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Abstract
We study a physical system consisting of a Bose–Einstein condensate confined to a ring shaped lattice
potential interrupted by three weak links. The system is assumed to be driven by an effective flux
piercing the ring lattice. By employing path integral techniques, we explore the effective quantum
dynamics of the system in a pure quantumphase dynamics regime.Moreover, the effects of the
density’s quantum fluctuations are studied through exact diagonalization analysis of the spectroscopy
of the Bose–Hubbardmodel.We demonstrate that a clear two-level system emerges by tuning the
magneticflux at degeneracy. The lattice confinement, platform for the condensate, is realized
experimentally employing a spatial lightmodulator.

1. Introduction

Atomtronics provides for a new twist in quantum technology [1, 2]. A defining theme of the field is to confine
ultra-cold atoms in laser traps of different intensities and shapes and put them into themotion of coherent flows.
With this approach, quantumdevices with a radically new architecture can be conceived; at the same time the
scope of quantum simulations could be enlarged considerably [3].

Much interest has been devoted to Bose–Einstein condensates confined to ring-shaped potentials that, in a
way, form themost elementary atomtronics circuit [4–6]. Ring-shaped condensates interrupted byweak links
are atomtronics quantum interference devices (AQUIDs), in analogywith the SQUIDs conceived inmesoscopic
superconductivity [5–9]. Similar to SQUIDs, AQUIDs enclose a great potential both for basic science and
technology, with control of noise, and reduced decoherence. They have been suggested, in particular, to provide
a physical realization of qubits. Indeed, rf-AQUID, a ring-shaped condensate interrupted by a single weak-link,
were demonstrated to be governed by an effective qubit dynamics [10–13]. The two states of the qubit are the
symmetric and anti-symmetric combinations of the clockwise and anti-clockwise flow-states [14]. In [12, 13],
the rf-AQUID is realized by a bosonic fluidwith an additional lattice confinement along the ring-shaped
potential. The resulting device is the cold atoms analogue of themany-Josephson-junction fluxonium [15].
Indeed, assuming that the bosons occupy only the lowest Bloch band, the presence of the lattice helps to set the
superfluid current to themost advantageous regime for the device’s operation. For instance, because of the one-
dimensional dynamics, the vortex formation rate along theflow is negligible, which should in turn yield a
favorable scaling of the qubit gapwith the bosonic density [12] (see also formula (5)).Moreover, the lattice
provides a natural way to implement a spatially localizedweak-link (on the scale of the lattice spacing). Finally, it
provides an easyway ‘infrastructure’ to realize interacting ring–ring architectures [16].
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Although the physics of the two-level system can be traced in the ground state of the system [13, 17], a
notoriously challenging problem (both for SQUIDs andAQUIDs) is to address the qubit and the superposition
state experimentally. For the AQUIDs, the fingerprint of the effective qubit dynamics would be the onset of Rabi
oscillations in the atomic density of the flow-states [12, 13]. Besides technical/experimental difficulties, a
possible bottleneck arise from the narrow range of parameters required in order that the systemprovides awell
defined two-level systemwith appreciable persistent currents [18, 19].

In this paper, we adapt the logic applied in the context of solid state Josephson junctions [18, 19] to a specific
cold atoms setup: we study a Bose–Einstein ring condensate with threeweak links. As for the case of our rf-
AQUID [12, 13], our implementation relies on the lattice potential confinement along the ring. By a
combination of analytic and numerical techniques, we demonstrate that the system can sustain a two-level
effective dynamics.We find a set of parameters which considerably enlarge the regime inwhich the qubit
dynamics arise.We also experimentally realize a trapping potential of a ring-shaped optical lattice with a

m~20 m diameter using a spatial lightmodulator.
The paper is outlined as follows. In the section 2, we introduce theHamiltonians describing themicroscopic

dynamics of the system and review the low energy properties of the rf-AQUID realizedwith a ring lattice of
condensates. In the section 3we derive the path integral effective quantumdynamics of the ring condensate
trapped in a ring lattice with threeweak links. In the section 4, we study the system through exact diagonalization
(ED). In the section 5wewill describe the experiment we carried out to realize the platform for the system. The
section 6 is devoted to the conclusions.

