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ABSTRACT

Test-day (TD) models are used in most countries to
perform national genetic evaluations for dairy cattle.
The TD models estimate lactation curves and their
changes as well as variation in populations. Although
potentially useful, little attention has been given to
the application of TD models for management pur-
poses. The potential of the TD model for management
use depends on its ability to describe within- or be-
tween-herd variation that can be linked to specific
management practices. The aim of this study was to
estimate variance components for milk yield, milk
component yields, and somatic cell score (SCS) of dairy
cows in the Ragusa and Vicenza areas of Italy, such
that the most relevant sources of variation can be iden-
tified for the development of management parameters.
The available data set contained 1,080,637 TD records
of 42,817 cows in 471 herds. Variance components were
estimated with a multilactation, random-regression,
TD animal model by using the software adopted by
NRS for the Dutch national genetic evaluation. The
model comprised 5 fixed effects [region × parity × days
in milk (DIM), parity × year of calving × season of
calving × DIM, parity × age at calving × year of calving,
parity × calving interval × stage of pregnancy, and
year of test × calendar week of test] and random herd ×
test date, regressions for herd lactation curve (HCUR),
the animal additive genetic effect, and the permanent
environmental effect by using fourth-order Legendre
polynomials. The HCUR variances for milk and pro-
tein yields were highest around the time of peak yield
(DIM 50 to 150), whereas for fat yield the HCUR vari-
ance was relatively constant throughout first lactation
and decreased following the peak around 40 to 90 DIM
for lactations 2 and 3. For SCS, the HCUR variances
were relatively small compared with the genetic, per-
manent environmental, and residual variances. For
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all the traits except SCS, the variance explained by
random herd × test date was much smaller than the
HCUR variance, which indicates that the development
of management parameters should focus on between-
herd parameters during peak lactation for milk and
milk components. For SCS, the within-herd variance
was greater than the between-herd variance, sug-
gesting that the focus should be on management pa-
rameters explaining variances at the cow level. The
present study showed clear evidence for the benefits
of using a random regression TD model for manage-
ment decisions.
Key words: dairy cattle, herd management, test-
day yield

INTRODUCTION

Test-day (TD) yield records from the milk recording
system provide an important source of information for
both breeding and management. Herd management
improvement and breeding value estimation have
been separate processes historically, with different
statistical methods and frequencies of data processing.
However, there are clear advantages to using the same
data and statistical procedures for both management
purposes and genetic evaluation.

Test-day models are used in most countries to per-
form genetic evaluations for dairy cattle by using TD
observations instead of aggregated 305-d yield obser-
vations (Ptak and Schaeffer, 1993; Reents et al., 1995;
Jamrozik and Schaeffer, 1997a; Schaeffer et al., 2000).
By modeling the shape of the lactation curve and the
variability of yields around general shapes, TD models
provide 4 to 8% more accurate genetic evaluations of
cows compared with evaluations from 305-d yields
(Schaeffer et al., 2000). Random regression TD models
are an extension of TD models that allow the shape of
the lactation curve to differ for each cow by including
random regression coefficients for each animal
(Schaeffer and Dekkers, 1994; Jamrozik et al., 1997b).

Everett et al. (1994) suggested using the results of
TD models for monitoring genetics and management
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in dairy cattle, and several management applications
have been suggested. Mayeres et al. (2004) and Pool
and Meuwissen (1999) investigated the ability of a TD
model to predict yield from TD records. The inclusion
of herd-TD (HTD) and herd curve (HCUR) effects is
another important aspect of TD models and would be
applicable for management purposes. The HTD effect
accounts for month-to-month variability and is partic-
ularly informative with regard to short-term manage-
ment changes that affect the whole herd at a particular
TD, for instance, a change in feed ration. Koivula et al.
(2007) described the use of monthly herd-management
effect solutions from a TD model in Finland. Herd
curves, which can be calculated from the random re-
gression TD model, describe differences in lactation
curve shapes across herds (De Roos et al., 2004). Those
herd-specific lactation curves give information on how
animals within a herd perform compared with how
they would have done under average management cir-
cumstances. Abnormalities in these curves can indi-
cate specific existing problems that deserve extra at-
tention. Variation in lactation peak or persistency
across herds can be caused by differences in feeding
systems (Horan et al., 2004), daily milking times (Re-
kik and Ben Gara, 2004), or pregnancy (Tekerli et al.,
2000). Therefore, HCUR variance is a good indicator
of variability in lactation curve shapes arising from
herd management differences.

