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Abstract

Madonia, M., S. Salemi and T. Sportelli, A generalization of Sardinas and Patterson’s algorithm to
z-codes, Theoretical Computer Science 108 (1993) 251-270.

This paper concerns the framework of z-codes theory. The main contribution consists in an
extension of the algorithm of Sardinas and Patterson for deciding whether a finite set of words X is
a z-code. To improve the efficiency of this test we have found a tight upper bound on the length of
the shortest words that might have a double z-factorization over X. Some remarks on the
complexity of the algorithm are also given. Moreover, a slight modification of this algorithm allows
us to compute the z-deciphering delay of X.

1. Introduction

The theory of z-codes is strictly related to the study of the behaviour of a two-way
automaton [5]. Recently, it has been developed, in an independent way, as a non-
trivial generalization of theory of codes [1, 2, 4]. In this framework, important
properties have been shown; in particular, the fact that z-codes give rise to recogniz-
able sets has been proved in [1]. Another interesting aspect, in investigating properties
of such z-codes, consists in the new point of view they introduce in combinatorics on
words.

In this context, an algorithm for testing whether a rational set of words X is
a z-code was given in [2]. Its implementation requires the construction of an
automaton which recognizes the set X .

The main contribution of this paper is an algorithm which solves the problem in the
case where X is a finite set; it is based on a suitable extension of the well-known test on
codes due to Sardinas and Patterson [3].
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The paper is organized as follows: In Section 2, we give some definitions and
preliminary results and we present the classical Sardinas and Patterson’s algorithm.
In Section 3, we describe the new algorithm, whose nature is essentially combinatorial,
and we prove a theorem which gives a characterization of the z-codes and shows the
correctness of the algorithm,

Section 4 is devoted to the complexity analysis of the algorithm. We find a tight
upper bound on the length of the shortest words that might have a double z-
factorization. This bound is related to the halt condition of the algorithm. Given a set
X ={x1,X3,.... X, }, it is stated that the complexity of the algorithm is: O(n*""), where
L=Y"_|x;| and m=max{{x;||i=1,...,n}.

In Section 5, we introduce the new concept of z-deciphering delay and we shortly
show that a slight modification of our algorithm allows us to compute the z-
deciphering delay of a z-code.

The terminology and the notation adopted here conform to those introduced in
previous papers on this topic. Nevertheless, the formal description of the algorithm
might appear rather involved: this fact follows from the peculiar structure
of z-factorizations, which have a combinatorial nature, apart from the novelty of the
subject.

2. Definitions and preliminary results

In this section, some fundamental notations, definitions and general properties of
z-codes are given. Moreover, it is recalled, by an example, the behaviour of the
Sardinas and Patterson’s algorithm applied to a finite set X.

2.1. On z-codes theory

Let A be a finite alphabet and A* the free monoid generated by A. As usual, the
elements of A* are called words and the empty word is denoted by A. Let X< A *.

It is possible to define in A* x A* an equivalence relation generated by the set
T={((ux,v), (u,xv)} | u,ve A*, xe X }.

We say that (u,v) produces in only one step (u',v'), and we denote this fact by
(u, )= (', v'), iff ((u,v), W', v"))e T or (v, v'), (u,v))e T. A step is said to be to the right on
x ift (u, xv) — (ux, v); likewise, (ux,v) = (u, xv) is said to be a step to the left on x.

A path is a sequence of steps.

We denote the equivalence class of the pair (u, v} with u ® v. Given a set X < A*, let
XT={wed*|L\®w=w®A}.

In other words, we A* belongs to X ' if there exists at least one finite path between
the pairs (A, w) and (w, A). Notice that the first step, and the last step in the path are
both steps to the right.
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Definition 2.1. Given a word weX ', a z-factorization /£ of w over X, of length m, is
a sequence of steps (g, v;) — (U, U544 ), for i=1,2,...,m, which verifics the following
conditions:

(N v =tw1=A

(2) vi=tps =W,

(3) (uy, v))# (U 1) for j£k.

Condition (3) 1s necessary to exclude the presence of “cycles” in the z-factorization.

Definition 2.2. A set XS A* 15 a z-code iff any word weA* has at most one
z-faclorization over X,

Remark 1. The family of z-codes is strictly included in the family of codes: indeed, if
X € A* is a z-code, trivially il is a code; the converse is false: it suffices to consider
X, =1{b,d*h,b?u,a*h?a}; X, is a code on A*, but it is not a z-code (see Example 1).

Trivially, the family of z-codes is not empry: indeed it contains the families of prefix
and suffix codes and this is a strict inclusion, because there exist z-codes that are
neither prefix nor suffix, as the set X, ={a*ba*, a’b, b, ba).

Moreover, z-codes may be regarded as basis of rational sets; this relevant property
of z-codes has been stated by the theorem [1]: for any recognizable X < A* there exists
a deterministic automaton which recognizes X 1,

2.2, Sardinas and Patterson’s algorithm

Example 1. Let A={a,b} and let X = (b, aub,bba,aabba}. We test whether X is
a code, by using the Sardinas and Patterson’s algorithm.