2.Models

WeconsiderNBosons in anMsite ring described by the Bose–Hubbardmodel. TheHamiltonian reads

å= - - +
=

W
+( ) ( ) ( )†

⎡
⎣⎢

⎤
⎦⎥n n a a

U
t

2
1 e h.c. . 1

i

M

i i i i iBHH
1

i
1

Where ( )†a ai i are bosonic annihilation (creation) operators on the ith site and = †a ani i i is the corresponding
number operator. Periodic boundaries are imposed,meaning that ºa aM 0. The parameterU takes into account
thefinite scattering length for the atomic two-body collisions on the same site. The hopping parameters are
constant =t tj except in the threeweak-links lattice sites i i i, ,0 1 2 where they are = ¢ = = t t t t t,i i i0 1 2

. The ring
is pierced by an artificial (dimensionless)magnetic fluxΩ, which can be experimentally induced for neutral
atoms as aCoriolis flux by rotating the lattice at constant velocity [20, 21], or as a synthetic gaugeflux by
imparting a geometric phase directly to the atoms via suitably designed laserfields [22–24]. The presence of the
fluxΩ in equation (1) has been taken into account through the Peierls substitution:  - Wt tei i

i . The
Hamiltonian(1) ismanifestly periodic inΩwith period p2 ; in addition it enjoys the symmetry W « -W. In the
absence of theweak-link, the system is also rotationally invariant and therefore the particle-particle interaction
energy does not depend onΩ. Themany-body ground-state energy, as a function ofΩ, is therefore given by a set
of parabolas each corresponding to awell defined angularmomentum state, shiftedwith respect to each other by
aGalilean transformation and intersecting at the frustration points pW = +( )n2 1n [25, 26]. The presence of
theweak-link breaks the axial rotational symmetry and couples different angularmomenta states, thus lifting the
degeneracy at Wn. This feature sets the qubit operating point [12, 13].

It is worth noting that the interactionU and theweak-link strength induce competing physical effects: the
weak-link sets an healing length in the density as a further spatial scale; the interaction tends to smooth out the
healing length effect. As a result, strong interactions tends to renormalize theweak link energy scale [13, 27].

In the limit of a large number of bosons in eachwell =n̄ N M , ~ f¯a n ei
i i, and the Bose–Hubbard

Hamiltonian (BHH) equation (1) can bemapped to the quantum-phasemodel employed to describe Josephson
junction arrays [28, 29]:

å f f= - - - W
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+( ) ( )
⎡
⎣⎢
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⎦⎥n

U
J

2
cos , 2

i

M

i i i i
1

2
1

where f d=[ ] n , ii l il are canonically conjugate number-phase variables and ~ ¯J nti i are the Josephson
tunneling amplitudes.

The rf-AQUID qubit. In this case, a single weak link occurs along the ring lattice  =t t . The presence of the
weak link induces a slow/fast separation of the effective (imaginary time) dynamics: the dynamical variables
relative to theweak link are slow compared to the ‘bulk’ ones, playing the role of an effective bath (non-etheless,
we assume that the ring system is perfectly isolated by the environment). Applying the harmonic approximation
to the fast dynamics and integrating it out, the effective dynamics of the AQUID is governed by [12]
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= + + ( )‐    . 3eff syst bath syst bath

The slow dynamics is controlled by

j j= + - - W( ) ( ) nU E E cos , 4L Jsyst
2 2

wherej is the phase slip across theweak link, with =E J ML , and = ¢E JJ . For d E E 1J L ,syst describes
a particle in a double well potential with the two-minima-well separated from the other features of the potential.
The twoparameters, U and ¢t t , allow control of the two level system. The two localminima of the doublewell
are degenerate for pW = . Theminima correspond to the clock-wise and anti-clockwise currents in the AQUID.
Because of the quantum tunneling between the twominima of the double well, the two states of the system
(qubit) are formed by symmetric and antisymmetric combinations of the two circulating states. TheWKB level
splitting is

p d
D - d- - ( )( )⎜ ⎟⎛

⎝
⎞
⎠

UE2
1

1
e . 5

J E U12 1 1J
3 2

From this formula we can see that the limit of aweak barrier and intermediate to strong interactions form the
most favorable regime to obtain a finite gap between the two energy levels of the double level potential [13].
Incidentally, we comment that the bathHamiltonian in equations (3) and (4), is similar to the one describing the
dissipative dynamics of a single Josephson junction in the framework of theCaldeira–Leggettmodel [30]. As
long as the ring hasfinite size, however, there are afinite number of discretemodes and no real dissipation
occurs [31]. In the limit  ¥N , a proper Caldeira–Leggettmodel is recovered. In agreement to the arguments
reported above, the qubit dynamics encoded in theAQUID is less and less addressable by increasing the size of
the ring [12, 13].