Given the many options in using the solutions or
functions of the solutions of the TD model for interpre-
ting herd management, an important first step is to
identify the most important sources of within- and
between-herd variation for the traits and population
concerned. The second step is to develop management
parameters that can link these sources of variation to
differences in management practices. The objective of
this study was to estimate variance components for
TD milk, fat, and protein yield, and SCS by using a
random regression TD model. Special focus is given to
HCUR and HTD variances, which are mainly related
to between- and within-herd management.

MATERIALS AND METHODS

Data

Test-day milk (kg), fat (g), and protein (g) yield, and
SCC (cells/mL) records were available from 2 Italian
regions: Ragusa in southeastern Sicily, and Vicenza
in the south of Veneto. The records were supplied by
CoRFiLaC (Ragusa, Italy) and APA Vicenza (Vicenza,
Italy), respectively. In total, there were 4,088,505 TD
records of 463,654 lactations of 154,678 cows in 1,303
herds over the period from January 1992 to March
2006. Values for SCC were transformed into SCS.
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Data were edited to extract the more informative
records and to ensure connectedness in the data, such
as for continuous TD. Data were edited to select 1)
records without missing values; 2) records with pedi-
gree entry available, sire known, and a minimum of 9
daughters per sire; 3) records for 5 to 450 DIM; 4) age
at calving in the range mean ± 2 standard deviations;
5) records from HTD with at least 5 TD records; 6)
herds with more than 10 HTD; 7) lactations with at
least 5 TD records; and 8) lactations with a length of
at least 150 d. Data edits 2 through 8 were repeated
iteratively until convergence (i.e., until the number of
records deleted was negligible).

The resulting data included 2,183,322 TD records,
53% of the original. To reduce the memory require-
ments and computing time, the data set was further
reduced by randomly deleting 50% of herds with ani-
mals belonging to the most common, larger breeds
(Holstein-Friesian and Brown Swiss). To fulfill the
above criteria, the editing procedure was repeated.
The final data set used for parameter estimation con-
tained 1,080,637 TD records from 118,580 lactations
of 42,817 cows in 471 herds (Table 1).

Unknown parents were assigned to 145 phantom
pedigree groups based on their selection path (SS =
sires to breed sons, SD = sires to breed daughters,
DS = dams to breed sons, and DD = dams to breed
daughters), breed, country of origin, and birth year.
Small phantom groups were combined within selection
path and birth year until reasonable size (>200). The
final pedigree was composed of 79.4% Holstein-
Friesian and 15.1% Brown Swiss, with the remainder
being small, crossbred, or unknown breeds.

Model

Milk, fat, and protein yield, and SCS were analyzed
by using a multiple-lactation, single-trait random re-
gression TD model, as described by De Roos et al.
(2004):

yijklmnopst = rpdi + pysdj + payk + pciprl + ywm + htdn

+ ∑
4

q=0

zoq
⎛
⎜
⎝
hcqs + agqst + peqst +

⎧
⎨
⎩

0, if p < 3
lspq, if p ≥ 3

⎫
⎬
⎭

⎞
⎟
⎠

+ eijklmnopst,

where yijklmnopst is yield record (milk, fat, or protein
yield, or SCS) of cow t belonging to region r on DIM d
of parity p within HTD effect n; rpdi is region × parity
× class of DIM class i (3,470 classes); pysdj is parity ×
year of calving × season of calving × class of DIM class
j (1,656 classes); payk is parity × age at calving × year
of calving class k (732 classes); pciprl is parity × calving
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Table 1. Data characteristics of the data set before and after data
editing and random selection of 50% of herds

Item Before After Range

Test-day records 4,088,505 1,080,637 —
Cows 154,678 42,817 —
Herds 1,303 471 —
Test days 4,487 4,126 —
Cows/herd 120 91 10 to 999
Test-day records/cow 26 25 5 to 98
Breeds 11 7 —

