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Abstract

The paper describes a methodology used for selecting the most relevant clinical features and for generating decision

rules based on selected attributes from a medical data set with missing values. These rules will help emergency room

(ER) medical personnel in triage (initial assessment) of children with abdominal pain. Presented approach is based on

rough set theory extended with the ability of handling missing values and with the fuzzy measures allowing estimation

of a value of information brought by particular attributes. The proposed methodology was applied for analyzing the

data set containing records of patients with abdominal pain, collected in the emergency room of the cooperating

hospital. Generated rules will be embedded into a computer decision support system that will be used in the emergency

room. The system based on results of presented approach should allow improving of triage accuracy by the emergency

room staff, and reducing management costs.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Abdominal pain in childhood is a highly pre-

valent symptom in modern society caused by a

range of organic diseases, psychosocial distur-

bances and emotional disorders. In many cases,

the exact cause is never determined. Many of these
young patients when in severe pain end up in

hospital emergency departments where medical

staff must focus on identifying the very small
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portion of cases with a serious organic disease that

are in need of urgent treatment. For the majority

of such patients where the diagnosis of appendicitis

is in doubt, investigations and repeated assess-

ments conducted by different physicians are time

consuming and may be painful.

There is empirical evidence that highlights an
obvious advantage of the rapid triage of patients

with abdominal pain (Fioravanti et al., 1988).

However, the central difficulty of such triage is

accurate initial assessment based on a limited

number of clinical signs, symptoms and tests

(attributes) that in combination contribute the
ed.
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most to the diagnosis and management. Hence, a
relevantly reduced set of attributes should assist

the triage nurse and help the emergency room

(ER) physician.

The focus of this study is on finding the set of

relevant clinical symptoms and signs, and to gen-

erate decision rules based on them. These rules are

designed to support ER staff in assessing children

with abdominal pain. Created decision algorithm
(i.e. a set of decision rules) will be embedded into a

decision support system (DSS) that will be used in

emergency rooms of hospitals participating in the

study.

The paper is organized as follows. We start by

describing the ER management of child with

abdominal pain, and with the data set used in this

study. In Section 2, we present the methodology,
and in Section 3, we describe the experiments and

their results. Finally, the last section presents

conclusions.

1.1. ER management of child with abdominal pain

The typical process of ER management of a

child complaining of abdominal pain is illustrated
in Fig. 1. It also establishes a framework for use of

the decision support system, based on the results

of the presented approach, in triage of patients.

At present, a child is examined first by the ER

triage NP (nurse practitioner) to evaluate his/her

condition. This assessment is followed by a de-

tailed examination conducted by the ER physi-

cian. The possible outcomes of this evaluation are:
resolution, surgical consults, and not-yet-diagnosed

(NYD). Resolution indicates that the abdominal
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Fig. 1. ER management of ch
pain spontaneously subsides in the absence of a
clinical diagnosis. Such a patient can be discharged

to the care of his/her regular physician. Surgical

consult implies that acute appendicitis is suspected

and a surgeon is called for further evaluation.

NYD indicates the need for further in-hospital

clinical evaluation.

Triage is the first stage in the process of patient

management. The final (actual) diagnosis is known
when patient is discharged, and with patients tri-

aged as surgical consult, the final diagnosis is ob-

tained from the post-surgery pathology report.

There is no consensus in the medical literature

regarding the most effective management of

abdominal pain patients. Several studies advocate

use of some form of a scoring system as a clinical

support tool (Anatol and Holder, 1995; Hallan
and Edna, 1997), while others argue that only an

experienced member of the pediatric surgical team

is capable of the reliable diagnosis of acute

appendicitis (Simpson and Smith, 1996). Current

practice in teaching hospitals shows an ER triage

accuracy of 50–60% achieved by an ER triage NP

in case of diagnosing appendicitis, thus there is a

need to support this stage of child management by
reducing a number of incorrectly triaged patients.

This observation prompted us to focus our atten-

tion on the triage stage of the patient management

process.

The results of our study will be used to develop

a decision support system. The system will be

aimed at being used by the ER medical personnel

(triage NP and ER physician). There is no need to
support surgeons, because usually they are able to

diagnose appendicitis with very high accuracy,
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Table 1

Clinical attributes collected in the data set

Attribute Description Domain

Age Patient�s age 0–5 years, P 5 years

Sex Gender male, female

PainDur Duration of pain 6 24 hours, 1–7 days,

>7 days

PainSite Location of pain RLQ, lower

abdomen, other

PainType Type of pain continuous, other

Vomiting Vomiting occurred yes, no

PrevVis Previous visit to ER

in last 48 hours

yes, no

Tempr Temperature <37 �C, 37–39 �C,
>39 �C

TendSite Location of

tenderness

RLQ, lower

abdomen, other

Guarding Localized abdominal

muscle guarding

absent, present

RebTend Localized abdominal

rebound tenderness

absent, present

WBCC White blood cell

count

6 4000, 4000–12000,

P 12000

Table 2

Partition of patient records into decision classes

Class # of examples % of examples

Resolution 394 60.9

Surgical consult 195 30.1

NYD 58 9.0

Total 647 100.0
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however their availability in the ER is limited and
they cannot examine every patient.