Finally, we observe that the condition E E 1J L imposes specific constraints on the physical parameters
thatmay be difficult to fulfill. For example, because of themesoscopic nature of the persistent currents,M
cannot be too large. On the other hand, small values of ¢J J may block persistent currents (see [13] for a
thorough analysis).We shall see that the proposed architecture with three-weak-links realize a two-level system
with awider range of exploitable parameters.

3. Effective quantumdynamics

In this section, we derive the low energy effective phase dynamics of the system. To this end, we elaborate on the
imaginary-time τ path integral of the partition function of themodel equation (1) in the limit of large
fluctuations of the number of bosons at each site [12, 31].We first perform a local gauge transformation

 Wa a el l
li eliminating the contribution of themagnetic field everywhere except in one of theweak link sites

[32]). Here, we refer to the quantum-phaseHamiltonian (2):
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where theweak links are placed at the sites i i i, ,0 1 2 with W = W0 , W = W = 01 2 .
The partition function of themodel equation (2) is

ò f= µb f- -( ) [{ }] ( )[{ }]Z Tr De e , 7H
i

SBH i

where the action is
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where q f f-a +a ai i1 .We assume that theweak links are sufficiently spaced tomake the nearest neighbor
phase differences in between them (fast variables) small. This implies that substantial phase slips occur at the
weak linkswith the constraint q q q p+ - = ( )0 mod 20 1 2 . The goal, now, is to integrate out the phase variables
in the ‘bulk’.With our assumption, the harmonic approximation can be applied to the bulk phases
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The cases =   { }i i i i1, 1, 10 1 2 involve phase variables coupled to qa. Let us define: f j- +q
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where f f j f f j f f j f f yº = ¼ -- + - + - +{ } { }j M,... , , ... , , ... , , ... , 1, , 3i i i i i i M j1 1 0 2 1 1 2 1 2 20 0 1 1 2 2
.

The effective action, f[{ }]S i , can be split into two terms f q y q= +a a[{ }] [{ }] [{ } { }]S S S ,i j1 2 with
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For our device, = ¢J J0 , = = J J J1 2 , andwe fix ºi 10 and i i,1 2 equidistant from i0. In this way, the system

enjoys amirror symmetry around i0: y y p=
-
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4 2 (the cases corresponding

to general configurations of theweak linkswill be studied elsewhere):
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The integral in y{ }k involves the interactionwith the harmonicmodes describing the phase slips away from the
weak links. Such integration is standard (see f.i. [33] for a general textbook and [31, 34] for recent applications
particularly relevant for the present problem) leads to a non-local kernel in the imaginary time:

ò t t q t t t q t¢ - ¢ ¢a( ) ( ) ( )Gd d . The explicit formof t t- ¢( )G is obtained by expanding y{ }k and qa in
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effective action reads
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Weobserve that qa( )V defines the effective dynamics of the superconducting Josephson junctions flux
qubits [18, 19], but perturbed by the q2 terms; by numerical inspection, we see that the corresponding
coefficients are small in units of J, and decreases by increasingM (see figure 1).Moreover, onfigure 2we
introduce the numerical result for the spectrumof the quantumparticle whichmoves in the potential given by
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equation (15) under the additional assumption that q2 terms do not contribute. From thisfigurewe clearly see
that near the frustration point pW = two lowest energy levels arewell separated from each other and from
higher excitations, whichmeans that effective dynamics of the systemdefines a qubit.

