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Here and in the sequel, T is a nonempty subset of R, Y is a topological 
space and F is a multifunction from T into Y, with nonempty values. We 
denote by gr(F) the set {(t, y) E T x Y: y E F(t)}, i.e., the graph of F. 
Moreover, we denote by p the restriction to gr(F) of the projection from 
TX Y onto T. Of course, the following proposition holds: 

PROPOSITION 1. For each I E T, we have 

{t}xF(t)=p-l(t). 

The purpose of this paper is to point out various aspects of the structure 
of F, provided that some suitable connectedness assumption on gr(F) is 
made. To give an idea of the type of results we obtain, here are two of 
them. Let F be a single-valued function. If gr(F) is a continuous image of 
some connected and locally connected topological space, then F is con- 
tinuous (see Theorem 2). If Y is metrizable and separable, and gr(F) is 
locally connected, then F is of first Baire class (see Theorem 20). 

The key of proof of our main theorems resides in a systematic 
application of Proposition 1 jointly with certain recent results on con- 
tinuous real functions (see [7-l 33). For each result concerning F, we also 
state explicitly a dual version, in terms of a multifunction G from Y onto T, 
because of its independent interest. Finally, we want to stress that each of 
these dual versions, when G is single-valued, turns out to be an 
improvement of the corresponding well-known result on continuous real 
functions, applied to obtain it. 
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NOTATIONS AND DEFINITIONS 

Let D, E c R, with D E E. We denote by int.(D) the interior of D in E. 
Also, we put A,(D)= {t~D:3p>O: It-p, t+p[ nD= (t}}, A+(D)= 
{LED: ]t,t+p[nD#@, Vp>O}, A~(D)={~ED: It-p,t[nD#@, 
Vp > O}. We denote by 9 the family of all open sets in Y and, for each 
YE Y, we put y(y) = (s2 E 9: y EQ}. Now, let S, X be two topological 
spaces and @ be a multifunction from S into X. For any BE S and Vc X, 
we put W) = UseB Q(s), o-(V)= {YES: @(s)n I’#@} and Q+(V)= 
{s E S: Q(s) E I’}. If Q(S) = X, we say that ~0 is onto X. We recall that @ is 
said to be lower (resp. upper) semicontinuous if @ ~ ( V) (resp. @+ ( I’)) is 
open in S for every open set V G X. We say that @ is open (resp. closed) if 
Q(B) is open (resp. closed) in Q(S) for every open (resp. closed) set BE S. 
Moreover, we say that @ is inductively open if there exists S* c S such that 
@(S*) = Q(S) and @Is. is open. A multifunction (resp. a function) !P from 
S into X is said to be a multiselection (resp. a selection) of @ if Y(s) G Q(s) 
(resp. @P(s) E Q(s)) for every SE S. We denote by I, the inverse mul- 
tifunction of @ which is defined by putting I@(x) = @ (x) for every x E X. 

We now state a proposition which will be useful in the sequel. It follows 
from the proof of Theorem 2 of [9] and from Proposition 1.3 of [S]. 

PROPOSITION 2. Let S be locally connected and let cp be a continuous real 
function on S such that int(cp ~ ‘( t)) = 0 for every t E int(cp(S)). Then, the 
following are equivalent: 

(1) cp is inductively open. 

(2) ~+?lcpp(s) admits a lower semicontinuous multiselection H, with non- 
empty values, such that card(H(t)) = 1 for all t E a(cp(S)) n q(s). 

(3) For every t E cp( S), there exists a connected set S, E S such that 
t E int,cLy, cp(W. 

Now, let P be a multifunction from S into R. We say that P is pseudo- 
almost-open if I, ) pCsj admits a multiselection Q, with nonempty values, 
such that supIE pCsj card(Q(t)) < 2 and Q’(B) E int,,,,(P(B)) for every 
open set BE S. Observe that, when P is single-valued, the above definition 
reduces to the analogous one given in [ 111. Finally, we say that S is com- 
pletely connected if it is a continuous image of some connected and locally 
connected topological space. 
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RESULTS 

From now on, we will consider gr(F) as a space equipped with the 
relative product topology. 

