Sulla valutazione della spinta attiva in terrapieni di altezza finita

E. MOTTA*

Abstract

Sommario. La valutazione della spinta di un terrapieno su un'opera di sostegno è un aspetto di notevole interesse applicativo nell'ambito dell'ingegneria geotecnica. Di solito per la valutazione della spinta attiva su un'opera si fa riferimento alle teorie derivate dal metodo di Coulomb che permettono di valutare \mathbf{i} coefficienti di spinta attraverso soluzioni in forma chiusa. Talvolta per le condizioni al contorno che si presentano non è possibile adoperare le soluzioni 'classiche' (Mueller-Breslau, Mononobe-Okabe) in maniera corretta. È questo il caso di terrapieni di altezza finita, dove talvolta il cuneo di rottura associato al relativo coefficiente di spinta attiva è incompatibile con la geometria del problema perché non rientra nelle ipotesi di base assunte per la valutazione dei coefficienti di spinta medesimi.

Poiché il metodo di Coulomb si è dimostrato affidabile nei problemi di stato limite attivo, si è pensato di utilizzarlo per derivare una soluzione in forma chiusa per una tipologia di casi assai frequenti nella pratica progettuale. È stato così ricavato un coefficiente di spinta attiva che permette di tenere conto insieme del contributo del peso proprio del terreno e dell'eventuale sovraccarico applicato ad una certa distanza dall'opera di sostegno, anche sotto condizioni di carico sismico valutato in termini pseudo-statici. È stata altresì derivata una semplice espressione per tenere conto, in misura conservativa, del contributo sulla spinta dell' eventuale presenza di coesione. Vengono infine presentati alcuni confronti tra le soluzioni classiche e la soluzione proposta per valutare i limiti di applicabilità delle soluzioni stesse.

1. Introduzione

Per la progettazione delle opere di sostegno risulta primaria la conoscenza delle azioni trasmesse ad esse dal terreno.

La spinta che agisce alle spalle di un' opera di sostegno può essere dovuta a vari fattori; oltre al peso proprio del terreno, possono essere presenti sovraccarichi permanenti e/o accidentali dovuti ad opere realizzate sul terrapieno da contenere, pressioni neutre e, non ultimo, azioni di tipo dinamico generate, ad esempio, da un terremoto.

La prima analisi rigorosa relativa alla determinazione della spinta delle terre su di un muro risale a Coulomb [1776], che considerò l'equilibrio limite di un cuneo di terreno incoerente delimitato lateralmente dal paramento di monte del muro, superiormente dalla superficie libera del terrapieno ed inferiormente da una superficie di rottura che venne assunta piana.Utilizzando questo modello di calcolo, il valore della spinta può essere ricavato ricercando la superficie di rottura che implica il massi mo valore della spinta stessa.

L'assunzione di una superficie di rottura piana per la determinazione della spinta con i metodi dell'equilibrio limite è un'ipotesi semplicistica che tuttavia fornisce, nell'ambito della valutazione dello stato limite attivo, soluzioni pressocché coincidenti con quelle derivate utilizzando superfici di rottura più complesse costituite, ad esempio, da archi di cerchio o di spirale logaritmica. Diverso è il caso per la determinazione della resistenza passiva per la quale

[^0]l'ipotesi di superficie di rottura piana, per valori elevati dell'angolo di attrito terra-muro, può portare ad un'eccessiva sopravvalutazione del coefficiente di spinta passiva. In tale circostanza è opportuno ricorrere ai coefficienti di spinta dedotti assumendo superfici di rottura curve [Terzaghi, 1943; CaquotKerisel, 1948].

Le soluzioni ricavate con il procedimento di Coulomb non possono, per quanto detto, considerarsi esatte, anche se, almeno per quanto concerne i valori dei coefficienti di spinta attiva, esse risultano praticamente coincidenti con quelle deducibili attraverso i procedimenti dell'analisi limite [CHEN, 1975] o attraverso il metodo delle caratteristiche [SokolowSKif, 1965].

Nel presente lavoro, dopo aver succintamente passato in rassegna le formule 'classiche' derivate dal metodo di Coulomb ed alle quali di norma si fa riferimento per la determinazione della spinta sulle opere di contenimento, verranno mostrati alcuni casi per i quali queste formule 'classiche' cadono in difetto.

Sfruttando la flessibilità dell'approccio di Coulomb, che consente di esaminare problematiche con le condizioni di carico più svariate, sarà presentata una soluzione analitica per la determinazione della spinta nel caso di terrapieni costituiti da una superficie 'complessa' e cioè per un tratto inclinata e successivamente ad andamento orizzontale. Si tratta, quindi, di terrapieni di altezza finita. Tali situazioni, anche se particolari, possono incontrarsi con una certa frequenza nella pratica geotecnica.

2. Soluzioni classiche per la valutazione della spinta attiva

Nella sua formulazione più semplice la spinta attiva esercitata da un terreno incoerente su un'opera di sostegno in assenza di sovraccarichi sul piano campagna, può essere valutata con la nota espressione:

$$
\begin{equation*}
\mathrm{s}_{\mathrm{a}}=\frac{1}{2} \gamma \mathrm{H}^{2} \mathrm{~K}_{\mathrm{a}} \tag{1}
\end{equation*}
$$

dove:
H = altezza dell'opera di sostegno
$\gamma=$ peso dell'unità di volume del terreno
$\mathrm{K}_{\mathrm{a}}=$ coefficiente di spinta attiva
Nell'ipotesi di parete di monte del muro verticale, terrapieno orizzontale e direzione della spinta orizzontale, la soluzione di Coulomb fornisce, come valore del coefficiente di spinta attiva, la nota espressione:

$$
\begin{equation*}
\mathrm{k}_{\mathrm{a}}=\frac{1-\operatorname{sen} \phi^{\prime}}{1+\operatorname{sen} \phi^{\prime}}=\operatorname{tg}^{2}\left(45^{\circ}-\phi^{\prime} / 2\right) \tag{2}
\end{equation*}
$$

che quindi risulta funzione solo dell'angolo di attrito del terreno. È noto anche che la superficie di rottura associata alla (2) e che fornisce il valore massimo della spinta è inclinata di un angolo pari a $45^{\circ}+\phi^{\prime} / 2$ rispetto all'orizzontale.

Agli stessi risultati peraltro si arriva utilizzando le condizioni di rottura in stato limite attivo di un volume elementare di terreno dedotte da Rankine [1857].
In pratica le ipotesi di attrito nullo tra muro e terreno non sono quasi mai verificate, esistendo, a causa della rugosità del muro, una distribuzione di tensioni tangenziali, all'interfaccia muro-terreno, il cui verso e la cui intensità sono strettamente correlati allo spostamento relativo tra il terreno e l'opera di sostegno. Nelle situazioni più ricorrenti si verifica che il muro ruota attorno alla sua base o trasla lievemente verso valle; di conseguenza il volume di terreno retrostante tende a scorrere verso il basso sviluppando tensioni tangenziali che convenzionalmente vengono definite di attrito positivo.