interval × stage of pregnancy class l (153 classes); ywm
is year of test × calendar week of test class m (312
classes); htdn is herd × test date n (49,053 classes);
and zoq is order q Legendre polynomial for DIM o (Kirk-
patrick et al., 1990), where o is min{d, 365}. In this
way TD records with DIM >365 were modeled as DIM =
365 with regard to the regression effects. hcqs is the
herd curve effect of herd × year of test (8,007 classes)
corresponding to polynomial q of parity s, where s is
min{p, 3}. In this manner, each herd gets a regression
curve for parity 1, 2, and ≥3. agqst is the additive genetic
effect of cow t (59,882 classes) corresponding to polyno-
mial q of parity s; peqst is the permanent environmental
effect of cow t (42,821 classes) corresponding to polyno-
mial q of parity s; and lspq is the lactation-specific
permanent environmental effect of lactation p corres-
ponding to polynomial q (51,811 classes). Only TD re-
cords from lactations with parity ≥3 are assigned to
a lactation-specific permanent environmental effect.
eijklmnopst is the residual belonging to observation yijkl-

mnopst.
Residuals were assumed to be uncorrelated between

and within animals, with a heterogeneous variance
across 27 DIM classes (15-d classes from DIM 5 to 365,
plus classes 366 to 390, 391 to 420, and 421 to 450)
within parities 1, 2, 3, 4, and ≥5. Fourth-order Leg-
endre polynomials were applied to model the random
and permanent environmental regression curves.

Estimation Methods

Parameters were estimated by using a Bayesian
analysis with Gibbs sampling developed by NRS (De
Roos et al., 2004). The algorithm was based on a Gauss-
Seidel iterative BLUP scheme, as described by Janss
and De Jong (1999) and was extended to the random
regression model by Pool et al. (2000). Uniform priors
were assumed for all variance components. Residual
variances were sampled from an inverted chi-square
distribution, whereas the covariance matrixes of the
regression coefficients for the HTD, the additive ge-
netic, the permanent environment, the HCUR, and the
lactation-specific permanent environment effect were
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sampled from an inverted Wishart distribution. Burn-
in and effective chain length were computed from tran-
sition probabilities by using the Gibanal software (Van
Kaam, 1998). Estimates of the variance components
were calculated as posterior means of the stationary
phase of the Gibbs chains.

RESULTS

Gibbs Chains

Based on the estimated burn-in for all chains and
all parameters, a burn-in of 25,000 iterations was cho-
sen for each chain and each parameter. Table 2 has
the number of Gibbs chains, the total number of itera-
tions in the chains, and the range in effective chain
size across all parameters for milk, fat, protein, and
SCS, with 50 being the minimum acceptable number
for the effective chain size (Sorensen, 1997).

TD Variance Components

The estimated additive genetic, permanent environ-
ment, lactation-specific permanent environment,
HTD, HCUR, and residual variances in lactations 1,
2, and 3 for TD milk, fat, and protein yields, and SCS
are given in Figures 1, 2, 3, and 4, respectively.

For all traits except SCS, additive genetic variances
increased slowly during the lactation trajectory in all
3 parities. For milk and protein yields, the residual
variance was relatively small compared with the total
phenotypic variance, indicating a good fit of the model.
The residual variance was larger for fat yield and
largest for SCS, indicating that the model could ex-
plain less variance and that observations for these
traits might therefore be less predictable.

Herd × test date variances for milk and milk compo-
nents yields were much lower than HCUR variances,
which indicates that differences between herds are
larger than differences between test dates within a
herd. Around peak yield (DIM 50 to 150), HCUR vari-
ances were greatest for milk and protein yield,
whereas for SCS, HCUR variances were relatively
small compared with the other variance components.
This result indicates relatively small differences be-
tween herds for SCS.

In Figure 5, the estimated ratio of HCUR to pheno-
typic variances in lactations 1, 2, and 3 across DIM is
shown for TD milk, fat, and protein yields, and SCS.
For all traits except SCS, the ratio of HCUR to pheno-
typic variances peaked at around 50 to 150 DIM and
decreased at the end of the lactation to approximately
0.15, except for the first lactation, which did not de-
crease below 0.35. The greatest HCUR over phenotypic
variances were observed for protein yield.
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Table 2. Number of Gibbs chains, total number of iterations, and range of effective chain size for the
variance component estimation of test-day milk, fat, and protein yields, and SCS

Trait Milk Fat Protein SCS

Chains, n 3 3 3 3
Iterations, n (total) 328,780 346,400 470,120 403,500
Iterations, n (excluding burn-in) 253,780 271,400 395,120 328,500

Range in effective chain size Min Max Min Max Min Max Min Max

Additive genetic 203 510 206 554 314 653 240 609
Permanent environment 58 627 66 700 72 782 50 801
Lactation-specific permanent environment 938 10,940 449 16,341 1,111 15,652 709 13,441
Herd curve 455 1,819 310 2,645 445 3,674 253 2,797
Herd × test date 817 817 441 441 1,196 1,196 363 363
Residual 981 32,867 712 34,631 1,136 47,002 796 40,343

Table 3 gives HCUR correlations among DIM 5, 65,
185, 305, and 365 for parities 1, 2, and 3. For all traits,
HCUR correlations among DIM for parities 2 and 3
were similar, and both were higher than during parity
1. Overall correlations for all parities for milk, fat, and
protein yields were high, ranging from 0.69 to 0.99.
On the other hand, correlations for SCS among DIM
were low, with the lowest values for DIM 5 in the
first parity.

