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Abstract: We introduce and analyze theoretically a procedure that combines slow adiabatic stimulated
Raman adiabatic passage (STIRAP) manipulation with short nonadiabatic Rabi pulses to produce
any desired three-level state in a qutrit system. In this protocol, the fast pulses create superpositions
between the ground state and the first excited state, while the slow pulses transfer an arbitrary
population to the second excited state via STIRAP. We demonstrate high-fidelity quantum control
of the level populations and phases and we characterize the errors incurred under the breakdown
of adiabaticity. In a configuration where an ancillary state is available, we show how to realize
a nondemolition monitoring of the relative phases. These methods are general and can be
implemented on any experimental platform where a quantum system with at least three accessible
energy levels is available. We discuss here in detail experimental implementations in circuit quantum
electrodynamics (QED) based on the results obtained with a transmon by Kumar et al., where the
control of population using the hybrid Rabi-STIRAP sequence has been achieved.

Keywords: quantum computing; superconducting qubits; stimulated Raman adiabatic passage;
nonadiabaticity; quantum control; quantum gates; Josephson junctions

1. Introduction

Using multi-level quantum systems instead of the commonly employed two level qubits extends
the Hilbert space of the system, which in turn would reduce the number of elements needed to perform
a given computational task [1–3]. However, this advantage comes at the cost of increased requirements
for the accuracy of the control pulses used to manipulate the states of the system. A key operation
in quantum computation is the efficient and robust preparation of the initial state, which serves as
a starting point of quantum algorithms. For example, in a two level system the application of a π-pulse
switches the qubit from the ground state to the first excited state, and any two-level superposition
can be easily created by applying Rabi pulses with appropriate length and amplitude. The task
becomes more complicated if we intend to control a system with three states |0〉, |1〉, and |2〉 because
some of the transitions might be forbidden due to selection rules. In this case, one has to transfer the
population in some other way. A simple approach would be to apply a sequence of pulses, first a π01

pulse followed by a π12 pulse: however, this sequence will be quite sensitive to the timing and the
amplitude of the pulses. This makes the generation of such a sequence an experimentally demanding
task—in general susceptible to environmental fluctuations and instrumentation errors.
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However, the state preparation can be made robust by using adiabatic control pulse sequence.
The adiabatic population transfer is based on modifying the parameters of the eigenstates of the system.
If the change in the eigenstates of the systems is slow enough, the system remains in the instantaneous
ground state of the Hamiltonian, which is adiabatically (transition-free) modified by the change of the
parameters. The stimulated Raman adiabatic passage (STIRAP) algorithm [4,5] realizes the population
transfer by employing two slowly varying, temporally slightly overlapping control pulses applied
on 12 and 01 transitions. STIRAP acts only in the subspace {|0〉, |2〉} of the initial state |0〉 and target
state |2〉, and it does not populate the intermediate state |1〉. This can be understood as a destructive
interference on the state |1〉, together with the formation of a zero-eigenergy dark state in the subspace
{|0〉, |2〉}. In a full STIRAP sequence, the system follows adiabatically the dark state, starting from the
ground state and ending in the second excited state.

In recent years, the field of superconducting qubits has experienced a fast experimental
progress, and state-preparation techniques such as those mentioned above became more and
more relevant for the aim of realizing high-fidelity state preparation in quantum processors.
Various experiments demonstrated already that three-level and multilevel systems can be realized
using superconducting circuits based on the Josephson effect [6–13]. Several theoretical proposals
addressed the implementation of STIRAP in these devices [14,15], including Cooper pair boxes [16–18].
In the case of a transmon [19], STIRAP becomes relevant because the direct transfer of population
from the ground state to the second excited state is forbidden in the first order due to a vanishingly
small electric dipole moment between these two states. Here we demonstrate a method to fully control
the complex coefficients of the wave-function, by using a combination of Rabi pulses and STIRAP.
We show that if the STIRAP sequence is preceded by a non-adiabatic pulse on the 0–1 transition, it is
possible to create an arbitrary initial state in the full space spanned by {|0〉, |1〉, |2〉} states. Earlier this
method has been studied in [20], but only the control of the absolute values of the wave-function
amplitudes (state populations) has been demonstrated. The result is important for the field of quantum
control and in particular for analog quantum simulation [21], opening an alternative route to the
emulation of large-spin systems [22]. Our method can be extended to multilevel systems by combining
Rabi pulses with multiple adiabatic pulses (e.g., straddle STIRAP) [23–27].