We start by considering those words of X which are prefix of other words of X. In
this way, we build a set U, =X ~'X —A that contains the suffixes (in bold in Fig. 1)
which are usually called remainders.

In this case, any attempt to discover a double factorization, must take into account
only the words of X * that begin with “bba™ and with “aabba™; therefore U, = {ha}.

Now, the attempts to find a word w that might have a double factorization on X *
must be continued by checking:

(1) if the remainders (in U, ) are prefix of some words of X

(2) 1if some words of X are prefix of the remainders (in U, ).

b b a (1) and aab b a 2)

SN——~ \——»—-—-"/

Fig. 1.
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b b oa 3) and aab b a (4)

S — S—y —

Fig. 2.

So, a sequence of sets of remainders is defined by induction whose general term is
Upse =X "'"UoUtX formzl

In our cxample, the decompositions (1) and (2) can be continued as shown in Fig. 2.
The sccond step of the implementation of the Sardinas and Patterson’s algorithm
gives rise to the set of remainders

Upy=X "'U,uU[ ' X =1al.

In the same way, it is possible to find U;={ab, abba} and U,=0.

In [3] it is shown that the Sardinas and Patterson’s algorithm always ends, because
one of the three following cases must occur after a finite number of steps:

(2) 3m such that e U,,. In other words, 3xe U,, -, such that xe X. In this case, X 15
not a code.

(b) 3m such that U, =@ We can conclude that X is a code. This is the case of our
example because U4 =0.

(¢} i such that U,,=U,_;. Then U4y =U,-i+,. and so on. Indeced, if 1¢ U, for
any h<m, it follows that ¢ U, for any k>m and, also in this case, we can conclude
that X is a code.

3. An algorithm for testing whether a set of words is a z-code.

In this section, a formal description of the algorithm for testing whether a finite set
X ={xy,X2,...,X,} of words is a z-code is given. This algorithm carries on all the
attempts to find words with a double z-factorization over X.

In the following, it will be shown that while the implementation of the Sardinas
and Patterson’s algorithm produces a scquence of sets of words, the implementation
of our algorithm produces a sequence of sets @, whose elements are tuples in
A*x A*x {1,2,....n}?. Therefore, we characterizc those sets X that are codes by
considering some peculiarities of the sets @,

3.1, Algorithm description
To formalize our algorithm, we need some new definitions and notations.

Definition 3.1. Let X ={x,.x5....,x,}. We call configuration any tuple in
A* x A* x {1,2,...,n}>
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Definition 3.2, We say that a configuration ¢=({,r,i,j, k) produces on X a configura-
tion ¢'=(I,,r,,i,.41, k), and we write gy==q', if there exists x,e X such that

h#j,  r=xur, L=,

ilzh, jl=07 k1=k;
or
h+#], Xy=rry, =1,

iy=k, J1=0, ky=h;
or
hi, F1=Xuh, I=Ix; !,

i =0, Ji=h, k,=k.

The sequence (Q,,) is defined by induction:

- @, is the set of all configurations (x, r, i, 0, k) such that Ix,, x,€X, with x,=x,r.
for any integer m, Q,,,, is the set of the configurations produced on X by the
clements of Q.

For any integer m, we denote by C,, the set C,,={lre 4*|3(l,r,i,j,k)eQ,} and by W,

the sct W,,={reA*|3(L,r,i,j,k)eQ,}. We call W,, the sct of the remainders of mth

level.

Now we can give a module for the program development which shortly describes
the tasks to be done by the proposed algorithm. The value K that occurs in
the module is the upper bound on the length of the shortest words in A* that might
have two distinct z-factorizations over X. Notice that, for a given set X, this value is
known [2].

In the following section we will find a tight upper bound K on the length of shortest
words that might have a double :z-factorization over X, and this improves the
efficiency of our algorithm.

Algorithm

Begin

Read(X);

me |;

build Q,,C,, W,; {first step}

While (A¢ W,,) and (Q,,#9) and (for any IreC,,, |Ir|]<K) do
begin
me—m+1;
build Q,,, C,,, W,,; {mth step}
end;

If ke W,, then X is not a z-code
else X is a z-code;

end.
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Example 1 (Continued). Assume that the elements of X are numbered as follows:
x,=h, Xy =aqab, X3 =bba, x4 =uaabba.
First step: Using the previous notation we obtain
Q. =1{(b,ba,1,0,3),(aub, ba,2,0,4)},

corresponding to the attempts of z-factorizations as shown in Fig. 3. Thercfore,
C,={bba, abbba} and W, ={ba!.