Herd curves for second-parity protein yield for the
10 largest herds from Vicenza and the 10 largest herds
from Ragusa are shown in Figure 6. It is surprising to
see why there were such large differences in variation
between the regions.

Figure 1. Additive genetic (GEN, ◆), permanent environmental (PERM, �), lactation-specific permanent environmental (LSPE, �), herd
× test date (HTD, × ), herd curve (HCUR, +), and residual (RES, �) variance of test-day milk yield in lactations 1, 2, and 3 (in kg2).
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DISCUSSION

Variance components of TD milk, fat, and protein
yields, and SCS were estimated by applying a random
regression animal model to a large data set with re-
cords of dairy cows from the Ragusa and Vicenza areas
of Italy. Estimated additive genetic, permanent envi-
ronmental, and residual variances are in line with
other studies (De Roos et al., 2004; Gengler et al.,
2004).

The HCUR variances were highest around peak
yield (DIM 50 to 150) for all traits except SCS. This
is in contrast with the variances found by De Roos et
al. (2004) and Gengler and Wiggans (2001). In that
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Figure 2. Additive genetic (GEN, ◆), permanent environmental (PERM, �), lactation-specific permanent environmental (LSPE, �), herd
× test date (HTD, × ), herd curve (HCUR, +), and residual (RES, �) variance of test-day fat yield in lactations 1, 2, and 3 (in g2).

study, variance of the random herd curves was great-
est at the borders of the lactation and negligible in
midlactation. This is surprising, and is probably an

Figure 3. Additive genetic (GEN, ◆), permanent environmental (PERM, �), lactation-specific permanent environmental (LSPE, �), herd
× test date (HTD, × ), herd curve (HCUR, +), and residual (RES, �) variance of test-day protein yield in lactations 1, 2, and 3 (in g2).
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artifact of the missing data and the statistical model
used to extrapolate the data (Pool and Meuwissen,
1999). Herd lactation curves are deviations from over-
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Figure 4. Additive genetic (GEN, ◆), permanent environmental (PERM, �), lactation-specific permanent environmental (LSPE, �), herd
× test date (HTD, × ), herd curve (HCUR, +), and residual (RES, �) variance of test-day SCS in lactations 1, 2, and 3.

all curves and can be compared between herds. They
indicate how the animals in the herd perform com-
pared with how they would have done under average

Figure 5. Ratio of the herd curve over phenotypic variance in lactations 1, 2, and 3 for test-day milk (�), fat (◆), and protein (�) yield,
and SCS (�).
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management circumstances. Greater variability at the
peak indicates that differences in management be-
tween herds are expected to have the largest impact
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Table 3. Correlations among DIM 5, 65, 185, 305, and 365 within parity 1, 2, and 3 from the random herd curve effect

Lactation 1 Lactation 2 Lactation 3

Trait DIM DIM 65 DIM 185 DIM 305 DIM 365 DIM 65 DIM 185 DIM 305 DIM 365 DIM 65 DIM 185 DIM 305 DIM 365

Milk 5 0.78 0.71 0.69 0.69 0.92 0.90 0.88 0.85 0.87 0.85 0.85 0.84
65 0.98 0.95 0.92 0.99 0.95 0.88 0.99 0.96 0.90

185 0.99 0.97 0.98 0.91 0.98 0.93
305 0.99 0.96 0.97

Fat 5 0.81 0.71 0.67 0.65 0.92 0.87 0.82 0.78 0.90 0.86 0.82 0.81
65 0.97 0.93 0.89 0.98 0.92 0.85 0.98 0.93 0.88

185 0.98 0.96 0.97 0.91 0.98 0.92
305 0.99 0.97 0.97

Protein 5 0.80 0.75 0.73 0.74 0.93 0.92 0.89 0.86 0.88 0.86 0.86 0.86
65 0.98 0.96 0.94 0.99 0.95 0.88 0.99 0.96 0.91