The paper is organized as follows: in Section 2 we present our main results regarding a qutrit
under a hybrid Rabi-STIRAP pulse. We derive an analytical expression for the wavefunction at
an arbitrary time and we put in evidence the role of the phases. We study the populations and the
relative phases between the three states as a function of the length of the Rabi pulse and of the width
of the STIRAP pulses. We show that a robust, nonoscillating behaviour is obtained only under the
condition of adiabaticity for STIRAP. In Section 3 we analyze the case of an additional fourth state,
and demonstrate a protocol where this state is used to monitor the phases between the initial state
and the target state. In Section 4 we present a more in-depth experimental evaluation of the transmon
for implementing the proposed experiments. Finally, our conclusions are presented in Section 5 and
a further generalization of the results of Section 2 is delegated to Appendix A.

2. Hybrid Quantum Control in Qutrits

It is always possible to combine diabatic Rabi pulses and STIRAP sequence: the question is if the
final effect of the combined pulse can be understood in a simple enough way, such that, by tuning one
parameter of either the Rabi or STIRAP pulse we are able to give a simple recipe—easy to implement
experimentally—for producing the desired tripartite state. It is not obvious that this is possible: indeed,
the first Rabi pulse, acting on the 0–1 transition, will produce an occupation of the first excited state.
Therefore the subsequent STIRAP-like pulse sequence does not stabilize a dark state, the whole process
involving both destructive and constructive interference in a non-obvious combination. A related
question is the impact on interference caused by the manipulation of the phases of the fields, which is
a key ingredient for efficient implementation of general rotations in the Hilbert space. In this section
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we give an analytical treatment of this problem using the adiabatic approximation, supported by
numerical results accounting for effects of nonadibaticity.

Our Hamiltonian takes the standard form for a driven three-level system in the rotating-wave
approximation and with the two drives on-resonance with the corresponding transitions

Ĥ =
h̄
2

 0 |Ω01|eiφ01 0
|Ω01|e−iφ01 0 |Ω12|eiφ12

0 |Ω12|e−iφ12 0

 . (1)

The eigenvalues of this Hamiltonian are λ± = ± h̄
2 Ω, where Ω =

√
|Ω01|2 + |Ω12|2 and λ0 = 0,

corresponding to eigenvectors

|n±〉 =
1√
2
|B〉 ± e−iφ01

√
2
|1〉, (2)

|n0〉 = |D〉, (3)

where the dark and bright states are defined as two orthogonal states,

|B〉 = sin Θ |0〉+ e−iφ01−iφ12 cos Θ|2〉, (4)

|D〉 = cos Θ |0〉 − e−iφ01−iφ12 sin Θ|2〉. (5)

Note that in the rotating-wave approximation the Hamiltonian in Equation (1) is time-dependent.
Here the STIRAP angle Θ has the expression tan Θ = |Ω01|/|Ω12|, or in other words we parametrize
the couplings by |Ω01| = Ω sin Θ and |Ω12| = Ω cos Θ.

The STIRAP sequence starts with an initial state created by the Rabi pulse (see Figure 1)

|ψ(tτ)〉 = α |0〉+ β |1〉, (6)

where α and β are the complex coefficients prepared by the 0–1 pulse of duration τ and amplitude
Ω(R)

01 . This state can be further rewritten in the basis of instantaneous eigenvectors, and for all
practical purposes we can say that the STIRAP sequence starts at the time tτ when the 0–1 pulse ends,
from the state

|ψ(tτ)〉 = α |n0(tτ)〉+
β√
2

eiφ01 (|n+(tτ)〉 − |n−(tτ)〉) . (7)

In the adiabatic approximation and for times t > tτ this state evolves as

|ψ(t)〉 = α eiζ0(t)|n0(t)〉+
β√
2

eiφ01
(

eiζ+(t)|n+(t)〉 − eiζ−(t)|n−(t)〉
)

. (8)

Here the phases ζk, with k ∈ {0,+,−}, comprise a dynamical rotation at the frequencies
corresponding to the eigenvalues λk and a geometrical phase γ (t),

ζk(t) = −1
h̄

∫ t

tτ

dt′λk(t′) + γk(t), (9)

γk(t) = i
∫ t

tτ

dt′〈nk(t′)|∂t′nk(t′)〉. (10)

If the phases φ01 and φ12 of the STIRAP pulses are time-independent, then 〈n(t′)|∂t′n(t′)〉 = 0 for
all the n’s, and as a result we are left with

|ψ(t)〉 = α |n0(t)〉+
1√
2

β e−
i
2
∫ t

tτ dt′Ω(t′)+iφ01 |n+(t)〉 −
1√
2

β e+
i
2
∫ t

tτ dt′Ω(t′)+iφ01 |n−(t)〉. (11)
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In the original basis {|0〉, |1〉, |2〉} this reads

|ψ(t)〉 =

[
α cos Θ (t)− iβ eiφ01 sin Θ (t) sin

(
1
2

∫ t

tτ

dt′Ω (t′)
)]
|0〉

+β cos
(

1
2

∫ t

tτ

dt′Ω (t′)
)
|1〉

−
[

α e−iφ01 sin Θ (t) + iβ cos Θ (t) sin
(

1
2

∫ t

tτ

dt′Ω (t′)
)]

e−iφ12 |2〉. (12)