Per tenere conto della presenza di attrito tra terreno e muro ed anche di differenti inclinazioni del paramento di monte del muro e del terrapieno superiore, si può ricorrere all'equazione derivata da Mueller-Breslau [1906], dove sia il coefficiente di spinta attiva, così come l'angolo che fornisce la superficie critica risultano in questo caso funzioni dell'angolo di attrito ϕ^{\prime} del terreno, dell'angolo δ di attrito terra-muro, dell'inclinazione β del paramento di monte del muro sulla verticale e dell''inclinazione i del terrapieno sull'orizzontale.

Per la determinazione della spinta in presenza di sisma, la metodologia di analisi di Coulomb è stata ripresa da Окавe [1926] e Mononobe [1929] aggiungendo alla forza peso anche le azioni di inerzia orizzontali e verticali all'interno del cuneo di rottura, indotte da un ipotetico terremoto.

La teoria che ne è derivata, comunemente nota come teoria di Mononobe Okabe è praticamente alla base delle indicazioni fornite dalla normativa sismica vigente (D.M. 3/3/75) cosicché risulta di notevole interesse applicativo, anche in forza delle conferme sperimentali avute da prove su modelli fisici [Mononobe e Matsuo, 1929].

Per sisma agente solo in direzione orizzontale, che di norma è l'ipotesi più ricorrente nella pratica progettuale e con le indicazioni di Fig.1, il coefficiente di spinta attiva assume la seguente espressione:

Fig. 1 - Schema per il calcolo della spinta attiva con l'equazione (3).

$$
\begin{equation*}
\mathrm{k}_{\mathrm{a}}=\frac{\cos ^{2}\left(\phi^{\prime}-\theta-\beta\right)}{\cos \theta \cos ^{2} \beta \cos (\delta+\beta+0)\left[1+\sqrt{\frac{\operatorname{sen}\left(\phi^{\prime}+\delta\right)}{\cos (\delta) \operatorname{sen}\left(\phi^{\prime}-\mathrm{i}-\theta\right)}}\right]^{2}} \tag{3}
\end{equation*}
$$

dove:

$$
\begin{equation*}
\theta=\operatorname{arctg}\left(\mathrm{k}_{\mathrm{h}}\right) \tag{4}
\end{equation*}
$$

essendo K_{h} il coefficiente sismico in direzione orizzontale.

L'inclinazione critica α_{c} del piano di rottura associata alla (3) può essere ricavata tramite la relazione di Wong [1982] e riportata da Ghonna [1989]:
$\alpha_{\mathrm{c}}=\phi^{\prime}-\theta+\operatorname{arctg}\left\{\frac{[\mathrm{P}(\mathrm{P}+\mathrm{Q})(1+\mathrm{QR})]^{0.5}-\mathrm{P}}{1+\mathrm{R}(\mathrm{P}+\mathrm{Q})}\right\}$
dove:

$$
\begin{aligned}
& \mathrm{P}=\operatorname{tg}\left(\phi^{\prime}-\theta-\mathrm{i}\right) \\
& \mathrm{Q}=\operatorname{cotg}\left(\phi^{\prime}-\theta-\beta\right) \\
& \mathrm{R}=\operatorname{tg}(\theta+\beta+\delta)
\end{aligned}
$$

Quando $K_{h}=0(\theta=0)$, l'espressione di Mono-nobe-Okabe coincide con quella di Mueller-Breslau.

3. Limiti di applicabilità delle formule classiche

Esistono alcune situazioni nella pratica progettuale in cui l'espressione (3) non può essere applicata correttamente, perché la geometria del problema non rientra nelle ipotesi assunte per la sua determinazione; esistono inoltre alcune condizioni per le quali la stessa equazione non può essere utilizzata a causa di problemi di carattere matematico. Di seguito vengono riassunte alcune tra le situazioni più frequenti in cui ciò accade.
a) limiti dovuti alle condizioni geometriche al contorno

Un caso assai ricorrente è illustrato in Fig. 2 ed è relativo ad un opera di sostegno progettata per contenere un terrapieno che presenta una superficie dapprima inclinata di un certo angolo i e successivamente orizzontale. È questo il caso frequente di muri di sottoscarpa a contenimento, ad esempio, di un rilevato stradale in una strada a mezza costa.

Fig. 2 - Terrapieno a geometria 'complessa' in un muro di sottoscarpa.

Per il caso mostrato in figura si può applicare l'equazione (3) solo se la superficie di rottura associata a tale equazione ricade all'interno del volume di terreno racchiuso tra i punti A, B e C indicati in Fig.2. Se, viceversa, la superficie di rottura ricade al di fuori del triangolo ABC di Fig.2, la formula (3) non può essere più utilizzata con correttezza.

Per queste situazioni non esistono soluzioni in forma chiusa note allo scrivente anche se è possibile trovare in letteratura qualche indicazione di tipo semiempirico per la valutazione della spinta [TerzaGHI e Peck, 1967].

Di norma, quando il terrapieno presenta una superficie irregolare, si può utilizzare il procedimento di Coulomb ricercando per tentativi il cuneo critico di rottura e quindi la spinta massima. Ciò comporta
naturalmente una procedura di calcolo laboriosa. Spesso, per le pratiche applicazioni progettuali si ricorre a procedure approssimate, utilizzando le formule classiche in maniera impropria. Nel caso di Fig.2, ad esempio, si può considerare la parte eccedente di rilevato al di sopra del muro alla stregua di un sovraccarico fittizio uniformemente distribuito come illustrato in Fig.3. L'approssimazione è, talvolta ma non sempre, a vantaggio di sicurezza perché si trascura la resistenza al taglio nel tratto CD lungo la superficie di scorrimento indicato in Fig.3. Se questo sovraccarico viene posto arbitrariamente immediatamente a ridosso del paramento di monte dell'opera, si può sovrastimare la spinta complessiva, a meno di non tenere conto di un opportuno fattore riduttivo del sovraccarico fittizio.

