ ¼
Xn

i¼1

p̂þ2
i � p̂02i � 2y0ip̂

þ
i � 2y0ip̂

0
i

� �
¼
Xn

i¼1

ðp̂þi � p̂0iÞðp̂þi þ p̂0iÞ � 2y0iðp̂þi � p̂0iÞ
� �

: ð63Þ
Since from the definition (61) it holds that p̂þi � p̂0i P 0 and from the assumption of the theorem it holds that y0i P yi, we
have
Xn

i¼1

2y0iðp̂þi � p̂0iÞP
Xn

i¼1

2yiðp̂þi � p̂0iÞ; ð64Þ
so that
Fðy0; p̂þÞ � Fðy0; p̂0Þ 6
Xn

i¼1

ðp̂þi � p̂0iÞðp̂þi þ p̂0iÞ � 2yiðp̂þi � p̂0iÞ
� �

: ð65Þ
Moreover, from (61) and (62) it holds that p̂þi þ p̂�i ¼ p̂0i þ p̂i, so that:
p̂þi � p̂0i ¼ p̂i � p̂�i ð66Þ
and by adding 2p̂0i to both sides of (66)
p̂þi þ p̂0i ¼ 2ðp̂0i � p̂�i Þ þ ðp̂i þ p̂�i Þ: ð67Þ
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Putting (66) and (67) into (65), we finally obtain
Fðy0; p̂þÞ � Fðy0; p̂0Þ 6
Xn

i¼1

ð2ðp̂0i � p̂�i Þ þ ðp̂i þ p̂�i ÞÞðp̂i � p̂�i Þ � 2yiðp̂i � p̂�i Þ
� �

¼
Xn

i¼1

2ðp̂i � p̂�i Þðp̂0i � p̂�i Þ þ ðp̂i � p̂�i Þðp̂i þ p̂�i Þ � 2yiðp̂i � p̂�i Þ
� �

¼
Xn

i¼1

2ðp̂i � p̂�i Þðp̂0i � p̂�i Þ þ p̂2
i � 2yip̂i � p̂�2

i þ 2yip̂
�
i

� �

¼
Xn

i¼1

2ðp̂i � p̂�i Þðp̂0i � p̂�i Þ þ Fðy; p̂Þ � Fðy; p̂�Þ

<
Xn

i¼1

2ðp̂i � p̂�i Þðp̂0i � p̂�i Þ;

ð68Þ
where the last inequality is from the assumption that p̂ is the isotonic regression of y (so it is the unique optimal solution
for class indices y), and p̂ 6¼ p̂�. In the last sum, however, for each i, either p̂i ¼ p̂�i or p̂0i ¼ p̂�i , so the sum vanishes. Thus, we
have
Fðy0; p̂þÞ � Fðy0; p̂0Þ < 0; ð69Þ
which is a contradiction, since p̂0 is the isotonic regression of y0. h

Now, we may state the following theorem.

Theorem 6. For each k ¼ 2; . . . ;K, let Cl6k�1 and ClPk be the sets obtained from solving a two-class isotonic regression problem with
threshold a for binary classes Cl0 ¼ Cl6k�1 and Cl1 ¼ ClPk . Then, we have
k0 P k) Cl6k�1 � Cl6
k0�1

; ð70Þ
k0 P k) ClP

k0
� ClPk : ð71Þ
Proof. Suppose we have solved the problem for some k. Denote yi ¼ 1 if xi 2 ClPk and yi ¼ 0 if xi 2 Cl6k�1. Suppose we have also
solved the problem for some k0 P k. Denote y0i ¼ 1 if xi 2 ClPk0 and y0i ¼ 0 if xi 2 Cl6k0�1. Clearly, from the definition of Cl6k�1;ClPk it
follows that yi P y0i for each i 2 f1; . . . ;ng. Then, according to Lemma 5, if xi 2 Cl6k�1 (so that p̂i < a), then also xi 2 Cl6

k0�1
(since

then p̂0i 6 p̂i < a). Analogously, if xi 2 ClP
k0

, then also xi 2 ClPk . This proves the theorem. h

To summarize, in the previous sections we focused on estimating the stochastic lower approximations. Since the proba-
bilities in the definitions (25) and (26) are unknown, we use their maximum likelihood estimates instead. We showed that
we do not need to estimate those probabilities (which is hard), rather we directly calculate lower approximations for a given
threshold a (which is easier). Now, having obtained stochastic approximations, we can assign to each object a stochastic
decision, as it was described in Section 4. In the next section we show that the stochastic decision intervals have interesting
decision-theoretic properties.