1.2. Data set

We began our research with the development of

the data set. It contains the records of 647 patients

with abdominal pain seen during the 1997–2000

period in the ER of the Children�s Hospital of
Eastern Ontario (Ottawa, Ontario). For each pa-

tient the 12 attributes (clinical signs, symptoms

and tests) 1 and their values as given in Table 1,

were extracted from the charts. It should be no-

ticed that not every caregiver was able to conduct

all the examinations necessary to obtain the values

for every attribute. The ER triage NP is trained to

acquire the values of some of the attributes (for
example, elements of a medical history), while the

ER physician is trained to carry out a complete

examination.

Most of the attributes are nominal (e.g. gender

or type of pain), some are numerical (e.g. tem-

perature or WBCC), and some indicate a location

of a condition on patient�s abdomen (e.g. location

of pain or location of tenderness). Values of the
latter ones were collected with a help of special

abdomen pictograms, on which attending ER

physician marked proper location. Numerical

values were discretized according to medical

practice, and ‘‘location’’ attributes had values

converted into nominal ones using an algorithm

developed by surgeons and ER physicians for that

specific purpose.
According to medical practice, patient records

stored in the data set were classified into three

classes: resolution, surgical consult, and NYD. The

detailed partition is given in Table 2. The data set

is unbalanced––61% of objects belong to the res-

olution class (and so is the default accuracy), the

surgical consult class includes 30% of all records,

and the remaining 9% makes the NYD.
The data was collected as part of a retrospective

chart study and thus are not complete. Detailed

information about missing values is presented in
1 These are the attributes recommended in current medical

texts for the diagnosis of patients with abdominal pain.
Table 3. Values of only one attribute––Age––are
known for all patients. Five attributes have more

than 10% of values missing, and three of them

(Guarding, WBCC, and RebTend) have more than

20% of missing values. The unusually large portion

of missing values for the last attribute is caused by

the fact that it was recorded only for the records

collected in the year 2000.

Fig. 2 reveals an interesting pattern of missing
values within the decision classes. Except of two

attributes (PainDur and Tempr), the largest ratio

of missing data appears for the resolution class,

and the smallest for the surgical consult. This may

be explained by the fact, that if, after performing a

few basic examinations the most likely triage is

resolution, then other symptoms and signs are not

checked. Clearly, patients triaged as surgical con-
sult or NYD are examined more thoroughly.
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Fig. 2. Distribution of the missing values in decision classes.

Table 3

Missing values of attributes [in %]

Attribute Overall Class

Resolution Surgical

consult

NYD

Age 0.0 0.0 0.0 0.0

PainDur 0.9 0.0 2.6 1.7

PainSite 2.5 2.3 1.0 8.6

PainType 10.8 10.7 10.3 13.8

TendSite 11.9 16.0 2.6 15.5

Guarding 25.5 32.2 12.8 22.4

RebTend 34.3 40.4 22.1 34.5

PrevVis 1.2 2.0 0.0 0.0

Sex 0.2 0.3 0.0 0.0

Tempr 1.6 1.5 2.1 0.0

Vomiting 0.9 1.0 0.5 1.7

WBCC 29.4 44.2 2.6 19.0

2 This 3% of missing values should be most likely attributed

to a fact that the WBCC was done but its results were not

properly recorded on a patient�s chart in the ER.
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An important issue here is how to treat the

attributes with significant number of missing val-

ues. They should not be discarded, as their

importance clearly depends on a decisional con-

text. The WBCC attribute is a very good example
of such a situation. It has 44% of missing values

for the resolution class, but less than 3% for the

surgical consult class. One can conclude here that

triage of almost half of the patients was so obvious

that it did not require any further investigations

and that ordering the WBCC would be a waste of

time and the resources. Thus, the WBCC in this

particular context is not an important attribute.
On the other hand, when a patient is triaged as the
surgical consult, the results of the WBCC are very
important for the correct diagnosis. 2 It seems that

the ratio of missing values provides a ‘‘time

stamp’’ of the examination–larger amount of

missing data is associated with the symptoms and

signs considered later in a management process.
2. Methodology

The data set created from the patients� charts
was analyzed for regularities using rough set the-

ory and fuzzy measures. In this section we describe

the basic notions behind rough set theory and its

extensions (Pawlak, 1982, 1991; Pawlak and

Słowi�nski, 1994; Słowi�nski, 1995), and also the

fuzzy measures (Grabisch, 1997; Greco et al.,
1998; Shapley, 1953) that was used for additional

evaluation of the attributes.

2.1. Rough set theory

For rough set analysis the data is supplied in the

form of an information table, in which rows rep-

resent objects (patients� charts) and columns rep-
resent attributes (clinical signs, symptoms and

tests, and triage outcomes recorded on the charts).