Fig. 3 - Possibile schema semplificativo per il calcolo della spinta attiva su un muro di sottoscarpa.
b) limiti dovuti alla distanza del sovraccarico dall'opera

Nell'espressione più generale la spinta su di un opera di contenimento, per un terreno dotato di solo attrito e sul cui terrapieno insiste un sovraccarico q uniformemente distribuito, può essere espressa da un'equazione del tipo:

$$
\begin{equation*}
\mathrm{S}_{\mathrm{a}}=\frac{1}{2} \gamma \mathrm{H}^{2} \mathrm{~K}_{\mathrm{a} \gamma}+\mathrm{qH} \mathrm{~K} \tag{6}
\end{equation*}
$$

dove $\mathrm{K}_{\mathrm{a} \mathrm{\gamma}}$ e K_{aq} sono i coefficienti di spinta relativi rispettivamente al contributo del peso proprio del terreno e del sovraccarico. Solo nel caso particolare in cui il sovraccarico è posto immediatamente a ridosso
del muro e sufficientemente esteso da interessare per intero il cuneo di rottura, si verifica che tali coefficienti risultano numericamente uguali. Quando il sovraccarico è invece posto ad una certa distanza dall'opera di contenimento, pur ricadendo, in tutto o in parte all'interno del cuneo di rottura, si commette un errore che può risultare sensibile se si utilizza l'Eq. (6) assumendo $K_{a q}=K_{a \gamma}$.

c) limiti di carattere fisico-matematico

Se il terrapieno è inclinato di un angolo i maggiore dell'angolo di attrito ϕ^{\prime} le equazioni classiche non possono fornire alcun valore del coefficiente di spinta in quanto il radicando che compare a denominatore diventa negativo. Una spiegazione fisica di questo inconveniente risiede nel fatto che un terrapieno dotato di solo attrito, indipendentemente dalla sua altezza, non può restare in equilibrio se il profilo del pendio è maggiore dell'angolo di attrito stesso. Per garantire le condizioni di equilibrio, risulta necessario un valore di coesione che deve essere tanto maggiore quanto più è inclinato il terrapieno e quanto maggiore è la sua altezza. Se ci si riferisce ad un semispazio ideale delimitato superiormente da un piano inclinato maggiore dell'angolo di attrito, il terrapieno non è stabile qualunque sia il valore della coesione.

Un'ulteriore interpretazione geometrica di tale limitazione è illustrata in Fig. 4 che riporta, per un

Fig. 4 - Limiti di validità dell'equazione (3)- caso di coefficiente sismico nullo.
muro con paramento di monte verticale $(\beta=0)$ e privo di attrito ($\delta=0$), la relazione (Eq.5) tra l'inclinazione della superficie di rottura e l'inclinazione del terrapieno di monte i. Quando l'inclinazione del terrapieno risulta pari all'angolo di attrito del terreno, la superficie di scorrimento critica diviene parallela al terrapieno medesimo. Valori dell'inclinazione del terrapieno maggiori di ϕ^{\prime} risultano inammissibili con le ipotesi di base, non essendoci intersezione tra profilo del terrapieno e superficie di rottura; quindi non è individuabile un cuneo di scorrimento. Tale limitazione, però, viene a decadere se il terrapieno, dapprima inclinato, diviene poi orizzontale; in questo caso può essere individuabile un cuneo di scorrimento ben definito.
4. Estensione del metodo di Coulomb al caso di terrapieno di altezza finita

4.1. Ipotesi di base

La soluzione che viene presentatà̀ è stata ricavata in termini di sforzi efficaci, utilizzando il modello di Coulomb ed assumendo che gli spostamenti dell'opera di sostegno siano tali da mobilitare interamente lo stato limite attivo. In Fig. 5 è illustrata la geometria del problema che si è preso in considerazione.

Fig. 5 - Schema di base per la valutazione della spinta attiva in un terrapieno di altezza finita.

Un terrapieno omogeneo e non saturo di altezza Hè contenuto da un muro il cui paramento di monte è inclinato di un angolo β rispetto alla verticale. Il terrapieno da contenere, che in prima analisi viene supposto dotato di coesione e attrito, ha un'inclinazione i rispetto all'orizzontale e risulta più alto di h_{0} rispetto al muro; a partire da una certa distanza d dal muro il terrapieno diviene orizzontale. Sul pia-
noro si ipotizza che possa insistere un sovraccarico uniformemente distribuito e sufficientemente esteso da interessare per intero il tratto orizzontale del cuneo di rottura in Fig.5. Con le indicazioni della stessa Fig. 5, il sovraccarico risulta posto ad una distanza dal muro pari a:

$$
\begin{equation*}
\mathrm{d}=\mathrm{h}_{0} / \mathrm{tg} \mathrm{i} \tag{7}
\end{equation*}
$$

Si ipotizza per semplicità di calcolo che sia nulla l'adesione tra terreno e muro ma che la spinta sia comunque inclinata di un angolo δ di attrito terramuro misurato rispetto alla perpendicolare al paramento di monte del muro. Si assume inoltre, anche nel caso di terreno coesivo, che la superficie di rottura raggiunga il profilo libero del terrapieno, trascurando eventuali fratture di trazione in prossimità del piano di campagna.
Per una maggiore generalità del problema si è inoltre presa in considerazione l'esistenza di una forza sismica orizzontale indotta dalle azioni di inerzia del cuneo dit terreno e dell' eventuale sovraccarico in presenza di un ipotetico terremoto. Tale forza, determinata in maniera pseudo-statica, ha quindi intensità:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{t}}=\mathrm{K}_{\mathrm{h}} \mathrm{~W}+\mathrm{K}_{\mathrm{h}} q \mathrm{~B} \tag{8}
\end{equation*}
$$

essendo:
$\mathrm{K}_{\mathrm{h}}=$ coefficiente sismico in direzione orizzontale $\mathrm{W}^{-}=$peso del cuneo di rottura
$\mathrm{q}=$ intensità del sovraccarico uniformemente distribuito
B = larghezza del sovraccarico sottesa dal cuneo di rottura

Con le indicazioni di Fig. 5 e se si pone:

$$
\begin{equation*}
t=h_{0} / H \tag{9}
\end{equation*}
$$

si può dimostrare che valgono le seguenti relazioni:

$$
\begin{gather*}
\mathrm{W}=\frac{1}{2} \gamma \mathrm{H}^{2}\left[(\operatorname{cotg} \alpha+\operatorname{tg} \beta)(1+2 \mathrm{t})+\mathrm{t}^{2}(\operatorname{cotg} \alpha-\operatorname{cotg} \mathrm{i})\right] \tag{10}\\
\mathrm{B}=\mathrm{H}[\operatorname{cotg} \alpha(1+\mathrm{t})+\operatorname{tg} \beta-\mathrm{t} \operatorname{cotg} \mathrm{i}] \tag{11}
\end{gather*}
$$

$$
\begin{equation*}
\mathrm{L}=\mathrm{H}(1+\mathrm{t}) / \operatorname{sen} \alpha \tag{12}
\end{equation*}
$$