Notice that the probability estimation is done by minimizing the squared error in the class of all monotone functions.
Such a class of functions can be too broad, especially when m (dimension of the attribute space) grows. Then, the dominance
relation becomes sparse; this, in turn, makes the dataset more and more consistent because only few objects are comparable
by dominance relation. This may deteriorate the estimation of probability and, in the extreme case, when the dataset is com-
pletely consistent, for each object xi the probability distribution becomes concentrated on a single class yi. This is one of the
symptoms of the famous curse of dimensionality [1].

Generally, the quality of probability estimates depends on the number of objects which can be compared by dominance
relation. If this number is high, the estimates are reliable, however, it is low in a high-dimensional space. In such cases, one
should decrease the dimension of the space by removing some of the attributes. Since we are dealing with the problems in
which the domain knowledge (in the form of monotonicity constraints) is present, the ideal process of attribute selection
would be supervised by a domain expert. If such supervision is impossible, the attribute selection can be done by searching
for reducts with respect to the quality of approximation. A measure of the quality of approximation, particularly useful for this
purpose, was proposed in [7]. Here, however, we will not consider these issues in greater detail.
11. Decision-theoretical view of variable precision/consistency rough sets

In this section we will look at the problem of variable precision classical rough sets and stochastic DRSA from the point of
view of statistical decision theory [2,17]. A decision-theoretic approach has already been proposed for VPRS [29,30,21] and
for DRSA [16]. The theory presented here for VPRS is slightly different than in [29], while the decision-theoretic view for
DRSA proposed in this section is completely novel.
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Suppose, we seek for a function (classifier) f ðxÞ which, for a given input vector x, predicts value y as well as possible. To
assess the goodness of prediction, the loss function Lðy; f ðxÞÞ is introduced for penalizing the prediction error. The simplest
loss function for binary classification problem, when y; f ðxÞ 2 f0;1g, is 0�1 loss, given by
L0�1ðy; f ðxÞÞ ¼
0 if f ðxÞ ¼ y;

1 if f ðxÞ 6¼ y:

�
ð72Þ
However, more complicated loss functions are intensively used in machine learning [17]. Since x and y are the observed
values of some random variables, the overall measure of the classifier f ðxÞ is the expected loss or risk, which is defined as a
functional
Rðf Þ ¼ E½Lðy; f ðxÞÞ� ¼
Z

Lðy; f ðxÞÞdPðy; xÞ ð73Þ
for some probability measure Pðy; xÞ. Since Pðy; xÞ is unknown in almost all cases, one usually minimizes the empirical risk,
which is the value of risk taken for the points from a training sample U
Reðf Þ ¼
Xn

i¼1

Lðyi; f ðxiÞÞ: ð74Þ
Function f is usually chosen from some restricted family of functions. We now show that the rough set theory leads to the
classification procedures which are naturally suited for dealing with problems when the classifiers are allowed to abstain
from giving an answer in some cases.

Let us start with the classical theory of variable precision rough sets. We consider the multi-class problem and allow the
classification function to give no answer, which is denoted as f ðxÞ ¼ ?. The loss function suitable for the problem is the
following:
Lcðy; f ðxÞÞ ¼
0 if f ðxÞ ¼ y;

1 if f ðxÞ 6¼ y;

b if f ðxÞ ¼ ?:

8><
>: ð75Þ
As we see, there is a penalty b for giving no answer. To be consistent with the classical rough set theory, we assume, that
any function must be constant within each granule, i.e. for each G ¼ IðxÞ for some x 2 X, we have
xi; xj 2 G) f ðxiÞ ¼ f ðxjÞ 8xi; xj 2 X; ð76Þ
which is in fact the principle of indiscernibility. We now state

Theorem 7. The function f � minimizing the empirical risk (74) with loss function (75) between all functions satisfying (76) is
equivalent to the VPRS in the sense, that f �ðGÞ ¼ k if and only if granule G belongs to the lower approximation of class k with the
precision threshold u ¼ 1� b, otherwise f �ðGÞ ¼ ?

Proof. Since apart from (76), there are no other restrictions for possible functions f, we can analyze the value of f in each
granule independently. Let us choose then a granule G ¼ IðxÞ for some x 2 X. Let us also denote the number of objects in
G as nG, and for each class index k 2 Y , let us denote nk

G as the number of objects from class k in G. It is clear that the total
loss of a function f in the granule G is the following:
Lðf ðGÞÞ ¼ nG � nk
G if f ðGÞ ¼ k;

b 	 nG if f ðGÞ ¼ ?