Our first result is the following 

THEOREM 1. Let gr(F) be completely connected. Then, F admits a mul- 
t&election ~0, with nonempty values, such that sup,,.card(@(t)) 62 and 
@+(O)~int.(F-(SZ)) for every QE~-. 

Proof Since p is continuous, by Theorem 4.1 of [ 111, it is pseudo- 
almost-open. Hence, there exists a multiselection Q of Z,, with non-empty 
values, such that SUP,,~ card(Q(t)) < 2 and Q+(B) c int,(p(B)) for every 
open set B in gr(F). Therefore, by Proposition 1, there exists a multiselec- 
tion @ of F, with nonempty values, such that card(@(t)) < 2 and Q(t) = 
{t} x Q(t) for all tE T. Now, let LIEE. Then, we have @+(sZ)= 
Q+((Txsz)ngr(F))~int,(p((Tx52)ngr(F)))=int,(F~(52)). This com- 
pletes the proof. 

Thanks to Theorem 1, we have the following characterization, whose 
proof is left to the reader. 

THEOREM 2. Let f be a function from T into Y. Then, the following are 
equivalent : 

(1) T is an interval and f is continuous. 
(2) gr( f ) is completely connected. 

Observe that there are simple examples of topological spaces X and dis- 
continuous real functions f on X such that gr( f ) is even connected and 
locally connected. For instance, it suffices to take as X the unit circum- 
ference of R2, with the usual topology, and as f the function that associates 
to each XE X, regarded as a complex number, its argument belonging to 
co, 274. 

The dual version of Theorem 1 is 

THEOREM 3. Let G be a multifiinction from Y onto T, with completely 
connected graph. Then, G is pseudo-almost-open. 

Proof: First, observe that the graph of I, is completely connected, since 
it is homeomorphic to that of G. Next, apply Theorem 1 by taking F= I,. 

On the basis of the remark after Theorem 2, it is seen that Theorem 3 
turns out to be an effective improvement of Theorem 4.1 of [ 111, in the 
case where G is single-valued. 

The dual version of Theorem 2 is 
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THEOREM 4. Let G be a multifunction from Y onto T such that G(y) n 
G(z) = @ for all y, z E Y, with y #z. Then, the following are equivalent: 

(1) T is an interval and G is open and closed. 
(2) gr(G) is completely connected. 

Now, with the notations put in the preceding section, we state the two 
following propositions. 

PROPOSITION 3. For each t E T, the following are equivalent: 

(1) int,,,&-l(t)) Z 0. 
(2) tE UaEp &W(Q)). 

Proof: If int,,(,,(p-‘(t)) # a, th en, taking into account Proposition 1, 
there exist two open sets Ds R, SZS Y such that a# (DxQ)ngr(F)~ 
{t} x F(t). Thus, in particular, we have t E Fd(F)t;eni t;; 
t*E(DnT)\{t}. We have F(t*)nQ=@. Indeed, 
y* E F(t*) n 52, we would have (t*, y*) E (D x 52) n gr(F), and so (t*, y*) E 
{t) x F(t). Hence, t* = t, a contradiction. Therefore, t E A,(F-(Q)). Conver- 
sely, let t E A,(F- (52’)) for some Q’ E 8. Then, there is an open set D’ E R 
such that D’nF-(Q’)=(t). Hence, @#(D’xQ’)ngr(F)~{t}xF(t), 
and so, by Proposition 1, we have int,,,,,(p- ‘(t)) # $3. 

PROPOSITION 4. Let E = {(t, y) E gr(F): (t, y) is a local extremum point 
for p}. Then, we have 

p(gr(F;)\E)nint(T)~ u n (A-(F-(SZ))nA+(F~(52))). 
VE Y QEF(.V) 

Proof: Let to Ep(gr(F)\E) n int( T). Then, there is y, E F( to) such that, 
for every open neighbourhood U of to in T and every open neighbourhood 
Sz of y, in Y, there exist t’, t” E U n F-(Q) satisfying the relation t’ < to < t”. 

Thus, to E hw(,,o) (A~(F~(S2))nA+(F-(52))). 