Per la valutazione della spinta in funzione dell'angolo α, si possono scrivere le equazioni di equilibrio globale nelle direzioni orizzontale e verticale, unitamente al criterio di rottura di Morh-Coulomb lungo la superficie di scorrimento espresso in termini di forze. Da cui:
$\mathrm{S}_{\mathrm{a}} \cos (\delta+\beta)-\mathrm{N}^{\prime} \operatorname{sen} \alpha+\mathrm{T} \cos \alpha-\mathrm{K}_{\mathrm{h}} \mathrm{W}-\mathrm{K}_{\mathrm{h}} \mathrm{q} \mathrm{B}=0$

$$
\begin{gather*}
S_{\mathrm{a}} \operatorname{sen}(\delta+\beta)-W+T \operatorname{sen} \alpha+N^{\prime} \cos \alpha-q B=0 \tag{13}\\
T=c^{\prime} L+N^{\prime} \operatorname{tg} \phi^{\prime}
\end{gather*}
$$

Con qualche semplice passaggio, il sistema di equazioni (13), fornisce:

$$
\begin{gather*}
\mathrm{S}_{\mathrm{a}}\left[\cos (\delta+\beta)+\operatorname{sen}(\delta+\beta) \operatorname{tg}\left(\alpha-\phi^{\prime}\right)\right]=\mathrm{W}\left[\operatorname{tg}\left(\alpha-\phi^{\prime}\right)+\mathrm{K}_{\mathrm{h}}\right]+ \\
\mathrm{q} \mathrm{~B}\left[\operatorname{tg}\left(\alpha-\phi^{\prime}\right)+\mathrm{K}_{\mathrm{h}}\right]-\mathrm{c}^{\prime} \mathrm{L}\left[\cos \alpha+\operatorname{sen} \alpha \operatorname{tg}\left(\alpha-\phi^{\prime}\right)\right] \tag{14}
\end{gather*}
$$

Sostituendo infine i valori di W,B,L forniti dalle equazioni (10),(11)e (12),si ottiene:
$\mathrm{S}_{\mathrm{a}}(\alpha)=\frac{1}{2} \gamma \mathrm{H}^{2} \mathrm{~K}_{\mathrm{a}, \gamma}(\alpha)+\mathrm{q} \mathrm{H}_{\mathrm{a}, \mathrm{q}}(\alpha)-\mathrm{c}^{\prime} \mathrm{H}_{\mathrm{a}, \mathrm{c}}(\alpha)$
dove:

$$
\begin{gather*}
\mathrm{K}_{\mathrm{a}, \gamma}(\alpha)=\left[(\operatorname{cotg} \alpha+\operatorname{tg} \beta)(1+2 \mathrm{t})+\mathrm{t}^{2}(\operatorname{cotg} \alpha-\operatorname{cotg} \mathrm{i})\right] \\
\frac{\operatorname{tg}\left(\alpha-\phi^{\prime}\right)+\mathrm{K}_{\mathrm{h}}}{\cos (\delta+\beta)+\operatorname{sen}(\delta+\beta) \operatorname{tg}\left(\alpha-\phi^{\prime}\right)} \tag{16}\\
\mathrm{K}_{\mathrm{a}, \mathrm{q}}(\alpha)=[\operatorname{cotg} \alpha(1+\mathrm{t})+\operatorname{tg} \beta-\operatorname{tcotg} \mathrm{i}] \\
\frac{\operatorname{tg}\left(\alpha-\phi^{\prime}\right)+\mathrm{K}_{\mathrm{h}}}{\cos (\delta+\beta)+\operatorname{sen}(\delta+\beta) \operatorname{tg}\left(\alpha-\phi^{\prime}\right)} \tag{17}\\
\mathrm{K}_{\mathrm{a}, \mathrm{c}}(\alpha)=(1+\mathrm{t}) \frac{\operatorname{cotg} \alpha+\operatorname{tg}\left(\alpha-\phi^{\prime}\right)}{\cos (\delta+\beta)+\operatorname{sen}(\delta+\beta) \operatorname{tg}\left(\alpha-\phi^{\prime}\right)} \tag{18}
\end{gather*}
$$

Utilizzando ancora la posizione (4), e con qualche passaggio trigonometrico, si arriva alla seguente espressione dei coefficienti di spinta:

$$
\begin{gather*}
\mathrm{K}_{\mathrm{a}, \gamma}(\alpha)=\left[(\operatorname{cotg} \alpha+\operatorname{tg} \beta)(1+2 \mathrm{t})+\mathrm{t}^{2}(\operatorname{cotg} \alpha-\operatorname{cotg} \mathrm{i})\right] \\
\frac{\operatorname{sen}\left(\alpha+\theta-\phi^{\prime}\right)}{\cos \theta \cos \left(\alpha-\phi^{\prime}-\delta-\beta\right)} \tag{19}\\
\mathrm{K}_{\mathrm{a}, \mathrm{q}}(\alpha)=[\operatorname{cotg} \alpha(1+\mathrm{t})+\operatorname{tg} \beta-\mathrm{t} \operatorname{cotg} \mathrm{i}] \\
\frac{\operatorname{sen}\left(\alpha+\theta-\phi^{\prime}\right)}{\cos \theta \cos \left(\alpha-\phi^{\prime}-\delta-\beta\right)} \tag{20}\\
\mathrm{K}_{\mathrm{a}, \mathrm{c}}(\alpha)=(1+\mathrm{t}) \frac{\cos \phi^{\prime}}{\operatorname{sen} \alpha \cos \left(\alpha-\phi^{\prime}-\delta-\beta\right)} \tag{21}
\end{gather*}
$$

Per ottenere la soluzione del problema, nello spirito del metodo dell'equilibrio limite, è necessario individuare la superficie di rottura critica che forni-
sce il valore massimo della spinta e quindi imporre che la derivata della funzione rispetto all'angolo α risulti uguale a zero.

La derivazione della (15), per un terreno dotato di attrito e coesione, risulta alquanto complessa. Una possibile alternativa potrebbe essere quella di valutare separatamente il contributo dei tre termini che compaiono al secondo membro della (15). Tuttavia, se da un lato tale strada risulta cautelativa, in quanto verrebbero a sommarsi i massimi relativamente al contributo del peso proprio del terreno e del sovraccarico e il valore minimo relativo al termine comprendente la coesione, non è una assunzione realistica perché verrebbero a determinarsi tre differenti 'cunei' di rottura.

Per un terreno incoerente è tuttavia possibile trovare una soluzione in forma chiusa che permette di tenere conto insieme del contributo del peso proprio del terreno e dell'eventuale sovraccarico applicato, attraverso un unico coefficiente di spinta.