(
ð77Þ
This follows from the fact that if f ðGÞ ¼ k, then for each xi 2 G such that yi 6¼ k, function f suffers loss 1. On the other hand, if
f ðGÞ ¼ ?, for each xi 2 G, function f suffers loss b. It is obvious that the best strategy is to choose the majority class in G or
abstain from answer, depending on which loss is lower. The preferred strategy is to choose the majority class, if for a given
k it holds nG � nk

G 6 bnG or
b P 1� nk
G

nG
: ð78Þ
Otherwise, if no k satisfies this relation, the preferred strategy is to choose f �ðGÞ ¼ ?. Comparing this result with Section 2,
one can see that the decision f �ðGÞ ¼ k is chosen if granule G belongs to the lower approximation of class k with the precision
threshold u ¼ 1� b. Clearly, from (4) with probabilities estimated by (8), the above inequality follows (we assume that u > 1

2,
so granule G may belong to the lower approximation of one class only). If there is no class for which G is in its lower approx-
imation, the optimal function f � abstains from answer. h
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Concluding, the variable precision rough sets can be derived by considering the class of functions constant in each granule
and choosing the function f �, which minimizes the empirical risk (74) for loss function (77) with parameter b ¼ 1� u. For
each granule G, if G � Clk for a given k 2 Y , then f �ðxÞ ¼ k for each x 2 G. Otherwise f �ðxÞ ¼ ? (abstaining from answer). As
we see, the classical rough set theory suits well for considering the problems, when the classification procedure is allowed
to abstain from predictions for an x.

We now turn back to DRSA. The problem here is different, since now we assume that to each point x, classification
function f assigns the interval of classes, denoted as ½lðxÞ;uðxÞ�. The lower and upper ends of each interval are supposed to
be consistent with the dominance principle:
xi � xj ) lðxiÞP lðxjÞ 8xi; xj 2 X;

xi � xj ) uðxiÞP uðxjÞ 8xi; xj 2 X:
ð79Þ
The loss function Lðy; f ðxÞÞ is composed of two terms. The first term is a penalty for the size of the interval (degree of impre-
cision) and equals to bðuðxÞ � lðxÞÞ. The second term measures the accuracy of the classification and is zero, if y 2 ½lðxÞ;uðxÞ�,
otherwise f ðxÞ suffers additional loss equal to the distance of y from the closer interval end
Lðy; f ðxÞÞ ¼ bðuðxÞ � lðxÞÞ þ Iðy 62 ½lðxÞ; uðxÞ�Þminfjy� lðxÞj; jy� uðxÞjg; ð80Þ
where Ið	Þ is an indicator function. We now state the following theorem.

Theorem 8. The function f � minimizing the empirical risk (74) with loss function (80) between all interval functions satisfying
(79) is equivalent to the stochastic DRSA with threshold a ¼ 1� b in the sense, that for each x 2 X, f �ðxÞ ¼ ½l�ðxÞ;u�ðxÞ� is a
stochastic decision defined by (18) and (19).

Proof. First we show, how to find the function minimizing the empirical risk using the linear programming approach. Let
lik;uik 2 f0;1g, be binary decision variables for each i 2 f1; . . . ;ng, k 2 f2; . . . ;Kg. We code the lower and upper ends of inter-
val f ðxiÞ as lðxiÞ ¼ 1þ

PK
k¼2lik and uðxiÞ ¼ 1þ

PK
k¼2uik. In order to provide the unique coding for each value of lðxiÞ and uðxiÞ

and to ensure that uðxiÞP lðxiÞ, the following properties are sufficient:
uik P lik 8i 2 f1; . . . ; ng; k 2 f2; . . . ;Kg; ð81Þ
lik P lik0 8i 2 f1; . . . ;ng; k < k0; ð82Þ
uik P uik0 8i 2 f1; . . . ;ng; k < k0: ð83Þ
Moreover, for dominance principle (79) to hold, we must also have:
xi � xj ) lik P lik 8i 2 f1; . . . ;ng; k 2 f2; . . . ;Kg; ð84Þ
xi � xj ) uik P uik 8i 2 f1; . . . ;ng; k 2 f2; . . . ;Kg: ð85Þ
It is not hard to verify, that the loss function (80) for object xi can be written as:
Li ¼ Lðf ðxiÞ; yiÞ ¼ b
XK

k¼2

ðuik � likÞ þ
XK

k¼yiþ1

lik þ
Xyi

k¼2

ð1� uikÞ: ð86Þ
Denoting yik ¼ Iðyi P kÞ, where Ið	Þ is the indicator function, we have
Li ¼ ð1� bÞ
XK

k¼2

likð1� yikÞ � b
XK

k¼2

likyik

þ b
XK

k¼2

uikð1� yikÞ � ð1� bÞ
XK

k¼2

uikyik þ
XK

k¼2

yik

¼
XK

k¼2

wII
yik
jlik � yikj þ

XK

k¼2

wI
yik
juik � yikj þ C

ð87Þ
where C is a constant term (which does not depend on lik and uik), and wI
0 ¼ b;wI