185 0.99 0.98 0.98 0.92 0.98 0.94
305 0.99 0.97 0.98

SCS 5 0.36 0.31 0.34 0.31 0.69 0.59 0.49 0.53 0.74 0.63 0.60 0.54
65 0.84 0.86 0.80 0.89 0.80 0.74 0.92 0.89 0.81

185 0.96 0.95 0.94 0.90 0.96 0.92
305 0.96 0.95 0.95

around the peak of the lactation. The ratio of HCUR
over phenotypic variance can be interpreted as the
ratio between across-herd and across-animal varia-
tion. This ratio was greatest for protein yield around
the time of peak yield, with values greater than 1 for
the first and second lactation, showing that variability
between herds is greater than variability between ani-
mals. For this reason, it could be argued that develop-
ment of management parameters for milk, fat, and
protein yields around the peak should focus on be-

Figure 6. Herd curve for protein yield in second lactation of the 10 largest herds from Vicenza (—) and the 10 largest herds from Ragusa
(----).
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tween-herd parameters rather than management pa-
rameters that compare individual cows. Therefore,
greater HCUR variances represent a promising oppor-
tunity for management improvement between herds.
As an example, positive herd curves for milk, fat, and
protein and negative herd curves for SCS could indi-
cate that herd management is better than average.
Negative lactation herd curve traits (peak, mean, and
persistency) are highly correlated with low-energy
diets and low starch content in feeds. Because these
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curves are estimated for successive years and are not
primarily based on the most recent data, they indicate
mid- to long-term management effects.

The HCUR variability is even more extreme if we
compare HCUR vs. HTD variance, namely, between-
vs. within-herd variation. Herd-TD is defined as a devi-
ation from the mean within each herd. Therefore, HTD
estimates are not useful for comparing farms. The
HTD effect is especially informative for immediate
management changes that affect the whole herd at a
precise TD. In particular, negative milk, fat, and pro-
tein deviations and positive SCS deviations indicate
that cows produced less milk, fat, and protein and
more cells than expected. A sudden drop in milk and
fat content yield at a particular test day could alert
managers of insufficient effective fiber in feeds that
could lead to acidosis at the herd level. On the other
hand, an increase in fat content combined with a drop
in milk and protein yield could alert managers of an
energy unbalance in the diets that could lead to keto-
sis. Positive SCS deviations could be due to malfunc-
tions of the milking system or to infectious diseases.
Higher variability in HCUR rather than an HTD effect
would suggest that the focus should be on management
parameters that describe between-herd variation; con-
sequently, advice is needed mostly for long-term
rather than short-term changes.

For SCS, both HCUR and HTD variances were rela-
tively small compared with the other variance compo-
nents. This would suggest that the focus should be
on management parameters that describe between-
animal variation; consequently, management consid-
erations are needed mostly at the cow level for this
trait. The HCUR correlations for SCS among DIM
were also lower than for other traits and were very
low between 5 and greater DIM, meaning that man-
agement practices affecting early lactation do not have
a directly related impact on SCC later on in the
same lactation.

The ratio of HCUR over phenotypic variance was
highest for protein yield in the second lactation. The
estimated herd curves of the 10 largest herds from
Ragusa and the 10 largest herds from Vicenza for pro-
tein yield in the second lactation shown in Figure 6
clearly reveal much greater variation in the shape of
the lactation curve as well as in the deviation from
the lactation curve of the population for Ragusa than
for Vicenza province. This greater variation is not sim-
ply caused by differences in the mean region effects
that were included in the model as a fixed effect. A
more likely option might be the lower and more vari-
able feed quality in the Ragusa region, leading to more
variation between herds. Further work will focus on
identifying the sources of variation in these random
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herd curves across herds, including the measured feed
quality at the herd level.

Test-day variance components estimated in the
present study showed clear evidence of the benefits of
using a random regression TD model for management
improvement, by improving both between- and within-
herd management aspects.

ACKNOWLEDGMENTS

The authors thank J. van Arendonk and. J. D. Fergu-
son for their scientific support. This research was
funded in the “Accordo di Programma Quadro” action
from the Assessorato Industria of the Sicilian Region
(Palermo, Italy).

REFERENCES

De Roos, A. P. W., A. G. F. Harbers, and G. de Jong. 2004. Random
herd curves in a test-day model for milk, fat, and protein produc-
tion of dairy cattle in the Netherlands. J. Dairy Sci. 87:2693–
2701.