Come meglio evidenziato nel seguito, verrà fornita una semplice espressione per considerare in qualche misura la riduzione della spinta dovuta alla coesione, sottraendone, cautelativamente, il contributo minimo.

4.2. Spinta per terreno incoerente

In assenza di coesione ($\mathrm{c}^{\prime}=0$), introducendo il parametro adimensionale:

$$
\begin{equation*}
\mathrm{n}_{\mathrm{q}}=\frac{2 \mathrm{q}}{\gamma \mathrm{H}} \tag{22}
\end{equation*}
$$

la (15) può essere scritta in forma monomia:

$$
\begin{equation*}
\mathrm{S}_{\mathrm{a}}(\alpha)=\frac{1}{2} \gamma \mathrm{H}^{2} \mathrm{~K}_{\mathrm{a}, \gamma \mathrm{q}}(\alpha) \tag{23}
\end{equation*}
$$

dove il coefficiente $K_{a, \gamma q}$ risulta essere funzione dell'angolo α. Cioè:

$$
\begin{align*}
\mathrm{K}_{\mathrm{a}, \gamma \mathrm{q}}(\alpha)= & \left\{\operatorname{cotg} \alpha(1+\mathrm{t})^{2}-\mathrm{t}^{2} \operatorname{cotg} \mathrm{i}+\operatorname{tg} \beta(1+2 \mathrm{t})+\right. \\
+ & \left.\left.\mathrm{n}_{\mathrm{q}}[\operatorname{cotg} \alpha(1+\mathrm{t})+\operatorname{tg} \beta-\mathrm{t} \operatorname{cotgi}]\right\}\right\} * \tag{24}\\
& * \frac{\operatorname{sen}\left(\alpha+\theta-\phi^{\prime}\right)}{\cos \theta \cos \left(\alpha-\phi^{\prime}-\delta-\beta\right)}
\end{align*}
$$

Il coefficiente di spinta così definito, tiene simultaneamente conto sia del contributo del peso proprio del terreno che dell'eventuale sovraccarico sul terrapieno applicato ad una determinata distanza dal muro.

Imponendo che:

$$
\begin{equation*}
-\frac{\mathrm{d} \mathrm{~K}_{\mathrm{a}, \gamma \mathrm{q}}(\alpha)}{\mathrm{d} \alpha}=0 \tag{25}
\end{equation*}
$$

si ricava l'angolo α_{c} che fornisce il massimo valore di $K_{a, \gamma q}$ e quindi della spinta S_{a} :

$$
\begin{equation*}
\operatorname{tg} \alpha_{c}=\frac{\operatorname{sen}\left(\phi^{\prime}+\delta+\beta\right) \operatorname{sen}\left(\phi^{\prime}-\theta\right)+\sqrt{\mathrm{E}}}{\operatorname{Acos}(\theta+\delta+\beta)+\cos \left(\phi^{\prime}-\theta\right) \operatorname{sen}\left(\phi^{\prime}+\delta+\beta\right)} \tag{26}
\end{equation*}
$$

dove:

$$
\begin{gathered}
A=\frac{\operatorname{tcotgi}\left(t+n_{q}\right)-\operatorname{tg} \beta\left(1+2 t+n_{q}\right)}{(1+t)\left(1+t+n_{q}\right)} \\
E=\operatorname{sen}^{2}\left(\phi^{\prime}+\delta+\beta\right) \operatorname{sen}^{2}\left(\phi^{\prime}-\theta\right)+\frac{\operatorname{sen}\left[2\left(\phi^{\prime}-\theta\right)\right] \operatorname{sen}\left[2\left(\phi^{\prime}+\delta+\beta\right)\right]}{4}+ \\
+A \cos (\theta+\delta+\beta) \operatorname{sen}\left(\phi^{\prime}-\theta\right) \cos \left(\phi^{\prime}+\delta+\beta\right)
\end{gathered}
$$

Utilizzando la (26) e riscrivendo opportunamente la (24), dopo qualche passaggio si ottiene il seguente valore per il coefficiente di spinta attiva:
$\mathrm{K}_{\mathrm{a}, \mathrm{q}}=\frac{(1+\mathrm{t})\left(1+\mathrm{t}+n_{\mathrm{q}}\right)\left(1-\operatorname{Atg} \alpha_{\mathrm{c}}\right)\left[\cos \left(\phi^{\prime}-\theta\right)-\operatorname{sen}\left(\phi^{\prime}-\theta\right) / \operatorname{tg} \alpha_{\mathrm{c}}\right]}{\cos \theta\left[\cos \left(\phi^{\prime}+\delta+\beta\right)+\operatorname{tg} \alpha_{\mathrm{c}} \operatorname{sen}\left(\phi^{\prime}+\delta+\beta\right)\right]}$
Si osserva che, affinché la soluzione fornita dalle (26) e (27), sia congruente con le ipotesi assunte nel problema, deve essere (vedasi Fig.6):

Fig. 6 - Limite di validità della equazione (27).

$$
\begin{equation*}
\operatorname{tg} \alpha_{c} \leqslant \operatorname{tg} \alpha_{1} \tag{28}
\end{equation*}
$$

dove:

$$
\begin{equation*}
\operatorname{tg} \alpha_{1}=\frac{1+t}{\operatorname{tcotg} i-\operatorname{tg} \beta} \tag{29}
\end{equation*}
$$

Tale controllo va pertanto eseguito per verificare l'ammissibilità della soluzione trovata.

Qualora la (28) non risultasse soddisfatta, la soluzione va ricercata con la teoria di Mononobe-Okabe (Eq.3) perché il cuneo di rottura si trova all'interno
della zona ABC di Fig.6. Si ritorna, quindi, nell'ambito delle soluzioni classiche.