Second step: The decompositions (1) and (2) may be continued as shown in Fig, 4.
Formally,

(b, ba,1,0,3) y=>(bb,a,1,0,3),
(aab,ba, 2,0,4) y=(aabb.,a, 1,0,4),
(aab, ba,2,0,4) y=(aa, bba,0, 1,4).
Thus, we obtain
Q,=1{(bb,a,1,0,3), (aabb.a.1,0.4). (aa, bba,0,1,4)},

Cy={bba,aabba,aabba; and W,=/{a, bba}.

Fig. 3.
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Third step: In the same way, the following scts are constructed:
Q3 =1{(hba,ab,3,0,2),(hba, ;zbba, 3.0,4), (wabba, 1, 3,0,4), (aabba, 1, 4,0, 3),
{aabba, ab, 4,0, 2), (aabba, abba,4,0,4) };
Cy = {bbaab, bbaabha, aabba, aabbaab, aabbaabbay;
Wy={ab,abba,)}.

Then, since Ae W3, we conclude that X is not a z-code.

3.2, The correctness of the algorithm

In order to prove Theorem 3.6, which states the corrcetness of the algorithm, we
now give some definitions.

Definition 3.3. Given veX " und we A* such that w is a factor of v (i.e. v=xwy with
x,yeA*), a partial z-factorization of v over X of length | starting from the right (resp.
left) of w is a sequence of steps (u;, ;) = (4 1, 0541} i=1,...,1 such that

(1) uy=xw and v, =y (resp. u, =x and v, =wy);

(2) w g =vand ¢4 =4,

(3) (ujv;) # (. vy ) for jAk.

Definition 3.4. Let X ={x,,x,,...,x,}. We say that the tuplc (¢, w, i, j, k), where ce A*,
we W, and i, j k are integers 20, satisfies condition (C1) on v if there exists a tuple
{(e,w, f,5,1)eQ, such that the following three conditions hold:
(1) ¢w is a prefix of v,
(2) there exists a partial z-factorization of v over X of length i starting from the right
of w and beginning with a stcp on x, such that
— if the step on x, 15 a step to the left, then r#r;
(3) there exists a partial z-factorization of v over X of length j starting from the left
of w and beginning with a step on x, such that
— if the step on x, is a step to the left (resp. 1o the right), then f#1 (resp. s #1).

Lemma 3.5. Let X ={x,,x,5,....x,}. For all m= |, he W, iff there exist a word veC,,
and a tuple (¢, w,i,J, k) satisfying condition (C1) on v, with k=m—i—j.

Proof. We prove the statcment of the lemma by descending induction on k. First
assume k=m. If Le W, then the tuple (s, A, 0,0, m) satisfies condition (C1) on veC,,
with v the context of A.
Conversely, if there exist ve C,, and a tuple (¢, w, i, j, m) satisfying condition (Cl) on v,
then, since K=m—i—j, i=j=0. This implics w=A and, consequently, e W,,.
Now, let m> k=1, and suppose that the sufficicnt condition of the lemma holds for
mm—1,..., k+1.
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If AeW,, then, by induction hypothesis, there exist a veC, and a tuple
(c1,u, i, j, k+ 1) satisfying condition (C1) on v. Therefore, a tuple (¢, u, £,5,1)€Q, 4,
cxists and three cases may occur.

Case I: There exists a word x,€X and a tuple (¢, w, f', 5, )eQ, such that

xpu=welW, and h#s.

In this case, the tuple (¢, w,i,j+ 1, k) satisfics condition (C1) on v. Indeed, as far as
condition (2) of the Definition 3.4 is concerned, it suftices to consider the partial z-
factorization of v over X of length i, starting from the right of u, taking into account
that t#1¢".

Moreover, as far as condition (3) of the Definition 3.4 is concerned, it suffices to add
a step to the right on x, at the left of the partial z-factorization of v of length j starting
from the left of u.

Case 2. There exist an x,e X, a we W, and a tuple (¢,w, f',5,t"}eQ, such that

wu=x, and h#y.

In this case, by using analogous considerations, we find that the tuple (¢, w,j, i+ 1, k)
satisfies condition (C1)} on v.
Case 3: there exist an x,e X, a we W, and a tuple (¢, w, 7, 5',1")eQ, such that

x,w=u and h#f".

Also in this case, the tuple (¢, w,i,j+ 1, k) satisfies condition (C1) on e.

Thus, the {irst part of the lemma is proved.

Conversely, suppose that there exist a word veC, and a tuple (¢, w, i, j, k) satisfying
condition (C1} on . So, there exists a tuple (¢, w,f",s,t )eQ,.

Without loss of generality, suppose that, in condition (3) of the Delinition 3.4, the
partial z-factorization of v begins with a step on x,e X. We shall prove that Ae W,.

If j=0, then i=0 and k=m, w=Ah.

Thus, j= . Once more, we distinguish three cases.

Case I: The step on x, is a step to the right, and x, is a prefix of w.

In this case, w=x,u, with ueA* and h#s; then wueW,,, and the tuple
{exp, uy1,j— 1, k+ 1) satisfies condition (C1) on v.

Thus, Ae W, by the induction hypothesis.