Each cell of the table indicates an evaluation

(quantitative or qualitative) of an object repre-

sented by the corresponding row by means of an

attribute represented by the corresponding col-

umn. Formally, the information table is the 4-

tuple S ¼ hU ;Q; V ; f i, where U is a finite set of
objects (universe), Q is a finite set of attributes,

V ¼
S

q2Q Vq and Vq is a domain of an attribute q,
f : U � Q ! V is a function called information

function such that f ðx; qÞ 2 Vq for each q 2 Q,
x 2 U . The set Q is divided into a set C of condition

attributes, and a set D of decision attributes (for

the data set described in this paper it is a single-

ton–the triage outcome).
Each object x of U is described by a vector of

evaluations (attribute values), called description of
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x in terms of the attributes from Q. This vector
represents available information about x. Objects

having identical description are called indiscern-

ible. In general, the indiscernibility relation on

U , denoted by IP , is associated with every (non-

empty) subset of attributes P 	 Q

IP ¼ ðx; yÞ 2 U
�

� U : fqðxÞ ¼ fqðyÞ; 8q 2 P
�
:

ð1Þ

Clearly, the relation (1) is an equivalence rela-

tion (reflexive, symmetric and transitive); thus, it

partitions set U into equivalence classes called P -
elementary sets. The family of all the equivalence

classes of relation IP is denoted by U j IP and the
equivalence class containing an object x 2 U is

denoted by IP ðxÞ. If ðx; yÞ 2 IP , then objects x and y
are P -indiscernible.

The partitions of set U induced by subsets of

condition attributes and subsets of decision attri-

butes represent knowledge about U .

The key idea of rough sets is related to

approximation of knowledge expressed by decision
attributes using knowledge that is expressed by

condition attributes. Rough set theory answers

several questions related to such approximation:

(a) Is the data contained in the information table

consistent?

(b) What are the non-redundant subsets of condi-

tion attributes (reducts) ensuring the same
quality of classification as the whole set of con-

dition attributes?

(c) What are the condition attributes (core) that

cannot be eliminated from the approximation

without decreasing the quality of the approxi-

mation?

(d) What minimal ‘‘if. . ., then . . .’’ decision rules

can be induced from the approximations?

Several important aspects of rough set theory

made it of particular interest to the researchers

evaluating real data sets describing various deci-

sion situations (Lin and Cercone, 1997). With re-

spect to the input information, rough sets allow us

to analyze both quantitative and qualitative data,

and inconsistencies need not be removed prior to
the analysis, as they are dealt with by separating
certain and doubtful knowledge extracted from the
information table. With reference to the output

information, rough sets allow us to acquire a

posteriori information regarding the relevance of a

particular attribute (or subsets of attributes) for

the quality of classification. Moreover, the final

result presented in the form of ‘‘if . . ., then . . .’’
decision rules that are based on the most relevant

attributes, is easy to interpret.
For a demonstration of the basic concepts of

rough sets, let us assume that X is a non-empty

subset of U , for example an equivalence class with

respect to set D of decision attributes, and P 	 C is

a subset of condition attributes.

We say that object x 2 X belongs certainly to X
if all objects from the P -elementary set IP ðxÞ also

belong to X , i.e. IP ðxÞ 	 X . Then, for a given P ,
information about object x is consistent with

information about other objects from U .

We say, moreover, that object x 2 U could be-

long to X if at least one object from the P -ele-
mentary set IP ðxÞ belongs to X , i.e. IP ðxÞ \ X 6¼ £.

If £ 6¼ IP ðxÞ \ X 6¼ IP ðxÞ then, for a given P ,
information about object x is inconsistent with

information about other objects from IP ðxÞ.
For P 	 C, the set of all objects belonging cer-

tainly to X constitutes the P -lower approximation
of X , denoted by P ðX Þ, and the set of all objects

that could belong to X constitutes the P -upper
approximation of X , denoted by P ðX Þ:

P ðX Þ ¼ x 2 U : IP ðxÞ 	 Xf g; ð2Þ

P ðX Þ ¼ x 2 U : IP ðxÞ \ Xf 6¼ £g: ð3Þ

The difference between the upper and lower
approximations of X is called the P -boundary of

X :

BnP ðX Þ ¼ P ðX Þ � PðX Þ: ð4Þ
The P -boundary of X is composed of inconsis-

tent objects that belong to X with some ambiguity.

The following relations hold: P ðX Þ 	 X 	 P ðX Þ,
P ðX Þ ¼ U � P ðU � X Þ.

The family of all the sets X 	 U having the

same lower and upper approximations is called a

rough set.

Rough approximations of a subset X 	 U can
be extended to partitions of U ; in particular to the



Sz. Wilk et al. / European Journal of Operational Research 160 (2005) 696–709 701
partition induced by decision attributes from D.
This partition corresponds to the classification of

objects into decision classes––lower approxima-

tions of decision classes represent certain knowl-

edge, upper approximations represent possible

knowledge, and the boundaries represent doubtful

knowledge about the classification, expressed in

terms of condition attributes from P 	 C.
Given a partition of U into decision classes,

Cl ¼ fClt; t 2 Tg, T ¼ f1; . . . ; ng, the P -boundary
with respect to k > 1 classes fClt1; . . . ;Cltkg 	
fCl1; . . . ;Clng is defined as

BdP fClt1; . . . ;Cltkgð Þ

¼
\

t¼t1;...;tk

BnP ðCltÞ
 !

\
\

t 6¼t1;...;tk

Uð
 

�BnP ðCltÞÞ
!
:

ð5Þ

The objects from BdP ðfClt1; . . . ;CltkgÞ can be

assigned to one of the classes Clt1; . . . ;Cltk, how-
ever, P and all its subsets do not provide enough

information to do this assignment precisely.