After the full STIRAP (t→ ∞, or Θ = π/2) we obtain

|ψ(∞)〉 = −iβ eiφ01 sin
(

1
2

∫ ∞

tτ

dt′Ω (t′)
)
|0〉+ β cos

(
1
2

∫ ∞

tτ

dt′Ω (t′)
)
|1〉 − α e−i(φ01+φ12)|2〉. (13)

This leads to the creation of a state with fully adjustable complex amplitudes, which are controlled
by tuning the coefficients α and β, the phases φ01 and φ12, and the area of the envelopes

∫ ∞
tτ

Ω(t)dt.
The result shows that the population in state |2〉 does not depend on the phases or on the STIRAP
couplings Ω01 and Ω12. It only depends on the population left on the state |0〉 immediately after
the Rabi preparation pulse is applied to the transition |0〉 → |1〉. This provides a useful robustness
feature, since experimentally it is often the case that the 1–2 transition is more difficult to control.
In contrast, if one wishes to create general qutrit states by applying sequences of Rabi pulses,
the population on the state |2〉 will accumulate errors from the timing and Rabi frequency of the
pulse applied to the 1–2 transition. Also the phase differences between any two states can be controlled
independently by the STIRAP phases φ01 and φ12, up to a π-jump resulting from the change of
sign of sin

(
1
2

∫ ∞
tτ

dt′Ω (t′)
)

and the corresponding cosine terms. In consequence, we can almost
independently tune the magnitudes and the phases of the resulting state. The result also can be
generalized to an arbitrary initial (at the input of the STIRAP sequence) superposition of the states |0〉,
|1〉, and |2〉 (see Appendix).

1 - 2
pulse

0

1

2

0 - 1
pulse

t� �
t

t

0

01�

12�

0
)R(

01�

01

)R(

01 ,��

12�

Figure 1. Schematic of the hybrid pulse sequence for a three-level system in the ladder configuration
and with the two transitions driven resonantly by two fields. First, a superposition between state

|0〉 and state |1〉 is created by a nonadiabatic Rabi pulse Ω(R)
01 (for simplicity taken as a square pulse).

Then a stimulated Raman adiabatic passage (STIRAP) sequence is applied, with a pulse on the 1–2
transition (with coupling strength Ω12) followed by another pulse on the 0–1 transition (with coupling
strength Ω01).

To investigate this result in more detail, we simulate numerically the time evolution of the system
using Equation (1) with STIRAP pulses having Gaussian envelopes
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|Ω01(t)| = Ω(0)
01 e−

t2

2σ2 ,

|Ω12(t)| = Ω(0)
12 e−

(t+ts)2

2σ2 ,
(14)

where the dimensionless pulse separation ts/σ = 2,
∫ ∞
−∞ Ω(R)

01 (t)dt = π/4, and
∫ ∞
−∞ |Ω01(t)|dt =∫ ∞

−∞ |Ω12(t)|dt ≈ 19π, giving
∫ ∞

tτ
Ω (t)dt = 32.90π. The result is shown in Figure 2, where we have

used the following general expression for the qutrit state

|ψ〉 = A|0〉+ B|1〉+ C|2〉 (15)

= |A|eiArg(A)|0〉+ |B|eiArg(B)|1〉+ |C|eiArg(C)|2〉. (16)

In the ideal case where there are no diabatic losses in the STIRAP process, the simulation replicates
the results of Equation (12). However, in any real process there will exist transitions between the states
in the instantaneus basis leading to deviations from the adiabatic time evolution.

Figure 2. Time evolution of the system. The upper panels show the populations of the three states |A|2,
|B|2, and |C|2, as well as real and imaginary parts of the the wavefunction amplitudes during the hybrid
STIRAP sequence. The pulses driving the sequence are shown in the lowest panel. The simulation is

performed with the parameters φ01 = π/3, φ12 = π/4, Ω(0)
01 = Ω(0)

12 = 37.5 MHz, σ = 50 ns, ts/σ = 2,
α = cos(π/8), and β = −i sin(π/8).