Case 2: The step on x; is a step to the right and w is a prefix of x,.

In this case, x,=wu, with ucA* and h#s; then uwel, ., and the tuple
{exyyu,j— 1,1,k + 1) satisfies condition (C1) on v.

Again, Ae W,, by induction hypothesis.

Case 3. The step on x, is a step to the left, and x, is a suffix of the context of w.

In this case, cw=1v'x,w, with v'eA*, and f'#h, then x,we W, ., and the tuple
(exy 'y xpw, i, j— 1,k + 1) satisfies condition (C1) on v and, thus, A€ W, by the induction
hypothesis.

The proof is concluded. O

Now we can prove the following theorem.
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Theorem 3.6. The set X is g z-code iff none of the sets W, defined above contains A.

Proof. [f X is not a z-code, then there exists a word ve X T such that ¢ has two distinct
z-factorizations over X. Let them be

(;L’UJ - (ul’yl) =+ (”i~yi) - (17,7\.),
0"7"-”)_’(317!‘1}_’ _’(zj»tj)_’(r‘ak)v

with u,, vy, 2z, e A* for h=1,...,i, k=1,...,j.

Without loss of gencrality we assume that z; =x, and 4, =x, with x,, x,e X, and
that |zf<|uy|. Then w,=z,w for some weA*. Consequently, the tuple
(Zla w.p, 0’ q)te‘

Moreover, the tuple (z,,w,i—1,j—1,1) satisfies condition (C1) on veC;y ;. Ac-
cording to Lemma 3.5, he W, ;_;.

Conversely, if Ae W, take, in Lemma 3.5, k=1. Then, there exist a veC,,, a tuple
{¢,w, 1, /, 1) sauslying condition (C1) on v, and a tuple (¢, w, p,0, g)€Q,; so x,w=x,, for
some x,,x,6X, and v has two distinct z-factorizations over X. The first one begins
with a step to the right on x,, and it goes on with the partial z-factorization of v, of
length j, starting from the left of w (note that, if the first step of this partial
z-factorization is a step to the left on x,, then {# p); the other one begins with a step to
the right on x,, and it goes on with the partial z-factorization of v, of length i, starting
from the right of w (note that, if the first step of this partial z-factorization is a step to
the left on x,, then r+#¢).

This establishes the thecorem. L

Remark 2. Notice that the algorithm always ends, after a finite number of steps,

Let us remember that the algorithm stops when the execution of the “while loop”
terminates. Therefore, one of the three following conditions must fail:

(la) AW,

(2a) Qn#0;

(3a) for any IreC,,, |lr|< K.

If X is not a z-code, Theorem 3.6 assurcs us that:

(1b) 3 an integer m such that Ae W, and the execution of the “while loop” stops
because condition (1a) fails. In particular, the context of A provides a word which has
a double z-factorization over X.

This is the case of our example: indeed, Ae W5 and the word w=uaabba has two
distingt z-factorization over X.

If X is a z-code, either

(2b) 3 an integer m such that Q,,=0, and the execution of the “while loop” stops
becausc condition (2a) fails; or

(3b) Jan integer m such tha, for any n<m, A¢ W, and for any {,,r,eC,, | Lol 2 K,
where K is the upper bound on the length of the shortest words in A* that might have
(wo distinet z-factorization over X (see [2]).
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Indecd, we will show (see the lemmas of the following scction) that after m exceu-
tions of the “while loop™ body, if condition (2a) has not failed, the length of any word
weQ, 1s =m.

This assures us that, in the worst case, after K steps condition (3a) fails, and then the
execution of the “while loop” stops,

4. Complexity of the algorithm

A new upper bound on the length of the shortest words that might have a double
z-factorization has been found (see Proposition 4.6), in order to improve the cfficiency
of the algorithm. This bound is tight. Tt has been [ound by taking into account not
only the lengths of the words of the finite set X, but also their alphabelic structure.

At the end of this section we derive the complexity of the algorithm.

4.1. Some new definitions

From now on, let X ={x,,x,,...,x,} € A* be a finitc set and It Card(X)=n.

For any we 4* and ae A, |w|, denotes the number of occurrences of the letter @ in
the word w.

Forany X ={x;,x5,...,x,} and aeA, we set

1X= 3 |Xila-

i=1

Definition 4.1. Let X ={x,,x;,....x,}, let weX ' and lct ¢ be a z-factorization of
wover X. Then for k=1, ..., |w|, we say that a step of / on x;, (', x;t') = ('x;,v’) or
(U'x;, ") = (W, x;'), crosses the kth position of w, if |u'] < k and [#'x;| 2 k. Tn this casc we
also say that x; crosscs the kth position of w in Ainits (K —|u'[)th position.

Definition 4.2. Lot X ={x;,x,,...,x,}, let weX ' and let # be a z-factorization of
wover X. Then for k=1, ...,|w| we define
C,(ky=1{(i.j}|at least one of the following steps occurs in 7

= (u, x;v) = (ux;, v),

= {ux;, t) > (u, x;v), where u,veA* and |u|=k—j}.