Using the rough approximations of decision
classes, it is possible to induce decision rules

describing the classification represented by exam-

ples contained in the information table. These are

logical statements (implications) of the type ‘‘if. . .,
then. . .’’ where the antecedent (condition part) is a

conjunction of the elementary conditions con-

cerning particular condition attributes and the

consequence (decision part) is a disjunction of
possible assignments to particular classes of a

partition of U induced by decision attributes.

Given a partition Cl of U , the syntax of the rule is

the following:

\if f ðx; q1Þ ¼ rq1 and f ðx; q2Þ
¼ rq2 and . . . f ðx; qpÞ ¼ rqp;

then x is assigned to Clt1 or . . .Cltk";

ð6Þ

where fq1; . . . ; qPg 	 C, ðrq1; . . . ; rqpÞ 2 Vq1 � � � � �
Vqp and fClt1; . . . ;Cltkg 	 fCl1; . . . ;Clng. If the

consequence is univocal, i.e. k ¼ 1, then the rule is

exact, otherwise it is approximate or uncertain.

Let us observe that for any Clt 2 fCl1; . . . ;Clng
and P 	 C, the definition (2) of P -lower approxi-

mation of Clt can be rewritten as:
PðCltÞ ¼ fx 2 U : for each y 2 U

if yIP x; then y 2 Cltg: ð7Þ

Thus, the objects belonging to the lower

approximation P ðCltÞ can be considered as pro-

totypes for induction of exact decision rules.
Therefore, the statement ‘‘if f ðx; q1Þ ¼ rq1 and

f ðx; q2Þ ¼ rq2 and . . . f ðx; qpÞ ¼ rqp, then x is as-

signed to Clt’’, is accepted as an exact decision rule

if and only if there exists at least one object

y 2 P ðCltÞ, P ¼ fq1; . . . ; qpg, such that f ðy; q1Þ ¼
rq1 and f ðy; q2Þ ¼ rq2 and . . .f ðy; qpÞ ¼ rqp.

Given fClt1; . . . ;Cltkg 	 fCl1; . . . ;Clng we can

write

BdP ðfClt1 . . .CltkgÞ
¼ fx 2 U : for each y 2 U ;

if yIP x; then y 2 Clt1 or Cltkg: ð8Þ

Thus, the objects belonging to the boundary

BdP ðfClt1 . . .CltkgÞ can be considered as a basis for

induction of approximate decision rules.

The analysis of large information tables shows

that the calculation of approximations according

to (2) and (3) may result in large P -boundary of X .

Consequently, it leads to weak decision rules
(supported by few objects from lower approxi-

mations). In such a case it seems reasonable to

relax the conditions for the assignment of objects

into lower approximations by allowing them to

include some inconsistent objects. This relaxation

is called a variable precision model (VPM) and is

described in (Ziarko, 1993). The VPM defines

lower approximations using a limited number of
counterexamples that is controlled by a pre-

defined level of certainty bð0 < b6 1Þ. In the

VPM, the P -lower approximation of X in U is

defined as:

PðX Þ ¼ x 2 U :
jIP ðxÞ \ X j
jIP ðX Þj

�
P b

�
: ð9Þ

If b is set to 1, then the VPM operates in the

same way as in definition (2).

Decision rules induced from the lower approx-

imations of decision classes defined by (7) have
univocal consequences (decisions); however, con-

fidence index of each rule (defined as the number of

objects matching both the condition and decision
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part of the rule to the number of objects matching
the condition part only) varies from b to 1.

The quality of the approximation of X 	 U by

the attributes from P is given as the ratio:

cP ðX Þ ¼ jP ðX Þj
jX j ; ð10Þ

where 06 cP ðX Þ6 1 and the quality represents the

relative frequency of the objects correctly classified

by means of the attributes from P .
The quality of the approximation of classification

Cl by set of attributes P is given as

cP ðClÞ ¼
Pn

i¼1 jP ðCliÞj
jU j : ð11Þ

It is called in short the quality of classification

and specifies the ratio of all P -correctly classified

objects to all objects in the information table.
Each minimal subset P 	 C such that

cP ðClÞ ¼ cCðClÞ is called a reduct of S and denoted

by REDClðCÞ. The information table can have

more than one reduct. The intersection of all re-

ducts is called a core and is denoted by

COREClðCÞ. The core is composed of the indis-

pensable attributes that cannot be removed from

the information table without decreasing the
quality of classification. Condition attributes that

do not belong to any reduct are called superfluous.

2.2. Missing values

The classical rough set theory is not well suited

for dealing with missing values. If such values

appear in the data set, an additional preprocessing
is required to convert them. Commonly used pre-

processing methods are (Grzymała-Busse and

Ming, 2001):

• Coding missing values with a special value (i.e.

N/A) and then treating them as known ones.

• Replacing missing values by particular known

ones (for example by average or most frequent
values in the whole data set or in the considered

decision class).

• Replacing each incomplete object by several

artificially created, with missing values replaced

by all possible combinations of known ones.
All mentioned approaches have serious short-
comings. When using the first one, it is possible to

obtain decision rules having conditions based on

N/A values. Such rules may be difficult to interpret

and use. The other methods may falsify the origi-

nal data, especially when the number of missing

values is large (then it may be even impossible to

create all combinations of known values to replace

missing ones).
There are several approaches that extend rough

set theory to handle data containing missing values

directly, without any preprocessing. Some of them

are based on the similarity relation (Kryszkiewicz,

1998a,b), others on the valued tolerance relation

(Stefanowski and Tsoukias, 2001). The extension

outlined below uses modified indiscernibility rela-

tion (Greco et al., 2001); it was chosen for
robustness of decision rules induced from rough

approximations, which is particularly important in

the context of medical applications.