4. Spectroscopy of the threeweak junctions AQUID

In this sectionwe study the low-lying spectrumof the Bose–Hubbardmodel(1) in the lowfilling regimewith the
help of the EDmethod, which is particularly well suited for the small systemswith small total number of particles
[35, 36]. This kind of analysis has been implemented previously for the AQUIDdevices with oneweak link [13]
and the technical details regarding the implementation of the EDmethod can be found in the appendixmaterial
of the aforementioned article.We stress that in contrast with the quantumphasemodel herewe take into
account the effect of the numberfluctuations and hence of the amplitude of the superfluid order parameter. The
presence offinite weak links, breaks the axial rotational symmetry and couples different angularmomentum
states, thus lifting the degeneracy at pW = by an amountDE1. For all the cases studiedwith the EDmethod in
thismanuscript, the impurities are not assumed to be equidistant (in contrast to section 3): = ¢t t2 and
= = t t t5 8 . Provided other excitations are energetically far enough from the two lowest energy states, this will

identify the two-level systemdefining the desired qubit and its working point. In order to analyze whether the
qubit can performwell we study two quantities which play a central role for thismanuscript: the qubit energy

Figure 1. Scaling of the coefficients cα in (15)with the number of sites in the lattice ring for equidistant weak links (M is even and
multiple of 3).

Figure 2. Six first energy levels of the reduced system given by the effective potential equation (15) as a function of the dimensionless
external fluxΩ. Here ¢ =J J0.7 ,  =J J0.8 , =U J0.5 , and q q= -1 2.

5
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gapD = -E E E1 1 0 and the so-called qubit quality factorD DE E1 2, where E0, E1 andE2 are the ground state,
first excited state, and the second excited state, respectively, of themany-body BHHgiven by the equation (1).

For a functional qubit it is required that in the vicinity of the frustration point ( pW = ), the qubit has a finite
energy gapDE1, and that quality factor is smaller than 0.5 (whenD D =E E 0.51 2 , then themany-body
Hamiltonian has equidistant energy levels, which is normally an unfavorable case for defining a qubit since the
second excited level can be easily populated.WhenD D >E E 0.51 2 the two lowest energy levels are quite close
to the other energy levels, which increases the decoherence of the qubit by populating higher energy levels).

The average value of the persistent current in themesoscopic ring optical lattice can be defined via the
following thermodynamic relation [37, 38]:

p
W = -

¶ W
¶W

( ) ( ) ( )


I
E1

2
. 17i

The geometricalmeaning of the persistent current is given by the slope of the tangent line to the graph of the ith
energy levelEi, when it is plotted as a function of the external artificialfluxΩ. Persistent currents aremesoscopic
phenomenon, and as it was evidenced in [27], persistent current amplitudes for the ring potential with a delta-
barrier scales as a power lawwith the system size. The power law scalingwas evidenced as well for the energy gap
D = -E E E1 1 0 in [13]. In order to have a good energy gap and sufficient amplitude of the persistent current we
restrict our discussion in the currentmanuscript only to themesoscopic ring lattices (M∼ 10).

The low energy spectrumof theHamiltonian given by equation (1) as a function of the dimensionless flux
pW 2 is demonstrated on the upper panels offigure 3. It is clearly seen that near the degeneracy point pW = the

qubit has afinite energy gap (D ~ = =( ) ( )E t U U0.05 1 ; 0.25 41 ) and the ground and the first excited states
arewell separated (D D ~ = =( ) ( )E E U U0.1 1 ; 0.23 41 2 ) from the higher energy levels.

As demonstrated in the previous study [13], it is possible to obtain a good qubit only in the range of
interactions varying from strong to the infinitely strong.However, as it can be seen from the left panel of the
figure 3, in the case ofmild interactionU=1 it is possible to define a good qubit in the vicinity of the frustration
point by introducing additional weak links in the system. It is interesting to point out that in the vicinity of the
frustration point,mesoscopic currents in the ground state and the first excited state have the opposite signs as
can be seen from the lower panels offigure 3, whichmeans that the two quantum states of the qubit are given by
the clockwise and anti-clockwise circulating currents.Moreover, as can be seen from the same panels offigure 3,
for the same strengths of theweak links, the amplitude of the persistent current is bigger in the limit of theweakly
interacting system, which in turn improves the qubit state readout.