Example 2. Let X ={x,,x;,x3,x4}={a*ba*,a’h,b,ba}. Let us consider the word
w=aabac X ! and its z-factorization /:

(A, w)= (X, aaba)—(uab, a)—(aa, bay—(aaba, k)= (w, A).
Then:

CM={2n;.  G@={2.2}

C/(3)={(2, 3), (3, 1), (4, 1)}, C/(4)={(4,2)}.
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Remark 3. If weX' and 7/ 1s a z-faclorization of w, then, for any k=1,...,{w|,
Card(Cy(k)) is equal to the number of steps of / that cross the kth position of w.
Therefore, Card(C,(k)) is an odd number.

4.2. An upper bound on the length of the shortest ambiguous words

From now on, let X ={x,,x,, ..., X4} be a set that is not a z-code and let weX 1 be
a word of minimal length that has two distinct z-factorizations over X, ¢, and #;.

The foliowing three lemmas state some conditions that are essential for the proof of
Proposition 4.6, which gives an upper bound on |w/.

In particular, Lemma 4.3 shows that #, and #; do not have “coinciding cuts”,

In Lemma 4.4, an upper bound is given to the number of times in which any letter of
w can be crossed in /, and /5.

Lemma 4.5 states that the sets €, (k)oC,, (k) are different from each other for every
position k of w (1 €k<[w]).

The proofs of these lemmas are rather technical; therefore, in order to avoid the
thread of the problem to be lost, we choose to postpone them to the end of the paper
(sce the Appendix).

Lemma 4.3, If the pair (u,v) occurs in ¢, with u,ve A™, then (u,v) does not occur in /5.
Based on this lemma, we have the following remark.

Remark 4. For k=1,...,|w| we have C/, (k)nC,(k)=0.

Suppose C/I(k)r‘\('.'/z(k)aév) and lct (i,j)e Cy (K)nCy, (k).

Then, in both the z-factorizations /; and /5, there is at least onc of the following
steps:
= (uy x;0) = (ux;, v),
- (uxg,v) = (u, x;v), where w,ve A* and Ju|=k—j.

But this implies that there exists a pair ((#, x;v) or (4x;, #)) that occurs both in # and
in /;, contradicting Lemma 4.3, From Remark 3, and from €y, (k) Cy, (k) =0, it follows
that Card(Cy,(k)oCp(k}), for k=1,....[w|, is an cven number,

Lemma 4.4, For k=1,...,|w|, we have
Card(Cy, (k)uC/l(k)) <2m-2,

where m=max{|x;||i=1,...,n}

Remark 5, For k=1, ....|w|, we have
Card(Cy (ko (k) <] X,

where ¢ is the letter which occurs in the kth position ol w.
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Lemma 4.5. For h,k=1,...,|w|, we have

Now we can state the following proposition,

Proposition 4.6. Let X ={x,,x,,...,x,| be a subset of A* that is not a z-code and let
w be a word of minimal length that has two distinct z-factorizations over X. Then

W< Y §(|X|a) K

aeA i—1

where p,=min{(|X|,/2]), (m— 1)} and m=max{|x;}|i=1,...,n}.

Proof. From Remarks 4 and 3, and from Lemma 4.4, it follows that if k is a position
of w in which the letter @ occurs, then the maximum number of different sets
LCARyOCh(k) ) is

X,
£(5)

where p,=min{(| |X[,/2]), (m—1)} and m=max{|x;|[i=1,...,n}.
Then, from Lemma 4.5, the proposition holds. O

Remark 6. The previous upper bound on the length of shortest words of X1, that
might have two distinet z-factorizations over X, is tight; indeed, it is actually reached
in some particular cases; for example, let X = {ub, abe, def, edef }. X is not a z-code (in
particular it is not a code) and w=uabcdef is a word of minimal length that has two
distinct z-factorizations over X. Indeed,

A ez a)emm

4.3. A result of complexity

Given X ={x,,%3,....%, . let L=Y7_ |x;| the length of X. The implementation of
our algorithm on X gocs on by construction of 4 sequence of sets Q,, of configurations.
In order to give a bricl analysis of the algorithm, we choose to represent its computa-
tion by a tree; then, we give an upper bound on the number of nodes of this tree. To go
further into details:

- the root of the tree is the sel X
- each node corresponds Lo a configuration;

all the nodes of mth level, taken as a whole, represent the set Q,, of configurations

that arc generated at the mth step of the algorithm; indeed, the sons of a node g are

all the conligurations produced by ¢ in one step; in particular, if ¢ is a leaf of the tree,
this means that no configuration can be derived from gq.
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It follows that, the depth d of the tree is equal to the number of exccutions of the
“while loop” of the algorithm.

In the worst case (see Remark 2) the “while loop™ body is executed K times, where
K is the previous upper bound.