The definition of the information table

(S ¼ hU ;Q; V ; f i) is extended by assuming that the

set V is augmented to include the missing value

(indicated by ‘‘*’’).

Instead of the indiscernibility relation IP , a new
type of relation, denoted by I�P is introduced. For

each object x; y 2 U and for each subset of attri-

butes P 	 Q, yI�P x means that f ðx; qÞ ¼ f ðy; qÞ, or
f ðx; qÞ ¼ �, or f ðy; qÞ ¼ �, for every q 2 P . Let

I�P ðxÞ ¼ fy 2 U : yI�P xg for each x 2 U and for each

P 	 Q. I�P is reflexive and symmetric but not tran-

sitive binary relation. Finally, let U �
P ¼ fx 2 U :

f ðx; qÞ 6¼ � for at least one q 2 Pg.
Using I�P the definitions of the P -lower and P -

upper approximation of X become:

I�P ðX Þ ¼ x 2 U �
P : I�P ðxÞ 	 X

� �
; ð12Þ

I
�
P ðX Þ ¼ x 2 U �

P : I�P ðxÞ \ X
�

6¼ £
�
: ð13Þ

The P -lower approximation can be also calcu-

lated using the VPM as

I�P ðX Þ ¼ x 2 U �
P :

jI�P ðxÞ \ X j
jI�P ðxÞj

�
P b

�
: ð14Þ

The approximations defined in (12) and (13) are

further used to calculate the P -boundary of X ,
accuracy of approximation of X , and the quality of
the approximation of X .



Sz. Wilk et al. / European Journal of Operational Research 160 (2005) 696–709 703
Given the partition Cl of U , one can calculate
the quality of the classification of Cl and use this

measure to find the reducts and the core of attri-

butes.

Using the rough approximations (12) and (13),

it is possible to induce a generalized description of

the examples contained in the information table in

terms of decision rules (see 2.1).

Since each decision rule (6) is an implication
(similar to (7) for I�P ), a minimal decision rule

represents a unique implication in the sense that

there is no other implication having a subset of

elementary conditions and the same consequent.

We say that y 2 U supports the exact decision

rule ‘‘if f ðx; q1Þ ¼ rq1 and f ðx; q2Þ ¼ rq2 and . . .
f ðx; qpÞ ¼ rqp; then x is assigned to Clt’’, if [f ðy;
q1Þ ¼ rq1 and/or f ðy; q1Þ ¼ �] and [f ðy; q2Þ ¼ rq2
and/or f ðy; q2Þ ¼ �]. . .and [f ðy; qpÞ ¼ rqp and/or

f ðy; qpÞ ¼ �] and y 2 Clt.
Similarly, we say that y 2 U supports the

approximate decision rule ‘‘if f ðx; q1Þ ¼ rq1 and

f ðx;q2Þ¼ rq2 and . . .f ðx;qpÞ¼ rqp; then x is assigned

to Clt1 or . . .Cltk’’, if [f ðy; q1Þ ¼ rq1 and/or f ðy;
q1Þ ¼ �] and [f ðy; q2Þ ¼ rq2 and/or f ðy; q2Þ ¼
�]. . .and [f ðy; qpÞ ¼ rqp and/or f ðy; qpÞ ¼ �] and
y 2 Bd�

CðfClt1 . . .CltkgÞ.
Decision rules induced from lower approxima-

tions defined by (14) have univocal consequences

(decisions); however, the confidence index of each

rule (see 2.1) varies from b to 1.

2.3. Fuzzy measures

The quality of classification (calculated using

either IP or I�P ) satisfies the properties of the set

functions called fuzzy measures. Such measures

can be used for modeling the importance of

coalitions (Grabisch, 1997), or as proposed in

(Greco et al., 1998) to assess the relative value of

the information supplied by each attribute and to

analyze interactions among the attributes (using
the quality of classification calculated according to

(11)). Let us explain this point in greater detail.

Let C ¼ fq1; . . . ; qng be a finite set, whose ele-

ments could be players in a game, condition

attributes in an information table, different criteria

in a multicriteria decision problem, etc. Let PSðCÞ
denote the power set of C, i.e. the set of all subsets
of C. A fuzzy measure on C is a set function
l : PSðCÞ ! ½0; 1� satisfying the following axioms:

(a) lð£Þ ¼ 0, lðCÞ6 1;

(b) A 	 B implies lðAÞ6 lðBÞ, for all A;B 2
PSðCÞ.

Within the game theory, the function lðAÞ is

called the characteristic function and represents
the payoff obtained by the coalition A 	 C in a

cooperative game (Shapley, 1953); in the multi-

attribute classification lðAÞ can be interpreted as

the conjoint importance of attributes from A 	 C.
In the game theory some indices were proposed

as specific solutions for cooperative games. One of

the most important is the Shapley value (Shapley,

1953), defined for every element qi 2 C as:

/SðqiÞ ¼
X

K	C�fqig

ðn� jKj � 1Þ!jKj!
n!