The dependence on the strength of interaction of the qubit energy gap and the quality factor (at the
degeneracy point) is shown infigure 4 for the different values of the two equal weak links t . First of all, as can be
seen fromboth panels, the quantities of interest display non-monotonous behavior as a function of interaction,
which has previously been observed for the case of the rf-AQUID [13, 39] for the ring lattice systems. This kind

Figure 3.Upper panel: low-energy spectrumof the Bose–Hubbardmodel for various values of the interaction. The four lowest energy
levels as function of pW 2 . Lower panel: persistent currents in the ground state(solid line) and the first excited stat(dashed line) as a
function of the dimensionless flux.Here persistent current defined in such away that its amplitude is 1.HereM=8,N=10,
¢ =t t0.5 and  =t t0.8 ; t is the energy unit.
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of non-monotonous dependence occurs because of the non-trivial screening of the barrier whichwas
thoroughly analyzed in [27]. It is also easy to notice that qubit energy gap is also a non-monotonous function of
t for the interactions ranging frommild to strong, and ismonotonously increasing with t in the limit of very
weak interactions. The non-monotonous behavior is due to the overlap of healing lengths in the small sized
systemwhich gives rise to the non-trivial density distribution along the ring, demonstrated in section 4.1. It is
also clearly seen from thesefigures that if onefixes the interaction strength it is possible to adjust both the qubit
energy gap and the quality factor by changing the t . This provides at our disposal an extra parameter for
defining a good qubit and for realizing single and two-qubit gates (the authors of the current article will address
the issue regarding the qubit gates in a future publication). In the limit of veryweak interactions it is not possible
to define a good qubit sinceD D =E E 0.51 2 , the quality factor significantly improves with growing interaction
strength and it is well below 0.5 for the interactions ranging frommild to strong. After reaching itsminimum
value the energy gap increases with the strength of the interaction, however it is important to note that for large
values of the interactions the amplitude of the persistent current is smaller than for the intermediate values of the
interaction (a similar trendwas noticed in rf-AQUID [27]).We conclude that a functional qubit can be defined
for interactions ranging frommild to strong by adjusting the strength of the two additional weak links t ,
howeverwe stress that the highest currents in the system are obtained for themild interaction strengths. In the
section 4.2wewill demonstrate that our approach improves the scaling of the energy gapwith the filling factor in
the limit ofmild interactions(U= 1).

4.1.Density profiles
In this sectionwe focus on the density distribution of cold atoms along the ringwhen the system is in the ground
state and close to the qubit working point, pW = .

An evident effect of the barrier is a reduction of the particle density in its vicinity; depending on the ring size,
thewhole density profile along the ringmaywell be affected. The interplay between the interaction strengthU
and the strength of theweak links implies different behaviors, as exemplified infigure 5 for themesoscopic ring.
The depth of the density depression in the case of one impurity increasesmonotonously with the barrier strength
[13, 27], while its width decreases with increasingU since the density can be reduced at the cost ofmulti-
occupancy of the other sites; whichmeanswith increasing interaction strengthmultiple occupancy and thus the
healing length tends to decrease in order tominimize the ground state energy. As it is clearly seen from the left
panel offigure 5, the density distribution at the lattice sites 5 and 8 decreases with increasing barrier strength
(which is equivalent to the decreasing hopping strength t ). However, at lattice site 2 even if we keep the same
barrier strength ¢t still the density is affected because of the overlap of the healing lengths of theweak links.
Moreover, the biggest density depression is achievedwhen the other two links have the smallest barrier strengths
 =t t0.8 (which is given by the blue curve). And subsequently, the density depression decreases with increasing
t at the lattice site 2.

As explained previously, with increasing interactions the healing length decreases which is clearly seen from
the right panel offigure 5.However the appearance of Friedel oscillations is apparent especially for the case of
strongweak links given by the red curves. This kind of oscillations are a result of the strong correlations of 1D
bosons that respond to impurities similarly to fermions since for strong interactions the systemundergoes
fermionization [40].Wefinally observe that, formoderate interaction (U= 1 infigure 5), theweak links are

Figure 4.Aqubit energy gap DE1 (left panel, which is plotted in the log-log scale) in units of t and the qubit quality factor (right panel,
which is plotted in the semi-log scale) as a function of the interactionU/t. Herewe considerM=8 , pW = ,N=10 and ¢ =t t0.5 .
In each plot various curves represent  =t t0.4 (red solid lines), t0.6 (green dashed lines), and t0.8 (blue dotted lines).
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effective enough to determine commensurate effects on a tripartite ring. For stronger interaction, instead, the
weak links are washed out with the density distribution along the ring that is nearly uniform along the ring; in
section 6wewill see that such a feature implies commensurate effects andMott peaks at values of the filling of the
uniform system.