From Section 4.2 we can derive:

AdSKS L+ LY + Lo+ - + L'=p(L),
where
b,=min{2m, h}, m=max{|x;|{i=1,...,n} and h=max{|X|,|acA).

Notice that the number of nodes of the first level of the tree is at most O(n?) and
that, starting from this level, any node of the trec has at most 2n sons (n corresponding
to possible steps to the right and n corresponding to possible steps to the left).
Thercfore, in the worst case, that corresponds to a compicte tree of degree 2n, the
number of nodes is O(n? ((2a)P'Y — 1)/(2n— 1)), i.e. OQ(2PU " Ippli+1y

Morcover, by considering the relations 274 < n? and p(L)~O(L™), it is possible
to conclude that the number of nodes is O(n?*").

In the construction of the sets Q,,, we now consider as clementary operation the
comparison between two strings. Then, we state the following theorem.

ZL'“)

]

Theorem 4.7. Given X ={x,,x,,...,x,}, the complexity of the algorithm is O(n
where L=Y"_ |x;| and m=max{|x;|[i=1,...,n}.

Notice that if X is not a code, then the algorithm stops after the same number of
steps that are requested in Sardinas and Patterson’s algorithm, although, in the
generalized algorithm, morc complications are involved.

5. Further development

In this section, we first define the new concept of z-deciphering delay for z-codes;
this notion is analogous to the onc regarding codes (see [3]): given X = A*, its z-
deciphcring delay may be finite or infinite, In the first case, the “delay” between the
moment when a possible step of a z-factorization over X is discovered, and the
moment when these steps are definitively valid, is bounded.

We give a method to compute the z-deciphering delay for a given z-code X by the
implementation of our extension of Sardinas and Patterson’s algorithm.

Definition 5.1. Let X € A*. Given a word we X 1, a quasi z-factorization of w over X, of
length m, is a sequence of steps (u;, v;) — (4, 1,04 1) fori=1,2, ..., m which satisfies the
following conditions:

(1) uy=4

(2) vi=w

(3) (j0;)# (g, vp)  for j#k.
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Definition 5.2. Let X < 4*. We say that X has a bounded z-deciphering delay if there
exists d>=0 such that for any x;,x3, ... X0 ¥ ¥ae oo 0€X and we X T, if:
(1) there exists a z-factorization ol w of length s,

()‘-7 w)ﬂ (u(h U'p )_*(ul 2 )_) o _b(us'l l]s)=(W, ?\)a

where (u;, 0;) = (40,05 Vis a step on yy, fori=1, ..., s
(2) there cxists a quasi-z-factorization of w of length r,

(o wh= (o, vo )= (W )= =y, v)),

where (1), ;)= (i, 54 ) is @ step on x;, lor i=1,...,r;
(3y |w|—max!|e|[i=1,....r} <]yl and
(4) r+s>d,
then, x, =y,.
Let X < A*, The z-deciphering delay of X, d(X), is the smallest intcger d satisfying the
previous conditions, if such a d exists, otherwise it is infinite.

Example 3, Lct X = {ba, ab®a, a’bab?, ab’ab?, bab*a’ba). X has an infinite z-decipher-
ing delay. Tndeed, it suffices to consider the word w=abb(abbaah)”.

Fig. 5.

Remark 7. Tt is not very hard to prove that the algorithm allows us to check if a finite
z-code X ={x,,Xz,...,x,} has a finitc z-deciphering delay or not. Tn the first case, it
also computes the finite z-deciphering delay d(X). Indeed, if X is a z-code, then, in the
generalized Sardinas and Patterson’s algorithm, one of the following halt conditions
musi hold:

(1) 3m such that Q,,=0.
In this case, d(X ) is finite and d(X)=m.

(2) dm such that for any lreC,, |Ir|= K, where

Pu

K=Y % ('X,L') (sce Proposition 4.6).
ach i=1 \ 2
In this case, it suffices to construct the sets Q;, C;. W; until one of the following two
cases occurs:
(i) Ji>m such that Q;=9.
Also in this case, the z-deciphering delay is finite, in particular d(X)=1.
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(i) 3i>m and freCi such that |/]2 K, where

agd i=1

In this casc d(X) is infinite.
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Appendix

Proof of Lemma 4.3, Lct us consider the two distinct z-factorizations of w:
P (W) =g, vo)—= {1y, 0y )= = (U, 0) = = (U, 1) = (W, A),
A2t (wh=(up, vo )=, v )= o (g, vg) = o o Uk, 1) = (w, A),
and suppose that (u, v)=(u,, t,)=(u,, v,), with u,ved™, r,s>0, k>r and h>s.
Morcover, suppose that the following condition holds:
r=s and (u,v)=(, ) fori=1,...,r (%)

Let us consider the sct §=5,0US,, where S, = {v;|r<i<k} and §,={v}[s<i<h}.
Since r, s> 0, uny clement of § is a proper suflix of w, Let ¢ be the longest word of S,
Suppose that veS; and v=v, with r<t<k (the same considerations hold if veS,).
Thus, r,=u, 'w and the word r, has two distinct z-factorizations ¥y and /3 the first
one is derived from the last (k—1) steps of /1, the second one begins with the (t—r)
steps of /] and gocs on with the other (h - s) steps of /5. Formally, (see also the example
in Fig. 6):

A o) =t =y, "y v )= =l b, v =0 P w, A =(0,, A),
Ao ()= g u) = e oty )= g v g )

=, M, v = N ) (] U U )

=, ) =" P, M) = (e, M)

(Note that, if (w,w")—=(w\,w]) is a step to the right (left) on x, then
(w1, w)—=(w, w”) is a step to the left (right) on x).