I passi da seguire per il calcolo della spinta attiva risultano allora i seguenti:

- calcolo di $\operatorname{tgd}_{\mathrm{c}}$ attraverso la (26)
- verifica, attraverso le (28) e (29), dell'ammissibilità della soluzione
- calcolo del coefficiente di spinta $\mathrm{K}_{\mathrm{a}, \mathrm{rq}}$ con la (27)
- calcolo della spinta attiva con la (23)

4.3. Spinta per terreno coesivo

La teoria più nota per la valutazione del regime di spinta in presenza di terreno dotato di coesione si deve a Rankine [1857]. Per un terrapieno di altezza H e con le note ipotesi di Rankine ($\mathrm{i}=0$, $\delta=0, \beta=0$), il contributo sulla spinta attiva relativo alla coesione c^{\prime} può essere espresso dalla semplice relazione:

Sa, $\mathrm{c}=-2 \mathrm{c}^{\prime} \mathrm{H} \frac{\cos \phi^{\prime}}{1+\operatorname{sen} \phi^{\prime}}=-2 \mathrm{c}^{\prime} \mathrm{H} \operatorname{tg}\left(45^{\circ}-\phi^{\prime} / 2\right)$
Diversi autori hanno successivamente preso in considerazione il problema della spinta attiva in terreni dotati di coesione ed attrito. Restando nell'ambito della metodologia dell'equilibrio limite, fra i numerosi lavori specifici si ricordano i contributi di Раскshaw [1946] e di Janbu [1957]. Recentemente Praкash [1981] ha esteso il metodo di Mononobe-Okabe ad un terreno dotato di coesione ed attrito. I coefficienti di spinta attiva dedotti dai vari autori sono generalmente presentati sotto forma di diagrammi in funzione dell'angolo di attrito del terreno, dell'angolo di attrito terra-muro e della eventuale aderenza tra muro e terreno. Le ipotesi di calcolo riguardano in ogni caso geometrie semplici e di tipo 'classico' con terrapieno orizzontale o inclinato indefinitamente.

Volendo tenere conto di situazioni geometriche più complesse come quella mostrata in Fig. 2 ed utilizzare al tempo stesso una soluzione in forma chiusa, si può pensare di valutare il valore minimo della riduzione di spinta dovuto alla coesione, considerando l'effetto sulla spinta prodotto da tale parametro, separatamente da quello dovuto al peso proprio del terreno e al sovraccarico. Come detto in precedenza, questa impostazione produce una soluzione cautelativa.

Con le ipotesi di base precedentemente enunciate, il contributo di spinta dovuto alla sola coesione, può essere ricavato combinando la (15) con la (21) e ponendo $\gamma=\mathrm{q}=0$:

ed imponendo al solito:

$$
\begin{equation*}
\frac{\mathrm{d} \mathrm{~S}_{\mathrm{a}, \mathrm{c}}}{\mathrm{~d} \alpha}=0 \tag{32}
\end{equation*}
$$

si ricava il valore dell'angolo α^{*} che rende minima tale funzione:

$$
\begin{equation*}
\alpha^{*}=45^{\circ}+\frac{\phi^{\prime}+\delta+\beta}{2} \tag{33}
\end{equation*}
$$

Sostituendo la (33) nella (31) si ottiene, con qualche passaggio:

$$
\begin{equation*}
S_{a, c}=-2 \mathrm{c}^{\prime} H(1+t) \frac{\cos \phi^{\prime}}{1+\operatorname{sen}\left(\phi^{\prime}+\delta+\beta\right)} \tag{34}
\end{equation*}
$$

È facile verificare che le espressioni (33) e (34) coincidono con quelle di Rankine quando si pone $t=\delta=\beta=0$.

Va, comunque, osservato che l'angolo α^{*} determinato con la (33) non necessariamente rappresenta l' angolo 'reale' poiché l'Eq. (28) potrebbe non essere soddisfatta. Esso tuttavia fornisce, ai fini del contributo relativo alla coesione, un valore cautelativo di minimo.

5. Confronto con le soluzioni classiche

Per meglio mostrare i limiti di applicazione sia delle equazioni classiche che della espressione (27) qui proposta vengono esposti alcuni esempi di calcolo. Per le soluzioni classiche si farà riferimento alla teoria di Mononobe-Okabe (Eq.3) che rappresenta una generalizzazione della espressione di Mueller Breslau. È chiaro che si stanno confrontando soluzioni di problemi con differenti condizioni al contorno, pertanto la scelta tra le soluzioni classiche e quella qui proposta non è arbitraria ma vincolata proprio dalle condizioni al contorno specifiche di ciascun problema; le soluzioni classiche riguardano terrapieni indefiniti, la presente soluzione è relativa a terrapieni di altezza finita: in definitiva una soluzione esclude l'altra.

In tutti gli esempi esposti nel seguito, se non altrimenti specificato, si farà l'ipotesi di terreno privo di coesione ($\mathrm{c}^{\prime}=0$).

Con riferimento alla Fig. 7 si vuole determinare la spinta attiva, con i seguenti dati geometrici e geotecnici (esempio 1):

Fig. 7 - Illustrazione dell'Esempio 1.
$\mathrm{H}=5.00 \mathrm{~m}$
$\mathrm{h}_{\mathrm{o}}=2.00 \mathrm{~m}(\mathrm{t}=2 / 5=0.40)$
$\beta=0$
$\operatorname{tg} \mathrm{i}=2 / 3\left(\mathrm{i}=33.69^{\circ}\right)$
$\gamma=20 \mathrm{kN} / \mathrm{m}^{3}\left(2 \mathrm{t} / \mathrm{m}^{3}\right)$
$\phi^{\prime}=35^{\circ}$
$\delta / \phi^{\prime}=1 / 2$
$\mathrm{q}=0\left(\mathrm{n}_{\mathrm{q}}=0\right)$
$\mathrm{k}_{\mathrm{h}}=0(\delta=0$
Dall'equazione (26) si ricava:

$$
\operatorname{tg} \alpha_{c}=1.49\left(\alpha_{c}=56.17^{\circ}\right)
$$

Dall'equazione (27) si ricava

$$
\mathrm{K}_{\mathrm{a}, \mathrm{\gamma q}}=0.388
$$

Con la teoria di Mononobe-Okabe (Eq.3), si ricava:

$$
\mathrm{K}_{\mathrm{a}}=0.531
$$

e l'angolo associato a tale valore risulta (Eq. 5):

$$
\alpha_{c}=42.67^{\circ}
$$

In Fig. 7 sono riportati gli angoli forniti dalla (26) e dalla (5). Come si osserva, se si applica in questo caso la teoria di Mononobe-Okabe, non esiste corrispondenza tra ipotesi di calcolo e realtà fisica in quanto il cuneo di rottura previsto dalla (5) è incompatibile con le condizioni al contorno.

Si vuole adesso valutare la spinta per la situazione dell'esempio 1 con l'aggiunta di un sovraccarico pari $\mathrm{a}_{\mathrm{g}}=20 \mathrm{kPa} .\left(2 \mathrm{t} / \mathrm{m}^{2}\right)$ disposto come illustrato in Fig. 8 (esempio 2).

Fig. 8 - Illustrazione dell'Esempio 2.

In questo caso, dalla Eq.(22) si ha:

$$
\mathrm{n}_{\mathrm{q}}=(2 \times 20) /(20 \times 5)=0.40
$$

Dall'equazione (26) si ricava:

$$
\operatorname{tg} \alpha_{c}=1.395\left(\alpha_{c}=54.37^{\circ}\right)
$$

La presenza del sovraccarico pertanto riduce l'inclinazione del piano di rottura rispetto al caso precedente.