4.2. Scaling of the qubit energy spectrumwith thefilling
Infigure 6we present our results for the qubit energy gap at the frustration point for two different ¢t , ¢ =t 0.5
(top), and ¢ =t 0.9 (bottom) as a function of the filling at fixed system size, studying its dependence on the
strength of the two equal weak links t for the different interaction strength values.

The top panels offigure 6 present the data forfixed interaction strengths forDE1 ( =U t 1 and =U t 4,
respectively)with different curves representing  =t t t t0.4 ; 0.6 ; 0.8 .

Figure 5.Density profiles á ñnj at pW = , along the ringwithM=8 sites,N=15 particles and ¢ =t 0.5 (top), ¢ =t 0.9 (bottom) for
different interaction regimes. In each plot various curves represent  =t t0.4 (red circles), t0.6 (green triangles), and t0.8 (blue
diamonds). t is the energy unit.

Figure 6.Many-body energy gapDE1 in units of t as a function of the total particle numberN. Here we considerM=8 lattice sites
and pW = and ¢ =t t0.5 (top), ¢ =t 0.9 (bottom). In each panel various curves represent  =t t0.4 (red circles), t0.6 (green
triangles), t0.8 (blue diamonds). t is the energy unit.
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At smallU (figure 6 top-left), we observe two kinds of behaviors for the energy gap:monotonously
decreasing (  =t t0.8 ) andmonotonously decreasing butmodulatedwith an oscillatory behavior
 =t t t0.4 ; 0.6 . First of all, we remark that compared to the case of the rf-AQUID in [13] introducing extra
impurities in the system improves the scaling of the energy gapwith the filling factor, which can be clearly seen
for the case given by the blue curve. The reason for the very fast decrease of the gap in the case of the rf-AQUID is
the fact that the healing length scales as~ nU1 , and consequently soon enough the system is not affected by
the barrier, which opens the gap at the frustration point. As it was pointed out in section 4 having several weak
links in the systemmodifies significantly the dependence of the healing length from the particle number and the
interaction strength due to the effect of the overlap of several healing lengths (this effect is also clearly seen from
the density profiles analyzed in the previous section).We also notice that the energy gap and quality factor have
non-monotonous dependence on t as it was already evident in section 4.We conclude, that the values of the
weak links  =t 0.6; 0.8 are favorable for defining a good qubit with afinite energy gap (D ~E t0.051 ) and good
quality factor (D D ~E E 0.11 2 ).

For large values of the interaction strength (figure 6) the system effectively enters into theMott regime.We
comment that the superfluid toMott transition normally occurs in the thermodynamic limit. However,
signatures of this transition can be seen even in themesoscopic systemunder study. An apparent signature of the
Mott phase is the appearance of theMott peaks for the values of commensurate fillings (which in our case
corresponds to the number of particles =N 8; 16). It is interesting to point out that in the case of the rf-
AQUID, for a strong barrier, theMott peaks appear not exactly at the commensurate filling, which occurs
because the strong barrier effectively opens the ring and the system reduces to an -M 1 lattice site ring.
However, in the case of threeweak links, theMott peaks appear exactly at the commensurate filling and this can
be understood from the fact that the density distribution in this case is almost homogeneous along the ring (see
right panelfigure 5).We also conclude from figure 6 that for the values of  =t t t0.6 ; 0.8 , a good qubit can be
obtainedwithD ~E 0.31 andD D ~E E 0.31 2 for all values of thefilling except for commensurate fillings,
where the quality factor becomes 0.5, seefigure 7. This is unfavorable for defining a functional qubit.