In Fig. 6, /1 is visualized by the bold line and /5 by the dotted line.

Since the steps following the pth step in /) and in 45 are surely different (if
p=maxit, s}), then /i #/7 against the minimality of w.
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If the condition (*) does not hold, let us consider the set P=P,uP,, where
Po={u|l<i<r} and P,=(u;|1<i<s).

Since k> r and h>s, any element of P is a proper prefix of w. Let u be the longest
word of P. Suppose that ue P, and u=u, with 1 <t < r (the same considerations hold if
uePs).

Thus, u,=we, ! and the word &, has two distinct z-factorizations /1 and /;: the first
onc is derived from the first ¢ steps of /i, the second one begins with the s steps of £
and gocs on with the other (r - 1} steps of /1. Formally (see also the example in Fig. 7);

2 =00 we Y =(ug, vor” o Uy, o007 o
(U, 00, ! ):(uh )‘4)9

/0 u) =00 we” )= (g, vh o ) (U, v )

J

S vty )=, 000 V=, 10 0 ) (U g b )
{1, 0,00 )=, A).

In Fig. 7, /) is visualized by the bold line and #/5 by the dotted line.
Since the first p steps in /7 and in /5 are surcly different (if p=min {z,5}), then /y # /35
against the minimality of w, and the lemma is proved. L

Proof of Lemma 4.4. Let us first remark that for any z-lactorization of w, f; and for
any (i,j)eCy(k), we have | <j<m.

If Card(Cy, (k) Cy,(k)) > 2mm, then there exist at least three distinct clements (i',j),
(i W, eC, (ko€ (k) such that j' =" =j"". This implics that, in #; and /5, there
exist three steps (up,v1)—=(Ua.v2), (Us,03) (g, vy), (s, vs)=(us, vg) such that
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u,=u,=u, and |u,|=|u,|=|u,| =k —j' for suitable r, 5, t and | <r#s#1<6. But at most
two, among the pairs (u,, v, ), (4, &) and (i1, v,), can ocecur in the same z-factorization of
w, and this implics that the third pair occurs in the other z-factorization of w,
contradicting Lemma 4.3, Thus, Card(C, (K)o Cy, (k) < 2.

Now, if Card(C,,(k)wC/,(k))=2m, two cases may occur;

(1) There exist je{l,....m} and thrcc distinct elements (i'.j'),(i",j"). (""" )e
Cy (k) Cp(k) such that j=j"=;"=;""

In this case, as we have just seen, we have a contradiction.

(2) For any j=1,...,m there cxist two distin¢t clements (i',j’), (i",j") in
C,(k)oCy(k) such that j=j'=;". In particular, for j=m, we are sure that, in
Cy U)oy (k), there are two distinet clements, (i',j7) and (i”,j”), such that j'=;" = .

Since m=max {{x;||i=1,...,n}, it follows that:

there are two elements x,., x;-€ X such that |x;|=|x;|=m;

in /1 and /3, there are two steps:

(u, X 0) = (uxp,v) (or (uxp,v) = (. x.v)) and
(U, xp-0) = (uxi, ) (o1 {uxi, v) = (u, X 1)),
such that [u|=k—m and |ux;|=|ux;.|=k.

But this implies that x; = x;- and, thereforc, there exists a pair occurring twice in 7/
and /; contradicting Lemma 4.3, [

Proof of Lemma 4.5, Suppose that there exists w=uyv, with u,ved* yed', |u|=h,
juy| =k, such that: Cr (M Cp )= Cp (k) Cy (k).
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Now we show that the word w, =ur,, where v, is a prefix (proper or not) of v, has
two distinct z-factorizations against the hypothesis that w is the shortest word which
has a double z-factorization.