�

� ½lðK [ fqigÞ � lðKÞ�
�
: ð15Þ

The Shapley value can be interpreted as an

average contribution of the element qi to all the
possible coalitions (combinations) of elements

from C.
For Cl being a partition of U , lðKÞ ¼ cKðClÞ

for every K 	 C; the value of lðCÞ is shared

among elements of C, i.e.Xn
i¼1

/SðqiÞ ¼ cCðClÞ: ð16Þ

Thus, the Shapley value /SðqiÞ can be used to

assess the contribution of a single attribute qi to
the quality of classification. Attributes with higher

value of /SðqiÞ are considered to better explain

relationships in a data set.
3. Results

The medical data set described in Section 1.2

was analyzed using the ROSE software (Prezdki
and Wilk, 1999). The data set contains large

number of missing values, thus an approach pre-

sented in Section 2.2 was used. The analysis was

aimed at:
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Fig. 3. Shapley values and the quality of classification.
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• Finding the clinical symptoms and signs that

are the most relevant for classifying a patient

as resolution, surgical consult, or NYD,

• Inducing the set of decision rules based on the

attributes selected in the previous step that en-

sure high classification accuracy of patients in

the ER. These rules, after consulting them with

the surgeon, will be further used as a basis of
decision support system.

Initial analysis identified one reduct containing

all condition attributes, forcing us to use the

Shapley value to identify the most important

attributes.

Table 4 gives the Shapley values for all condi-

tion attributes. The table also gives percentages of
missing values for each attribute, and the quality

of classification that was achieved by using the set

containing the attributes starting from the first one

(according to the sort order). For example, the

quality of classification equal to 0.094 for PainSite

means that it was achieved for the set containing

Tempr, PainDur, Sex, Vomiting, and PainSite.

The Shapley values and the quality of classification
are also given in Fig. 3.

It is worth to notice that the order of the

attributes in Table 4 has a close fit to the per-

centage of missing values, especially for those that

have more than 10% of missing data. It is consis-

tent with the intuition, that less information the

attribute bears, the less relevant it is according to

the Shapley value ranking. The only exception is
Table 4

Shapley values sorted in a descending order

Attribute Shapley value Quality of

classification

% of missing

values

Tempr 0.079 0.000 1.5

PainDur 0.072 0.002 0.9

Sex 0.069 0.002 0.2

Vomiting 0.067 0.006 0.9

PainSite 0.066 0.094 2.5

PrevVis 0.065 0.196 1.2

TendSiteSite 0.053 0.280 11.9

PainType 0.046 0.337 10.8

Age 0.045 0.433 0.0

Guarding 0.031 0.539 25.5

WBCC 0.030 0.601 29.4

RebTend 0.017 0.640 32.3
Age, which values are given for all patients, but its

low importance may be explained by very crude

discretization (see Table 1) that may entail loss of

information.

For illustrative purposes we also calculated the

Shapley values for the data set where missing val-
ues were replaced by unique N/A value. The results

presented in Table 5 are very different from those

given in Table 4. For example the WBCC attribute

that is undefined for almost 30% of patients ap-

pears to be the most explanatory one. Clearly, a

very questionable conclusion. We believe that such

simple comparison shows the advantages of the

approach based on the I�P relation that was used to
develop Table 4. Moreover there is another prob-

lem that might arise if missing values were coded as
Table 5

Shapley values (missing values coded as N/A)

Attribute Shapley value Quality of

classification

% of missing

values

WBCC 0.107 0.005 29.4

Guarding 0.097 0.005 25.5

PainType 0.085 0.014 10.8

PainSite 0.084 0.178 2.5

TendSiteSite 0.083 0.377 11.9

RebTend 0.079 0.493 34.3

Tempr 0.077 0.612 1.5

PainDur 0.074 0.725 0.9

Sex 0.074 0.835 0.2

Vomiting 0.067 0.883 0.9

PrevVis 0.055 0.903 1.2

Age 0.033 0.915 0.0



Table 6

Accuracy of classification––LEM2

# of

attributes

Accuracy of classification [%]

Total Resolution Surgical

consult

NYD

5 61.51 66.16 68.07 8.40

6 62.10 84.15 33.73 8.13

7 62.48 72.11 55.87 19.93

8 68.65 76.79 71.16 5.20

9 70.52 80.81 68.75 6.80

10 72.00 80.91 73.77 5.53

11 74.06 83.36 75.54 6.00

12 75.11 85.70 74.07 7.00
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N/A. As the WBCC attribute has missing values
mainly for records from resolution and NYD clas-

ses, it is very likely that a rule pointing at one of

these classes and containing the condition

WBCC¼N/A would be created. As this condition

cannot be considered as �WBCC is unimportant�
(N/A is treated as unique value, equal only to an-

other N/A), such rule is unacceptable because it

forces not to perform the WBCC test. In reality,
rules of this kind are hardly useful and it is ex-

tremely difficult to interpret them.