Observe that the inclusion in the statement of Proposition 4 can be strict. 
To see this. it suffices to take T= [ - 1, 11, Y = [0, 11, and F defined as 
follows: 

F(t) = 

if t=O 

t) u(l-t} I if tE]O, l] 

if tE[-l,O[. 
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In this case we have WC)QaFF(,) (A~(F~(a))nA+(F-(52))))\ 
p(gr(F) \ El. W e also observe that the inclusion in the statement of 
Proposition 4 is, in fact, an equality when each value of F is closed. 

Applying jointly Proposition 5.1 of [ 111 and Propositions 3 and 4, we 
obtain directly 

THEOREM 5. Let gr(F) be connected. Then, we have 

int( T) = u A,(F--(SZ) n int( T)) 
i2E.F 

The dual version of Theorem 5 is 

THEOREM 6. Let G be a multifunction from Y onto T, with connected 
graph. Then, we have 

int( T) = 
( 

U A,(G(Q) n int( T)) 
RE.9 ) 

u u n 
( 

W(G(V)n~+bW))) 
ye Y YEF(.V) ) 

It is possible to check that Proposition 5.1 of [ 111 turns out to be, 
essentially, a particular case of Theorem 6. 

The next result is a multiselection theorem. 

THEOREM 7. Let gr(F) be locally connected and let UREp A,(F-(Q) n 
int( T)) = 121. Then, the following are equivalent: 

(1) There exists a lower semicontinuous multiselection CD of F, with 
nonempty values, such that card(@(t)) = 1 for all t E aTn T. 

(2) For every t E T, there exists a subset J, of T, with t E intT(J,), and 
a multiselection of FIJI, with nonempty values and connected graph. 

Proof. Thanks to Proposition 3, by hypothesis, we have 
int,,(dpp’(t)) = 0 f or all t E int(T). On the other hand, taking into 
account Proposition 1, it is seen that condition (1) and condition (2) are 
equivalent, respectively, to condition (2) and condition (3) of 
Proposition2, applied by taking S = gr(F) and v = p. Therefore, our 
conclusion is a direct consequence of Proposition 2. 

A remarkable particular case of Theorem 7 is 
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THEOREM 8. Let gr(F) be connected and locally connected, and let 
U REF A,(F-(Q) n int( T)) = Qr. Then, F admits a lower semicontinuous 
multiselection @, with nonempty values, such that card(@( t)) = 1 for all 
tcaTn T. 

It is worth noting that Theorem 8 is no longer true, in general, if 
U Rsz.sr 4,(F-(Q) n int( T)) # 0. To see this, take T= Y = [0, l] and define 
F by putting: 

The dual versions of Theorems 7 and 8 are the following: 

THEOREM 9. Let G be a multifunction (resp. a function) from Y onto T, 
with locally connected graph, such that lJQE~ A,(G(S2) n int(T)) = 0. Then, 
the following are equivalent : 

(1) G admits an inductively open multiselection !P onto T such that 
card( Y’(t)) = 1 f or all t E aT n T (resp. G is inductively open). 

(2) For every t E T, there exists a set Y, c Y and a multiselection H of 
G 1 y,, with nonempty values and connected graph, such that t E int r(H( Y,)). 

Proof Take F = I,. So that, gr(F) is locally connected and 
U R.59 AO(F-(Q) n int(T)) = 0. On the other hand, proceeding as in the 
proof of Proposition 1.2 of [S], it is possible to check that conditions ( 1) 
and (2) are equivalent, respectively, to conditions (1) and (2) of 
Theorem 7, with F chosen as above. Hence, our conclusion is a direct 
consequence of Theorem 7. 

THEOREM 10. Let G be a multifunction (resp. a function) from Y onto T, 
with connected and locally connected graph, such that UREF A,(G(Q) n 
int( T)) = 0. Then, G admits an inductively open multiselection !P onto T such 
that card(Y-(t)) = 1 for all tec?Tn T (resp. G is inductively open). 

Taking into account that the graph of a continuous function is 
homeomorphic to the domain of this, it is seen that Theorems 9 and 10 
improve, respectively, Theorem 2 of [9] and Theorem 2.4 of [7]. 