5. Experiment

Weproduce the optical potential using a spacial lightmodulator (Holey Photonics AG, PLUTO-NIR II), SLM
[12]. A collimatedGaussian beam, of 8 mmdiameter, is reflected from the SLM’s surface forming an image
through a f=200 mm lens. The light is then split into the two sides of our system,with 10%of the light in the
‘monitoring’ arm, and 90% into the ‘trapping’ armused to create a red-detuned dipole trapping potential for a
gas of Rb87 atoms. ATi:Saph laser (CoherentMBR-110)produces a 1W, 828 nmbeam,which is spacially
filtered and collimated, before reflection on the SLM. To produce the trapping potential the SLM’s kinoform is

Figure 7.Many-body qubit quality factor as a function of the total particle numberN. Here we considerM=8 lattice sites and pW =
and ¢ =t t0.5 (top), ¢ =t 0.9 (bottom). In each panel various curves represent  =t t0.4 (red circles), t0.6 (green triangles), t0.8 (blue
diamonds). t is the energy unit.
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imaged through a 4f lens system reducing the beam size to 3 mmdiameter and focused through a 50×
microscope objective with a 4 mm focal distance and a numerical aperture ofNA=0.42 (Mitutoyo 50×NIR
M-PlanAPO). Themonitoring armof the system creates an image of the potential through a 10× infinity-
correctedmicroscope objective focused on aCCDcamera (PointGrey FL3-GE-13S2M-C). TheCCDcamera
views, therefore, an enlarged image of the optical potential.

The SLM is comprised of a liquid-crystal-on-silicon display of 1920×1080 8 μmpixels, with 8-bit phase
values from0 to 2π, covering a 15.36×8.64 mm regionwith afilling factor of 87%. The individual pixels create
a phase-shift pattern (kinoform) on the incoming light, which can be used to create arbitrary 2Doptical
potentials on the image-plane of a Fourier transforming lens. To construct the kinoform applied to the SLMwe
used an improved version of themixed-region-amplitude-freedom (MRAF) algorithm [41, 42]with angular
spectrumpropagator. A region outside of the desired pattern is used to collect unwanted light contributions
which result from the iterativeMRAF algorithm. TheMRAF algorithm iteratively finds a solution tominimise
the error, within the region of interest, between the computationally produced image (the Fourier transformof
the kinoform) and the desired result. However, when this kinoform is applied to the SLM there arise additional
errors due to imperfections in the SLMand aberrations in the optics.

To increase the accuracy of the output potential we use the computationally generated kinoform and
produce an image of the optical potential in themonitoring armof our system, and use this as a further source of
feedback to theMRAF algorithm.Ourmethod is broadly similar to Bruce et al [43], however it is specialised for
producing ring-lattices. Figure 8 shows a flow chart of our improved algorithm. In the first step, the target
image,Ti, and the initial phase, f0, is loaded as an input to theMRAF code. This runs for 20 iterations (this was
found to be sufficient to get good convergence inmost cases) and outputs a phase kinoform,fi. The kinoform is
now applied to the SLMand an image recorded on the camera in themonitoring armof our system,Mi. The
discrepancy,Di, between the original target and themeasurement is calculated and used to form an updated
targetTi+1. Here our algorithmdiffers from [43] aswe take the discrepancy to be = - +( )D M T T2i i

2
0
2

0. Also,
we do not take into account thewhole image, the discrepancy is calculated by comparing themaxima and
minima around the azimuthal, 1D, profile of the lattice to the target profile. The targetsmaxima andminima are
then adjustedwith a= ++T T Di i i1 , whereα is a problem specific feedback gain and i the iteration number. The
process now repeats with, f0 andTi+1, as the inputs to theMRAF code. The feedback gain,α, is set to be 0.3 to
ensure a quick convergence and this process iterates 30 times. At this point the algorithm is complete and the
best image from the setM is selected thatminimises the discrepancy below 2%.With thismethodwe produce
the ring-lattice potential shown infigure 9 (left), that on the trapping side of our apparatus creates a scaled-down
latticewith radius of 5–10 μmwithmore than sufficient power to trap ultra-cold atoms.On the right offigure 9,
the azimuthal profile around the ring lattice is shown. The red curve indicates the profile on thefirst iteration of

Figure 8.Our feedback algorithm. Starting at the top left the initial phase and target are used in theMRAF code. This generates the
phase guess, fi, which is uploaded to the SLMand an image captured by theCCDcamera,Mi. This is used to calculate the discrepancy
between the image and the original target, and a new targetTi+1 is created. The loop then repeats.
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the feedback loop. After 5 iterations (blue curve), the algorithmhas converged significantly towards the original
target (solid line).