The choice of the most relevant attributes in

Table 4 was not obvious, so we decided to use a set

of the attributes starting with the set containing

top five attributes according to their Shapley val-

ues (Tempr, PainDur, Sex, Vomiting, and Pain-

Site). For those attributes a considerable increase
of the quality of classification was observed. Then

we iteratively extended this set with the remaining

attributes in the sequence resulting from descend-

ing Shapley values. RebTend was appended as the

last, so we finished with the set containing all 12

condition attributes.

For each set of attributes we tested the classi-

fication accuracy of corresponding decision rules.
The classification accuracy was estimated using 10-

fold cross-validation tests (Mitchell, 1997). In

order to get more reliable results, the validation

tests were repeated five times and their results were

averaged over all repetitions. The decision rules

were induced using two algorithms: LEM2

(Grzymała-Busse, 1992), and Explore (Stefanow-

ski and Vanderpooten, 2001). We selected these
algorithms to compare two different perspectives

of decision table description and their predictive

abilities.

The LEM2 algorithm generates the minimum

set of decision rules (the set does not contain any

redundant rules). We used the VPM variant of the

algorithm that generates rules covering all exam-

ples from lower approximations calculated using
the variable precision model. In all tests we fixed

the b parameter at 0.8 (see (9) and (14)). This value

was elaborated in the experiments showing that

decreased b led to stronger decision rules with

satisfactory discriminating abilities.

The Explore algorithm generates the set of

satisfactory rules, i.e. the rules that satisfy re-
quirements specified by the user. The user specifies
the requirements in terms of the maximum number

of conditions in a rule (rule length), the minimum

rule strength and the minimum confidence index

(the confidence index can be seen as a counterpart

of b in the VPM variant of LEM2). In our

experiments we did not restrict the length of gen-

erated rules, and the minimum confidence index

was set to 0.8 (to preserve consistency with
LEM2). The only one parameter that we modified

during the tests was the minimum rule strength.

The modification procedure is described in details

in (Stefanowski and Wilk, 2001). Basically we

started with maximum rule strength observed for

the rules generated by LEM2. Then we modified

them in order to increase the classification accu-

racy, estimated with a single repetition of 10-fold
cross-validation test.

The approach that we used to handle missing

values, required us to introduce some modifica-

tions into rule induction algorithms. First, we as-

sumed that a condition would be satisfied by a

value equal to the value specified in the condition

or by missing one (i.e. condition Vomiting¼ �yes�
would be met by �yes� and by missing value). Sec-
ondly, the algorithms were altered to ensure the

robustness of generated rules. A decision rule is

robust if it covers at least one object that has non-

missing (known) values for the attributes used in

the conditions.

Results of cross-validation tests are presented in

Tables 6 and 7, and in Figs. 4 and 5. The total

accuracies (calculated for all decision classes) are



Table 7

Accuracy of classification––Explore

# of

attributes

Accuracy of classification [%]

Total Resolution Surgical

consult

NYD

5 63.46 66.57 71.48 10.67

6 64.01 64.05 80.56 8.73

7 67.91 71.00 79.30 8.60

8 72.76 78.75 80.35 6.07

9 72.95 77.67 81.47 12.07

10 73.64 79.45 82.13 5.46

11 76.01 83.13 83.25 3.13

12 76.88 84.57 83.99 0.67

0.00
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75.00

100.00

5 6 7 8 9 10 11 12
# of attributes

Resolution Surgical consult NYD Total

Fig. 4. Accuracy of classification––LEM2.
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Fig. 5. Accuracy of classification––Explore.
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Fig. 6. Comparison of classification accuracies.
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also collected in Fig. 6. The best accuracy was
obtained for the rules generated by the Explore

algorithm, using LEM2 led to similar accuracy,

although slightly lower. However for the set of

features containing all condition attributes both

tested algorithms gave comparable accuracy.

The rules induced by the Explore algorithm

gave the best accuracy for the surgical consult

class. Moreover, the accuracy was very stable (Fig.
5). This may suggest, that it was possible to gen-

erate ‘‘accurate’’ rules (i.e. ensuring high classifi-
cation accuracy) using the smallest subsets of

condition attributes. LEM2 did not offer this kind

of stability, as there was considerable decrease of

accuracy for the subsets containing 6 and 7 attri-

butes (Fig. 4).

The accuracy for the resolution class increased
as the set of analyzed attributes was extended (the

only one exception was noticed for LEM2 and 6

attributes). This may suggest that additional

attributes were necessary to improve the classifi-

cation of the healthy patients, because, as it was

mentioned above, the accuracy for the surgically

consulted patients was constant.

None of the algorithms was able to induce rules
classifying the NYD patients with acceptable

accuracy. The detailed analysis of cross-validation

test results revealed that in most cases the NYD

patients were classified to the resolution category.

This type of misclassification is very unfavorable,

as it may endanger patient�s health (when a sick

patient is sent back home from the ER). Such

mistakes, made mainly between these two classes
suggest that either not all necessary features that

are normally considered by the ER staff to dis-

tinguish between healthy and NYD patients, were

stored in the data base, or it is impossible to dis-

cern patients from the two classes with acceptable

accuracy, and the ER staff decides to keep all

doubtful patients in the hospital for observation.

These specific misclassifications require further
explanation by the surgeon.