From now on, except that in Theorems 23 and 24, we will assume that 
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the space Y is metrizable. Of course, we will consider gr(F) equipped with 
one of the usual metrics inducing the product topology. 

The next result is another consequence of Theorem 7. 

THEOREM 11. Let gr(F) be locally connected, let IJOE* A,(F-(Q)n 
int( T)) = Qr and let F(t) be complete for all t E int( T). Assume, finally, that 
condition (2) of Theorem 7 is satisfied. Then, there exist three multiselections 
@,, Q2, @, of F, with nonempty values, such that: 

(i) @, , Qj are upper semicontinuous and Q2 is lower semicontinuous; 
(ii) for every te T, we have card(@,(t))<2, Ql(t)‘Q2(t)sG3(t), 

and Q2(t), Q3(t) are compact. 

Proof By Theorem 7, F admits a lower semicontinuous multiselection 
@, with nonempty values, such that card(@( t)) = 1 for all t E 8Tr-1 T. Put 
G*(t) = Q(t) for all t E T. Thus, CD* is a lower semicontinuous multiselec- 
tion of F, with nonempty and complete values. By Theorem 1.1 of [4], 
there are two multiselections Q2, @j of CD*, with nonempty and compact 
values, such that Qi is upper semicontinuous and Qz is a lower semicon- 
tinuous multiselection of Q3. On the other hand, by Proposition 2.2 of [6], 
02( T) is separable, and so, by Theorem 11.4 of [ 11, there exists an upper 
semicontinuous multiselection @i of Q2 such that 0 <card(@,(t))<2 for 
all t E T. This completes the proof. 

The dual version of Theorem 11 is 

THEOREM 12. Let G be a multifunction from Y onto T, with locally con- 
nected graph, such that URE9 A,(G(Q)nint(T))=@ and G-(t) is com- 
plete for all t E int( T). Assume, finally, that condition (2) of Theorem 9 is 
satisfied. Then, there exist three multiselections Y, , Y,, Y, of G, onto T, 
such that: 

(i) Y,, Y3 are closed, Yz is open and Y,(y) c Y,(y) c Y,(y) ,for all 
I’E Y; 

(ii) for every tET, we have card(Y;(t))<2 and Yu;(t), YT(t) are 
compact. 

Proof: It suffices to apply Theorem 11 by taking F= I, and Yj= I,,, 
i= 1, 2, 3. 

In particular, we have 

THEOREM 13. Let g be a function from Y onto T satisfying the 
hypotheses of Theorem 12. Then, there exist three subsets Y,, Y,, Y, of Y, 
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with Y, E Y2 G Y, and Yl, Y,o-compact (in fact, compact if T is so) such 
that: 

(i) gIy,, g(, are cIosedandg(rz is open; 
(ii) for every t E T, we have O<card(g-‘(t)n Y,)<2 and 

g-‘(t) n Y2, g-‘(t) n Y3 are nonempty and compact. 

Proof. Apply Theorem 12, by taking G = g. Let !P,, Yz, !P, be as in the 
conclusion of that theorem. For i = 1,2, 3, put Y, = { y E Y: Yi( y) # @ >. Of 
course, the sets Yj satisfy (i) and (ii). Now, we prove that, under the 
present assumptions, T must be o-compact. Indeed, denote by F the family 
of all connected components of T reducing to a single point. Regard y as a 
subset of T. Let t E 5. By hypothesis, there is a connected set Y, G Y such 
that gr( g ( ,,,) is connected and t E int T( g( Y,)). Since g( Y,) is connected, we 
have g( Y,) = (t >. Hence, t is an isolated point of T. Therefore, y is coun- 
table. On the other hand, by a result of Morse (see [3, p. 58)), the set 
T\ y is a countable union of nondegenerate intervals. Thus, T is o-corn- 
pact. Now, the fact that the sets Y,, Y, are o-compact (in fact, compact if 
T is so) follows from (i), (ii) and from Theorem 1 of [2]. 

Observe that Theorem 13 improves Theorem 2.8 of [S]. 
Before establishing another multiselection theorem for F, we prove 

THEOREM 14. Let S be a locally connected metric space and let sp be a 
continuous real function on S such that cp ~ ‘(t) n r is complete for every con- 
nected component r of S and every t E int(cp(S)). Moreover, assume that, for 
every t E q(S), there exists a connected set S, c S such that t E int,&cp(S,)). 
Then, for every compact set C G q(S) there exists a compact set Kc S such 
that q(K) = C. 