Dall'equazione (27) inoltre si ricava:

$$
\mathrm{K}_{\mathrm{a}, \gamma \mathbf{q}}=0.440
$$

Tale coefficiente risulta naturalmente maggiore di quello valutato nell'esempio 1 perché tiene conto anche della presenza del sovraccarico posto a 3 metri di distanza dal muro.

Per quanto detto nell'esempio, 1 non è possibile applicare correttamente l'Eq.(3) in quanto il cuneo di rottura determinabile attraverso l'Eq.(5) non ha corrispondenza reale con il problema.

Si desidera ancora valutare la spinta per la situazione dell'esempio 2 considerando la presenza di un evento sismico calcolato in termini pseudo-statici. Si assume che l'opera debba essere realizzata in zona sismica di seconda categoria ($\mathrm{K}_{\mathrm{h}}=0.07$).

In questo caso dalla (22) si ha:

$$
\mathrm{n}_{\mathrm{q}}=0.40
$$

inoltre dalla (4): $\theta=\operatorname{arctg}(0.07)=4.00^{\circ}$
Dall'equazione (26) si ricava:

$$
\operatorname{tg} \alpha_{c}=1.246\left(\alpha_{c}=51.26^{\circ}\right)
$$

Dall'equazione (28) si ricava:

$$
K_{a, \gamma q}=0.535
$$

Non è possibile valutare il coefficiente di spinta con la (3) sia per quanto detto nell'esempio 1 , sia perché il sovraccarico è posto ad una certa distanza dall'opera ed ancora perché il termine compare sotto il segno di radice risulta addirittura negativo.
Ci si propone adesso di valutare la spinta nel caso in cuil'inclinazione del terrapieno sia maggiore dell'angolo di attrito del terreno. Si fa riferimento ai seguenti dati geometrici (Fig.9) e geotecnici (esempio 4).

Fig. 9 - Illustrazione dell'Esempio 4.

$$
\begin{aligned}
& \mathrm{H}=5.00 \mathrm{~m} \\
& \mathrm{~h}_{\mathrm{o}}=10.00 \mathrm{~m}=>\mathrm{t}=10 / 5=2 \\
& \beta=0^{\circ} \\
& \mathrm{i}=45^{\circ} \\
& \gamma=20 \mathrm{kN} / \mathrm{m}^{3} \\
& \mathrm{c}^{\prime}=10 \mathrm{KPa} \\
& \phi^{\prime}=35^{\circ} \\
& \delta=\phi^{\prime} / 2 \\
& \mathrm{q}=0\left(\mathrm{n}_{\mathrm{q}}=0\right) \\
& \mathrm{k}_{\mathrm{h}}=0(\delta=0)
\end{aligned}
$$

Poiché in questo caso l'inclinazione del pendio risulta maggiore dell'angolo di attrito, in assenza di coesione il pendio a monte del muro non sarebbe stabile. Il valore della coesione necessaria all'equilibrio può essere ricavato allora dalla risoluzione di un problema di stabilità. La coesione prescelta per questo esempio ($\mathrm{c}^{\prime}=10 \mathrm{KPa}$) è tale da garantire l'equilibrio; il fattore di sicurezza del pendio sovrastante, infatti, con i parametri geotecnici sopra definiti, vale $\mathrm{F}=1.50$ circa .

Per determinare la spinta agente sull'opera di sostegno, si può pensare di utilizzare insieme le equazioni (26), (27) e (34).

Dall'equazione (26) si ricava:

$$
\operatorname{tg} \alpha_{c}=1.134\left(\alpha_{c}=48.60^{\circ}\right)
$$

Dall'equazione (27) si ricava:

$$
\mathrm{K}_{\mathrm{a}, \mathrm{\gamma q}}=0.927
$$

e quindi la spinta sull'opera dovuta al contributo dal peso proprio del terreno vale (Eq.23):

$$
\mathrm{S}_{\mathrm{a}}=0.5 \times 20 \times 5^{2} \times 0.927=231.75 \mathrm{kN} / \mathrm{m}
$$

Il contributo sulla spinta dovuto alla coesione vale (Eq. 34):
$\mathrm{S}_{\mathrm{a}, \mathrm{c}}=-2 \times 10 \times 5 \times(1+2) \frac{\cos 35^{\circ}}{1+\operatorname{sen} 52.5^{\circ}}=-137.03 \mathrm{kN} / \mathrm{m}$

E quindi la spinta complessiva risulta:
$S_{a}=231.75-137.03=94.72 \mathrm{kN} / \mathrm{m}(9.4 \mathrm{t} / \mathrm{m})$
La soluzione 'esatta', ottenuta ricercando per via numerica lo zero della funzione derivata dell'Eq. (15), produce invece:

$$
\mathrm{S}_{\mathrm{a}}=69.42 \mathrm{kN} / \mathrm{m}(6.9 \mathrm{t} / \mathrm{m})
$$

Come era logico attendersi, l'espressione (34), per terreno dotato di coesione, fornisce una soluzione cautelativa al problema.

Si propone infine un caso (Fig.10) che illustra il limite di applicabilità dell'espressione (27), facendo riferimento ai dati geometrici e geotecnici di seguito riportati (esempio 5).

Fig. 10 - Illustrazione dell'Esempio 5.

$$
\begin{aligned}
& \mathrm{H}=5.00 \mathrm{~m} \\
& \mathrm{~h}_{\mathrm{o}}=5.00 \mathrm{~m} \\
& \mathrm{t}=1.00 \\
& \mathrm{i}=26.56^{\circ} ; \operatorname{tg} \mathrm{i}=1 / 2 \\
& \beta=0 \\
& \phi^{\prime}=35^{\circ} \\
& \delta=\phi^{\prime} / 2 \\
& \gamma=20 \mathrm{kN} / \mathrm{m}^{3} \\
& \mathrm{q}=0\left(\mathrm{n}_{\mathrm{q}}=0\right) \\
& \mathrm{k}_{\mathrm{h}}=0(\delta=0)
\end{aligned}
$$

In questo caso dalla (26) si ricava:
$\operatorname{tg} \alpha_{\mathrm{c}}=1.090$ cioè $\alpha_{\mathrm{c}}=47.48^{\circ}$ (linea a tratto sottile in Fig.10) tuttavia il limite di applicabilità della soluzione è dato da (Eq.29):

$$
\alpha_{1}=45^{\circ} \text { (linea a tratto grosso in Fig. 10) }
$$

Pertanto la soluzione fornita dalla (26) cade in difetto. L'angolo che produce la spinta massima va allora ricercato con l'Eq.(5) che fornisce:

$$
\alpha_{\mathrm{c}}=51.17^{\circ}
$$

Il cuneo di rottura quindi interseca il terrapieno nel suo tratto inclinato, ed il coefficiente di spinta va pertanto determinato attraverso la (3).