Let x;,, x;,, ..., X;, be the scquence of words of X that cross the hth position of w in
Jrilet xi ., X L, X, be the sequence of words of X that cross the hth position of
win /o5 let x;,, x4, ..., x;, be the sequence of words of X that cross the kth position of
win/sletx; ox; ... X be the sequence of words of X that cross the kth position
of win /. Note that:

- for any z, such that I <z<r or (r4 1)<z <s, there exists, In /; or in #5, a path from
the step on x;_, that crosscs the hth position of w. to the step on x,__ |, that crosses
the Ath position of w and

- forany z, such that | <z<r or (r+ 1)<z <s there exists a path from the step on x;_,
that crosses the Ath position of w, to the step on x;,_,, that crosscs the hth position of w.
Likewise, in /) or in /5:
for any ¢, such that I €r<por(p+ 1)< <gq. there exists a path from the step on X
that crosses the kth position of w, to the step on x;, . that crosses the kth position
of wand
for any t, such that 1 <t < p or (p+ 1)<t < g, there exists a path from the step on x,,
that crosses the kth position of w, to the step on x;, _,, that crosses the kth position
of w.

Moreover, 1n /1 ( /3). there exists a path from the first step of /1 ( /3) to the step on
x;, {x;,, ), that crosses the ith position of w., and there exists a path from the step on
xj, (x;,), that crosscs the kth position of w, to the last step of £ ( £2).

Since C, (N Cyih)=C, (k}oC,,(k), we have:

- q=s5 and the scquence ji,ja. oo fpfpr 10---00y 18 @ permutation of the sequence
Frian syt ga e iy

- for any step on x;, 1 <i<n, that crosses the hith position of w in #; or in s (for
example (u', x;") = (u'x;, t") with |u'x;| = i 4+ for a suitable j>0), there exists, in /) or
in /7, a corresponding step on x;, that crosses the kth position of w (for example
(u”x,, )= (u”, x;¢"), such that |u"x;|=k+)).

Now, let us give another definition: for any pair («, u”yr), that occurs in /) or in /s,
we call the pair (', u"v} the reduction on y of (i, u”yr) and, likewise, for any pair
{uyt’,¢”) that occurs in /, or in ¢,, we call the pair (uv',2”) the reduction on y of
(uyt’, v”). In other words, when we consider the reduction on y of a pair that occurs in
71 or /5, we “rub out” the factor y from w.

In order to find two distinct z-factorizations of wy., we shall construct two paths £,
and 4 as follows.

To construct ;. we consider the first steps of /, until we find the step on x;, that
crosses the Ath position of w. At this point, we look for the step corresponding to this
one and that crosses the kth position of w. Let us suppose that it is a step on x;,. First,
we consider the two following cases:

(1) If ji=j, then #; goes on with the path from the step on x;, that crosses the kth
position of w to the last step of /.
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(2) 1 j,=j, then 4, gocs on with the path from the step on x;, that crosses the kth
position of w to the last step of /5.

In these two cases, we find one z-factorization of uv, by the reductions on y of any
pair that occurs in 4, and then we can continue by the construction of the path 4.

If j,#j, and j, #j,, then the path 4, goes on, either:

(3) with the path from the step on x;, that crosses the kth position of w to the step
on x;,,  that crosses the kth position of w, if the step on x;, (crossing the Ath position of
w) and the corresponding step on x;, (crossing the kth position of w) have both the
same direction; or:

(4) with the path from the step on x;, that crosses the kth position of w to the step
on x;, , that crosses the kth position of w, if the step on x;, (crossing the /ith position of
w) and the corresponding step on x; (crossing the kth position of w) have different
directions.

In the case (3), we look for the step, that crosses the hth position of w, and that
corresponds to the step on x;, ; let us suppose that it is a step on x;;

In the case (4) we look for the step, that crosses the Ath position of w, and that
corresponds Lo the step on x;,_,; let us suppose that it is a step on x;_.

First, we consider the case with i.=i,, ,.

(5) Ifi.=i,, 1, then 4, goes on with the path from the step on x; , | to the first step
of /5.

In this case, we find two distinct z-factorizations of w,=upr,, where ¢, is a
proper prefix of ¢, by the reductions on p of any pair that occurs in 4, and we
can stop.

Ifi_#i ., then the path 4, goes on either:

(3b) with the path from the step on x,_. that crosses the Ath position ol w, to the step
on x,_,,, that crosses the hth position of w, if the step on x;_ (crossing the hth position
of w) and its corresponding step (crossing the kth position of w) have both the same
direction; or:

{4b) with the path from the step on x,_, that crosses the Ath position of w, to
the step on x;, ,, that crosses the hth position of w, if the step on x;, (crossing
the hth position of w) and its corresponding step (crossing the kth position
of w) have different directions. We continue the construction of 4, in this way,
cvery time looking for corresponding steps, until case (1) or case (2) or case (5)
OCCUrs.

At this point, if we have not stopped, we construct 4, as s, starting from the first
step of /5, and again, cither:

— we arrive to the first step of /| and, in this case, we find, by the reductions on y of any
pair that occurs in 43, two distinet z-factorizations of w, =uv,, where r, is a proper
prefix of v; or:

- we find, by the reductions on y of any pair that occurs in 4, another z-lactorization
of uv. This other z-factorization of uv is distinct from the previous one (it suffices to
note that, at least, the first steps of these z-factorizations of yv are different),

Thus, the lemma is proved. | |
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