Proof: Let C be any compact subset of q(S). For every t E C, choose a 
connected set S, g S and a positive real number E, such that 
[t-s,, t +E,] n Q(S) c cp(S,). Since C is compact, it is possible to find 
finitely many points tl,..., t, of C in such a manner that Cc 
u;= * Cti - El,, ti + &,,I. Now, for each i= l,..., n, put Ci= [ti-E,,, 
ti + E,~] n C. Fix i. Let T,, be the connected component of S containing S,, 
Since Cic cp(TJ, thanks to Theorem 1 of [13], there exists a compact set 
Ki 5 r,, such that cp(K,) = Ci. Now, put K = WY=, Ki. Thus, K is compact 
and cp(K) = C. 

The above-quoted multiselection theorem is 

THEOREM 15. Let gr(F) be locally connected and let ( { t } x F(t)) n r be 
complete for every connected component r of gr(F) and every t E int( T). 
Moreover, assume that condition (2) of Theorem 7 is satisfied. Then, F 
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admits an upper semicontinuous multiselection, with nonempty and compact 
values. 

Proof: As we know, condition (2) of Theorem 7 is equivalent to the fact 
that, for every t E T, there is a connected set S, cgr(F) such that 
t E intr(p(St)). In particular, this implies that T is locally connected. Let 9 
be the family of all connected components of T nonreducing to a single 
point. Fix D E 9. Let gD be a family of pairwise disjoint bounded subinter- 
vals of D such that D = uJE 8D J. For each JE c?~, thanks to Theorem 14, 
we can find a compact set K,s gr(F) such that p(K,) =j. Now, for each 
t E J, put QJ( t) = { y E Y: (t, y) E K,}. Of course, Gp, is an upper semicon- 
tinuous multiselection of FI,-, with nonempty and compact values. For 
each tED\U,,, int,(J) there are at most two members JI,l, J,,2 of &‘D 
such that J,, n J,,, = {t}. Put 

@o(t) = 
@AtI if tEint,(J), JE&~ 

%,.,(t) u @.I&) if t E D\ UJEgD int,(J). 

Thus, ~0” is an upper semicontinuous multiselection of FI,, with non- 
empty and compact values. Now, for each t E T\ Uo E B D, choose any 
point y, E F(t). Finally, put 

i 
@o(t) 

Q(t)= (y,> 
if tED, DEB 

if te T\lJo., D. 

Of course, @ satisfies the conclusion of the theorem. 

Thanks to Theorem 15, we have the following characterization, whose 
proof is left to the reader. 

THEOREM 16. Let f be a function from T into Y. Then, the following are 
equivalent : 

(1) T is locally connected and f is continuous. 
(2) gr( f ) is locally connected and, for every t E T, there exists a subset 

J, of T, with t E int T(J,), such that gr( f jJ,) is connected. 

Now, we state the dual version of Theorem 15. 

THEOREM 17. Let G be a multifunction from Y onto T, with locally con- 
nected graph, such that ({t } x G-(t)) n f 1s complete for every connected 
component r of gr(G) and every t E int( T). Moreover, assume that condition 
(2) of Theorem 9 is satisfied. Then, G admits a closed multiselection Y onto 
T such that Y- (t) is compact for all t E T. 

It is worth noting the following particular case of Theorem 17. 
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THEOREM 18. Let g be a function from Y onto T, with connected and 
locally connected graph, such that g-‘(t) is complete for all t E int( T). Then, 
for every compact set C E T, there exists a compact set K E Y such that g ) K 
is continuous and g(K) = C. 

Proof By Theorem 17, there is a set Y* c Y such that g 1 Ye is closed, 
g( Y*) = T and g-‘(t) n Y* is compact for all t E T. Let C any compact sub- 
set of T. Then, by Theorems 1 and 3 of [Z], the set K=g-‘(C)n Y* has 
the desired properties. 