6. Considerazioni conclusive

In questa nota è stata presentata una soluzione in forma chiusa per la determinazione della spinta attiva esercitata da un terreno omogeneo e non saturo, su di un'opera di sostegno relativamente ad alcune situazioni geometriche che possono ritrovarsi nella pratica progettuale con una certa frequenza. È questo il caso di terrapieni di altezza finita e individuati da una superficie dapprima inclinata e quindi orizzontale. Per tali situazioni, di norma, il valore della spinta massima viene determinato con il procedimento di Coulomb per via iterativa, attraverso cunei di rottura di tentativo.

Nel caso di terreni incoerenti, la spinta agente sull'opera può essere determinata attraverso un unico coefficiente di spinta che tiene conto insieme del peso proprio del terreno e dell'eventuale sovraccarico agente sul pianoro ad una data distanza, anche sotto condizioni di carico sismico di tipo pseudo-statico.

È stata altresì derivata una semplice espressione analitica che fornisce una soluzione cautelativa nel caso di terreno dotato anche di coesione.
I parametri che entrano in gioco nelle equazioni sono stati resi tutti adimensionali permettendo così di generalizzare la soluzione proposta.

Come situazione particolare, le equazioni che sono state ricavate possono tornare utili per valutare la spinta attiva nel caso di terrapieno orizzontale e sovraccarico uniformemente distribuito posto ad una certa distanza dall'opera di sostegno; nota la distanza d del sovraccarico, basta assumere l'altezza del terrapieno al di sopra del muro sufficientemente piccola e l'inclinazione del terrapieno di conseguenza (Eq.7). Anche in questo caso occorre, comunque, verificare l'ammissibilità geometrica della soluzione attraverso le (28) e (29).

Nella determinazione della spinta esercitata da un terrapieno su un'opera di sostegno va posta particolare attenzione alle condizioni al contorno del problema specifico. Poiché terrapieni indefiniti non esistono nella realtà, la scelta della soluzione va valutata di volta in volta eseguendo una verifica delle condizioni al contorno che stanno alla base delle stesse soluzioni.

BIBLIOGRAFIA

Caquot A., Kgrisel J. (1948) - Tables for the Calculation of Passive pressure, Active Pressure and Bearing Capacity of Foundations. Gautier, Villars, Paris.
Chen W.F. (1975) - Limit Analysis ana' Soil Plasticity. Elsevier, New York.
Coulomb C.A. (1976) - Essai sur une application des Règles des Maximis et Minimis à quelques problèmes de Statique relatifs a l'Architecture. Mémoirs Académie Royal Pres. Division Sav., 7, Paris, France.
Ghionna V.N. (1989) - Opere di sostegno in zona sismica. Atti delle Conferenze di Geotecnica di Torino, XIV ciclo: Comportamento dei Terreni e delle Fondazioni in Campo Dinamico, vol. XIV, n. 13, Torino, $28-30$ novembre.

Janbu (1957) - Earth Pressures and Bearing Capacity Calculation by generalized Procedure of Slices. Proc. IV ECSMFE, vol. I, Madrid.
Mononobe N. (1929) - Earthquake Proof Construction of Masonry Dams. Proc. World Engineering Conference, vol. V, n. 9, pp. 275.
Mononobe N., Matsuo H. (1929) - On the determination of earth pressure during earthquakes. Proc. World Engineering Conf., vol. IX.

Mueler-Breslau H. (1906) - Erdruck auf Stuetzmauern. Kroener.
Okabe S. (1926) - General Theory of Earth Pressure. Jour. Japanese Society of Civil Engineering, vol. XII, n. 1.
Packshaw S. (1946) - Earth Pressure and Earth Resistance, A Century of Soil Mechanics. ICE, London.
Prakash S. (1981) - Dynamic Earth Pressure and Design of Earth Retaining Structures. Proc. Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, USA.
Rankine W.J.M. (1857) - On the Stability of loose Earth. Trans. Royal Soc., London, vol. CXLVII.
Sokolowskir V.V. (1965) - Statics of granular media. Pergamon Press, London.
Terzaghi K. (1943) - Theoretical Soil Mechanics. John Wiley and Sons, New York.
Terzagh K., Peck R.B. (1967) - Soil Mechanics in Engineering Practice. John Wiley and Sons, New York.
Wong C.P. (1982) - Seismic Analysis and an improved Seismic Design Procedure for Gravity Retaining Walls. M.S. Thesis, Massachussets Institute of Technology.

SUMMARY

On the evaluation of active earth pressure against walls induced by finite height slopes.
Earth pressure solutions are of main interest in the design of retaining structures. Usually engineers refer to closed form equations derived by limit equilibrium methods for the evaluation of active earth pressure coefficient.
The classical solutions that usually are used, however, sometimes fall due to different geometrical boundary conditions. It is this the case when the soil to be retained is defined by a slope of finite height as shown in Fig. 2 for which the boundary conditions are different from basic assumptions, i.e. infinite slopes. For these conditions the problems can be solved by an iterative procedure based on Coulomb method.

Because closed form solutions based on Coulomb method are reliable for the case of the active limit state, it has been thought that it could be worthwhile to derive some expression for the evaluation of active earth pressure in the case shown in Fig.2.
In this paper the basic assumptions utilized to derive the earth pres-
sure coefficient are that the soil is homogeneous and dry and that the failure surface is a plane that intersects the ground surface, as shown in Fig.5, i.e. the soil does not exhibit tension cracks even if it is cohesive.

The critical failure plane (Eq.26) and the active earth pressure coefficient (Eq.27) which have been derived for a cohesionless soil, take into account the contributions of the soil weight and the surcharge together. A simple expression has been also derived to evaluate the reduction due to cohesion, on the safe side (Eq.34). Seismic effects have also been considered in a pseudo-static way, assuming a force acting along the horizontal direction which is the product of the weights of the soil wedge and of the surcharge, by the seismic coefficient.

Finally some comparisons are presented to illustrate the limits of both Mononobe Okabe theory (Eq.3) and the presented one. It is clear, however, that the comparisons regard solutions of problems with different boundary conditions. Classical solutions are derived for infinite slopes, while the presented solution is derived for a finite slope. Thus the choice of the solution to be applied to a real case is not arbitrary, but it is determined just by boundary conditions.

[^0]: * Ricercatore, Facoltà di Ingegneria, Università di Catania.