1 ¼ 1� b;wII
0 ¼ 1� b;wII

1 ¼ b. But it follows
from (87), that minimizing empirical risk Re ¼

Pn
i¼1Li is equivalent to solving the sequence of K � 1 pairs of weighted min-

imal reassignment, as described in Section 10 (solving the multi-class case as K � 1 binary problems) and in Section 9
(obtaining lower approximations by solving a pair of weighted minimal reassignment problems) with the penalty b equal
to 1� a, but with additional constraints (81)–(83). We now show that those constraints are in fact not needed.

Suppose now, we remove constraints (81)–(83). Then we obtain 2ðK � 1Þ separate problems, since variables
fli2gn

i¼1; fui2gn
i¼1; . . . ; fliKgn

i¼1; fuiKgn
i¼1 are now independent sets and their optimal values can be obtained separately. This is

exactly the construction of stochastic lower approximations in the multi-class case as described before. But it follows from
Theorem 6, that constraints (82) and (83) are satisfied at optimality. Moreover, from Theorem 4 and analysis in Section 10 it
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follows that also the constraints (81) are satisfied at optimality. Thus, the optimal solution to the problem without
constraints (81)–(83) is also the solution to the problem with constraints (81)–(83).

Since constraints are not needed (they are satisfied at optimality), the empirical risk minimization of loss function (80)
corresponds to obtaining stochastic lower approximations (25) and (26). One can check, that the function minimizing the
risk, f �ðxÞ ¼ ½l�ðxÞ;u�ðxÞ� is a stochastic decision defined by (18) and (19). h

Concluding, the stochastic DRSA can be derived by considering the class of interval functions, for which the lower and
upper ends of intervals are isotonic (consistent with the dominance principle) and choosing the function f �, which minimizes
the empirical risk (74), with loss function (80) and with parameter a ¼ 1� a. For each x 2 X, f �ðxÞ is a stochastic decision.

12. Conclusions

The paper introduced a new stochastic approach to dominance-based rough sets. Application of the approach results in
estimating the class intervals for each object (so called stochastic decision). For a given object xi, such class interval
½lðxiÞ;uðxiÞ� has the property that k 6 lðxiÞ () Prðy P kjxiÞP a and k P uðxiÞ () Prðy 6 kjxiÞP a. In other words, it reflects
an interval of classes, to which class index yi probably belongs. On the other hand, such a class interval has the form of a
confidence interval and follows from the empirical risk minimization of the specific loss function.

In order to obtain stochastic lower approximation we had to consider a problem of probability estimation. Starting from
general remarks about the estimation of probabilities in the classical rough set approach (which appears to be the maximum
likelihood estimation), we used the same statistical procedure for DRSA, which led us to the isotonic regression problem. The
connection between isotonic regression and minimal reassignment solutions was considered and it was shown that in the
case of the stochastic lower approximations, it is enough to solve the minimal reassignment problem (which is linear), in-
stead of the isotonic regression problem (quadratic), and obtain stochastic lower approximations directly, without estimat-
ing the probabilities. The approach has also been extended to the multi-class case by solving K � 1 binary subproblems for
the class unions. The proposed theory has the advantage of basing on the well investigated maximum likelihood estimation
method – its formulation is clear and simple, it unites seemingly different approaches for classical and dominance-based
cases.

Finally, notice that a connection was established between the statistical decision theory and the rough set approach. It
follows from the analysis that rough set theory can serve as a tool for constructing classifiers, which can abstain from assign-
ing a new object to a class in case of doubt (in classical case) or give imprecise prediction in the form of an interval of classes
(in DRSA case). However, rough set theory itself has a rather small generalization capacity, due to its nonparametric char-
acter, which was shown in Section 11. Therefore, the methodology can only be regarded as the analysis of inconsistencies
(following from the monotonicity constraints) on the training error. For classification of unseen objects, a generalizing clas-
sification function must be constructed.
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