We now prove 

THEOREM 19. Let gr(F) be locally connected. Suppose that the set 
T* = {t E T: there is a connected component r of gr(F) for which 
p(T)= {t}} is countable and that the set ({t} x F(t))nT is complete for 
every connected component r of gr(F) and every t E int( T). Then, there exist 
a multiselection H of F, with o-compact graph, and a selection cp of H, of 
first Baire class. If, in addition, the set p(T) is compact for every connected 
component I- of gr(F) on which p is not constant, the number of such com- 
ponents and T* being, furthermore, finite, then the graph of H is compact. 

Proof. Denote by %? the family of all connected components of gr(F) 
and put X = { r~ Q?: p ( r is constant}. For each t E T*, choose Tt E X such 
that p(f,)={t}. Now, put V=UTtM,,K ru(UIET*r,). Of course, V is 
locally connected and the family of its connected components is (%?\X) u 
WLEi-*. Then, by Theorem 3.3 of [lo], there are a o-compact set KG V 
and a function h: T-+ K, of first Baire class, such that p(h(t)) = t for every 
t E T. In fact, K is compact provided that so is the set p(T) for every con- 
nected component r of V, the number of these components being, further- 
more, finite. Now, let cp: T-r Y be the function such that h(t) = (t, cp(t)) for 
every t E T. Also, put H(t) = { y E Y: (t, y) E K} for all t E T. It is easily seen 
that H and cp have the desired properties. 

Observe that, in Theorem 19, to guarantee that the graph of H is com- 
pact, it is not sufficient to assume simply that T is compact. To see this, it 
suffices to take, for instance, T = Y = [0, 1 ] and F defined by putting 

if t=O 
if t E 10, 11. 

THEOREM 20. Let f be a function from T onto Y, with locally connected 
graph. Then, the following are equivalent: 

(1) The function f is of first Baire class and its graph is o-compact. 

(2) Y is separable. 

(3) Y is o-compact. 
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Proof: The implications (1) * (3) * (2) are obvious. Therefore, let us 
show that (2) Z- (1). Since Y is separable (and metrizable), so is gr(f). 
Then, gr(f) has countably many connected components, since it is also 
locally connected. Thus, (1) follows directly from Theorem 19. 

In particular, as a consequence of Theorem 20, we obtain the following 

THEOREM 21. Let Y he separable but not a-compact. Then, there is no 
one-to-one real function on Y, with locally connected graph. 

The next result is the dual version of Theorem 19. Here, p’ denote the 
projection from Y x T onto T. 

THEOREM 22. Let G be a multifunction from Y onto T, with locally 
connected graph. Suppose that the set T = {t E T: there is a connected 
component f of gr(G) for which p’(T) = {t}} is countable and that the set 
( { t j x G ~ (t )) A r is complete for every connected component f of gr(G) and 
every t E int( T). Then, there exist a multiselection H of I,, with o-compact 
graph, and a selection cp of H, of first Baire class. IA in addition, the set 
p’(f) is compact for every connected component r of gr(G) on which p’ is 
not constant, the number of such components and T’ being, furthermore, 
,finite, then the graph of H is compact. 

It is possible to check that Theorem 3.3 of [lo] turns out to be a 
particular case of Theorem 22. 

Now, we present the final result and its dual version. In these two 
theorems we do not assume the metrizability of Y. 

THEOREM 23. Let gr(F) be locally connected and F be onto Y. Let 
URt+ A,(F-(Q)) = a. Moreover, assume that there exists a set D z T, 
dense in T, such that F(t) is separable for every t E D. Then, Y is separable. 

Proof By Propositions 1 and 3, p-- ‘(t) is separable for all t E D and 
int,,(,,,(p-‘(t)) = 121 f or a 11 t E T. Therefore, by Theorem 3.4 of [ 121, gr(F) 
is separable. Hence, so Y is. 

THEOREM 24. Let G be a multtfunction from Y onto T, with locally con- 
nected graph, such that URt,P A,(G(SZ)) = 0. Moreover, assume that there 
exists a set D E T, dense in T, such that G-(t) is separable for every t E D. 
Then, Y is separable. 

Observe that Theorem 3.4 of [12] becomes now a particular case of 
Theorem 24. 
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