6. Conclusions

Weproposed the construction of aflux qubit employing a ring condensate trapped in a regular lattice potential
except for three specific lattice points with a reduced tunneling amplitude. The threeweak links solutionwas
originally suggested in quantum electronics to facilitate the function of the system as a qubit.We apply a similar
logic leading tofluxonium from the rf-SQUID: the continuous quantumfluid, in our system, is replaced by a
chain of junctions connecting the different weak links.We believe that the additional lattice helps in adjusting
the persistent current flowing through the system. The threeweak links architecture, indeed, realizes a two-level
effective dynamics in a considerably enlarged parameter space. To this end, we applied a path integral and a ED
analysis which provide information on the complementary bosonic density regime.We comment that, in the
rationale adopted in the present paper, the analytical and numerical work complement each other. The path
integral approach is both of foundational nature and explores the qubit functionality. Indeed, it provides
essential insights on the physical reason behind the system’s spectroscopy emerging by numerical inspection in
section 4.Moreover, our analytics cover the regime of largefillings and ‘medium system size’ that is beyond
reach of the results based on the ED.On the other hand, the latter provides a proof of the effective two level
systemdynamics, independently on the approximations employed in the analytical treatment (small quantum
fluctuations of the bosonic densities) and for small system size. Overall, we believe that our system is indeed
governed by a two-level dynamics in awide range of parameters.

With path integral techniques, we obtained the quantumdynamics remaining from the integration of the
fast degrees of freedomof the system in the limit of a quantumphasemodel (valid for large bosonic densities). It
turns out that the effective action is similar to that one defining the quantumdynamics of the superconducting
flux qubits [18, 19]. The ED study deal with systems of ~M 10 and lowfilling ( ~¯ –n 1 2) governed by the Bose–
Hubbard dynamics (for small bosonic densities). Our analysis demonstrates that the systemwith threeweak
links givesmoreflexibility and freedom for a functional qubit: contrary to the case of the rf-AQUID,where the
only tunable parameters are the interaction strength and the height of the barrier of theweak link. Specifically,
we demonstrated that interactions can be varied frommild to strong valueswith  ¢t t , further parameter to
adjust both the qubit energy gap and the quality factor.However, a substantial persistent current is obtained in
the limit ofmild interactions; in the limit of large interactions, quantumfluctuations of the phase implies a
demoted phase coherence, implying in turn that a smaller persistent current can be sustained in the system.

Our ED study shows that if onefixes the interaction strength it is possible to adjust both the qubit energy gap
and the quality factor by changing t . This provides an extra parameter for defining a good qubit and for
realizing single and two-qubit gates (the qubit gates will be addressed elsewhere).Moreover, it is demonstrated
that the parameter regime forwhich the system can perform as a qubit is enlarged, since a functional qubit can be
obtained even atmoderateU interactions. This can be important for the actual realization of the device since a
substantial persistent current is expected to be obtained in this case, section 4. In section 4.2we have
demonstrated that, compared to the rf-AQUID, a three-weak links systemhasmore favorable scaling for the

Figure 9. Left: final image of the ring lattice after completion of the feedback algorithm. Right: azimuthal profile. The solid line plots
the target profile. This is compared to the result after the 1st and 5th iteration of the feedback algorithm (red and blue lines
respectively).
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energy gap as a function of the filling factor in the limit ofmild interactions (U= 1).Moreover, non-trivial
physics emerges due to the overlap between the healing lengths established in the systemby the insertion of the
weak links. Since there are three healing lengths in the systemof a small size their overlap generates a non-trivial
density distribution along the ring, which is shown in section 4.1. As noted for the rf-AQUID in [13], and also in
the present case we observed that the interaction and strength of theweak links are responsible for competing
effects (see figure 5).

In section 5we described our experimental apparatus based on a phase-only spacial lightmodulator, and our
feedback algorithm to produce the ring-lattice potential. Our setup and algorithm can produce ring-lattice
potentials with arbitrary link strengths, down to radii of 5–10 μmwith sufficient power to trap Rb87 atoms.
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