Everett, R. W., F. Schmidt, and L. H. Wadell. 1994. A test-day model
for monitoring management and genetics in dairy cattle. J. Dairy
Sci. 77(Suppl. 1):267. (Abstr.)

Gengler, N., and G. R. Wiggans. 2001. Variance of effects of lactation
stage within herd by herd yield. J. Dairy Sci. 84(Suppl.
1):216. (Abstr.)

Gengler, N., G. R. Wiggans, and A. Gillon. 2004. Estimated heteroge-
neity of phenotypic variance of test-day yield with a structural
variance model. J. Dairy Sci. 87:1908–1916.

Horan, B., P. Dillon, D. P. Berry, P. O’Connor, and M. Rath. 2004.
The effect of strain of Holstein-Friesian, feeding system and
parity on lactation curves characteristics of spring-calving dairy
cows. Livest. Prod. Sci. 95:231–241.

Jamrozik, J., and L. R. Schaeffer. 1997a. Estimates of genetic param-
eters for a test day model with random regressions for yield
traits of first lactation Holsteins. J. Dairy Sci. 80:762–770.

Jamrozik, J., L. R. Schaeffer, and J. C. M. Dekkers. 1997b. Genetic
evaluation of dairy cattle using test day yields and random re-
gression model. J. Dairy Sci. 80:1217–1226.

Janss, L. L. G., and G. De Jong. 1999. MCMC based estimation of
variance components in a very large dairy cattle data set. Pages
63–68 in Interbull Bull. No. 20. Interbull, Tuusula, Finland.

Kirkpatrick, M., D. Lofsvold, and M. Bulmer. 1990. Analysis of
the inheritance, selection and evolution of growth trajectories.
Genetics 124:979–993.

Koivula, M., J. I. Nousiainen, J. Nousiainen, and E. A. Mäntysaari.
2007. Use of herd solutions from a random regression test-day
model for diagnostic dairy herd management. J. Dairy Sci.
90:2563–2568.

Mayeres, P., J. Stoll, J. Bormann, R. Reents, and N. Gengler. 2004.
Prediction of daily milk, fat, and protein production by a random
regression test-day model. J. Dairy Sci. 87:1925–1933.

Pool, M. H., L. L. G. Janss, and T. H. E. Meuwissen. 2000. Genetic
parameters of Legendre polynomials for first parity lactation
curves. J. Dairy Sci. 83:2640–2649.

Pool, M. H., and T. H. E. Meuwissen. 1999. Prediction of daily milk
yields from a limited number of test days using test day models.
J. Dairy Sci. 82:1555–1564.

Ptak, E., and L. R. Schaeffer. 1993. Use of test day yields for genetic
evaluation of dairy sires and cows. Livest. Prod. Sci. 34:23–34.

Reents, R., J. C. M. Dekkers, and L. R. Schaeffer. 1995. Genetic
evaluation for somatic cell score with a test day model for multi-
ple lactations. J. Dairy Sci. 78:2858–2870.



CACCAMO ET AL.3276

Rekik, B., and A. Ben Gara. 2004. Factors affecting the occurrence
of atypical lactations for Holstein-Friesian cows. Livest. Prod.
Sci. 87:245–250.

Schaeffer, L. R., and J. C. M. Dekkers. 1994. Random regressions
in animal models for test-day production in dairy cattle. Page
443 in Proc. 5th World Congr. Genet. Appl. Livest. Prod., Guelph,
Ontario, Canada.

Schaeffer, L. R., J. Jamrozik, G. J. Kistemaker, and B. J. Van Door-
maal. 2000. Experience with a test-day model. J. Dairy Sci.
83:1135–1144.

Journal of Dairy Science Vol. 91 No. 8, 2008

Sorensen, D. 1997. Gibbs sampling in quantitative genetics. Internal
Report No. 82. Danish Inst. Anim. Sci., Res. Ctr. Foulum,
Tjele, Denmark.

Tekerli, M., Z. Akinci, I. Dogan, and A. Akcan. 2000. Factors affect-
ing the shape of lactation curves of Holstein cows from the Bal-
ikesir province of Turkey. J. Dairy Sci. 83:1381–1386.

Van Kaam, J. B. C. H. M. 1998. Gibanal 2.9. Analyzing Program
for Markov Chain Monte Carlo Sequences. Dept. Anim. Sci.,
Wageningen Agric. Univ., Wageningen, the Netherlands.