The average number of rules generated in vali-

dation tests by the tested rule induction algorithms
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is presented in Table 8 and in Fig. 7. In most cases
(except of the last two subsets of attributes) LEM2

generated more rules. It is also interesting to notice

that for LEM2 the number of induced rules for the

last four sets (containing 9 and more attributes)

did not change. Explore produced the smaller

number of rules for all, but the last two, sets of

attributes; for the set containing all condition

attributes Explore generated twice as many rules
as LEM2.

Finally, after consulting the surgeon, we deci-

ded to select three sets of attributes––containing 5,

8 and 11 attributes, respectively. The first subset is

the smallest set that gives acceptable classification

accuracy and values of all included features can

be collected by the ER triage NP. The other sets

were selected as milestones because they are the
smallest sets that contain two attributes important
Table 8

Average number of rules generated in 10-fold cross-validation

tests

# of attributes Average # of rules

LEM2 Explore

5 12.4 5.6

6 22.3 7.3

7 27.4 13.2

8 34.4 19.5

9 49.8 22.0

10 51.7 38.8

11 51.0 68.5

12 51.3 110.6

0.0

30.0

60.0

90.0

120.0

5 6 7 8 9 10 11 12

LEM2 Explore

Fig. 7. Average number of rules generated in 10-fold cross-

validation tests.
from the medical point of view––PainType and
WBCC.

For the selected sets we induced decision rules

using the Explore algorithm and the same values

of parameters as in the corresponding validation

tests. Obtained sets of rules, after verifying them

by the surgeon and embedding into a computer

DSS, will be used at various stages of handling a

child in the ER, depending on the amount of
available information, i.e. the rules created for 5

attributes could be used to suggest the rapid triage

shortly after arriving to the ER, while the rules for

11 attributes could be applied when necessary

examinations have been conducted.

Here we would like to stress, that the Explore

algorithm was used for generating rules from the

previous, complete (i.e., with no missing values)
and much smaller version of the considered data

set (175 patients� charts from two decision classes:

resolution and surgical consult), and the results

were promising (Michalowski et al., 2001; Rubin

et al., 2000). We generated reducts, induced deci-

sion rules from the reduced data sets and tested

their classification abilities. The best set of rules

achieved an accuracy of 66% in cross-validation
tests, and it was positively evaluated by the sur-

geon.

Tables 9 and 10 present the rules generated for 5

and 8 attributes, respectively. Because of the

number of rules we decided not to include the rules

created for 11 attributes. The relative strength of a

rule presented in the tables is a ratio of objects

covered by the rule and belonging to the class
pointed by the rule to all examples from the deci-

sion class pointed by the rule (e.g. for the first rule

in Table 10 the relative strength equal to 54.6%, it

means that this rule covers 54.6% examples from

the resolution class).
4. Conclusions

We conducted the analysis of the medical data

set with missing values that was aimed at finding

the set of relevant attributes and generating deci-

sion rules to classify patients in the ER.

The reduct calculated for the data set contained

all condition attributes, hence we used the Shapley



Table 10

Decision rules generated by Explore for eight attributes

Diagnosis PainDur PainSite PainType TendSite PrevVis Sex Tempr Vomiting Relative

strength [%]

Resolution Other 54.6

Resolution Other 53.6

Resolution Intermit-

tent

<37 38.8

Resolution Intermit-

tent

Absent 37.8

Resolution <37 Absent 38.6

Surgical consult 1–7 days RLQ Male Present 28.7

Surgical consult RLQ Constant Male Present 33.3

Surgical consult RLQ RLQ Male Present 34.4

Surgical consult RLQ No Male Present 30.3

Surgical consult RLQ Male <37 Present 16.9

Surgical consult 1–7 days RLQ Constant No Male 33.8

Surgical consult RLQ Constant RLQ No Male 41.0

Surgical consult RLQ Constant RLQ No P 37 6 39 41.0

Surgical consult RLQ Constant No Male P 37 6 39 23.1

Surgical consult Constant RLQ No Male P 37 6 39 24.6

Surgical consult Constant RLQ No Male Present 31.3

Surgical consult RLQ No Male P 37 6 39 Present 17.4

NYD Other Other Male >39 6.9

NYD Other Male >39 Absent 3.4

NYD Other Male >39 Absent 3.4

NYD 24 hours Constant Other P 37 6 39 Present 3.4

Table 9

Decision rules generated by Explore for five attributes

Diagnosis PainDur Site Sex Tempr Vomiting Relative

strength [%]

Resolution Other 54.6

Resolution <37 Absent 38.6

Surgical consult 1–7 days RLQ Male Present 28.7

Surgical consult RLQ Male <37 Present 16.9

NYD 6 24 hours >39 1.7

NYD Other Male >39 Absent 3.4
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value as a measure of attribute�s information

value. The reduced sets were generated in an

incremental manner and for each subset we per-

formed 10-fold cross-validation tests using the

rules generated by the LEM2 and Explore algo-
rithms. The highest classification accuracy was

obtained for the latter one.

After consultations with the domain expert, we

selected three subsets of attributes containing 5, 8
and 11 attributes, and generated decision rules

using the Explore algorithm.

The analysis described in the paper would not

be possible without employing a new approach to

the evaluation of missing values. This approach
allowed us to consider differential information

content of the attributes, depending on a number

of missing values and their distribution among

decision classes. It also allowed us to propose a
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modified way of matching rules, depending on the
values of the attributes available at a specific stage

of a triage process.
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