In order to create an arbitrary final state, we need to obtain simple relations between the
coefficients A, B, and C and the parameters of the control pulses. Because the absolute values and
the arguments of the complex wavefunction coefficients can be independently varied, we can solve
the problem in two parts: first we address the absolute values of the coefficients, and in the next step
we analyze the phase differences. Since the final state is normalized, we have |A|2 + |B|2 + |C|2 = 1,
and the absolute values of the amplitudes lie on the surface of a sphere. This suggests a parametrization
with angles ε and ν in spherical coordinates,
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|A| = sin ν sin ε, (17)

|B| = cos ν sin ε, (18)

|C| = cos ε, (19)

or ε = arccos(|C|) and ν = arctan (|A|/|B|), where both ν, ε ∈ [0, π/2]. In these coordinates,
the spherical angles ν and ε can be changed in a simple way, as presented in the simulation of
Figure 3. We observe that the angle ε does not depend on σ, thus confirming the analytical result of
Equation (13). On the other hand, the angle ν depends only on the width σ of the STIRAP pulses and
does not depend on Ω(R)

01 .
Next, we can characterize the relative phases of the amplitudes, defined as Arg(AB∗) and

Arg(AC∗). As shown in Figure 4, by changing φ01 and φ12 it is possible to achieve all the combinations
for the phases. Another option would be to tune the phase of the initial Rabi pulse and φ01 of the
STIRAP pulse, whereas fixing φ01 and changing the phase of the Rabi pulse and φ12 is not enough to
produce all the required combinations. The dependence of the relative phases of the amplitudes as
obtained from Equation (13) satisfy the simple relations

Arg(AB∗) = −π/2 + φ01 +
π

2

[
1− sgn

[
sin
(∫ ∞

tτ

dt′Ω (t′)
)]]

, (20)

Arg(AC∗) = π/2 + Arg(β)−Arg(α) + 2φ01 + φ12 +
π

2

[
1− sgn

[
sin
(

1
2

∫ ∞

tτ

dt′Ω (t′)
)]]

.(21)

Figure 3. The magnitude of the wavefunction coefficients in spherical coordinates, ε and ν, as a function

of the Rabi pulse amplitude Ω(R)
01 and the duration of the STIRAP pulses σ. The horizontal lines in the

right plot result from the numerical instability when |A| = |B| = 0 and ν is undefined. The parameters

of the simulation are φ01 = π/3, φ12 = π/4, Ω(0)
01 = Ω(0)

12 = 37.5 MHz, ts/σ = 2, and σ = 50 ns.
The simulation agrees with the adiabatic-approximation analytical result Equation (13).

The above rules for creating the desired state apply as long as the adiabatic condition is
satisfied. When the adiabatic condition breaks, the situation changes as is demonstrated in Figure 5.
The adiabaticity of the population transfer depends on the overlap of the driving pulses [28].
By changing the dimensionless pulse separation ts/σ we can move from adiabatic time evolution
to non-adiabatic regime, and observe whether the relations Equations (20) and (21) are satisfied.
The adiabatic condition is approximately met while ts/σ ∈ [1, 3]. In these regions one notices the
formation of stripe structures, with the dependence on φ01 on each stripe similar to that presented
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in Figure 3 for ts/σ = 2. Along the ts/σ direction, the neighboring stripes differ from each other by
a factor of π. This is due to the fact that the qutrit waveform amplitudes change sign, as captured
by the last two terms in Equations (20) and (21). Note that, as we change ts/σ, the number of
stripes in Arg(AB∗) is twice as large as the number of stripes in Arg(AC∗), again in agreement with
Equations (20) and (21). The breaking of the phase relation outside ts/σ ∈ [1, 3] shows that the
adiabatic result of Equation (13) is no longer valid.

Figure 4. The relative phases between the complex amplitudes A, B, and C of the qutrit wavefuction as

a function of the STIRAP phases φ01 and φ12, with α = cos(π/8), β = −i sin(π/8), Ω(0)
01 = Ω(0)

12 = 37.5 MHz,
ts/σ = 2, and σ = 50 ns. The simulation agrees with the analytical results Equations (20) and (21)
obtained in the adibatic approximation.

Figure 5. The relative phases between the complex amplitudes A, B, and C of the qutrit as a function
of the dimensionless STIRAP pulse separation ts/σ and the STIRAP phases φ01 and φ12. The STIRAP
phases are changed so that 2φ01 + φ12 = 4π. When the adiabatic condition ts/σ ∈ [1, 3] is met,
the relative phases are given by Equations (20) and (21), resulting in the formation of a stripe
structure. The abrupt π phase shifts across the stripes are due to the changes of sign of the amplitudes,
as can be seen from the sin and cos terms of Equation (13). The parameters for the simulation

are Ω(0)
01 = Ω(0)

12 = 37.5 MHz, σ = 50 ns, α = cos(π/8), and β = −i sin(π/8).
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3. Hybrid Pulse Sequence for a Three-Level System with Additional Ancillary State

We discuss here the case when an auxiliary level |a〉 exists, see Figure 6. For example, one can use
the fourth level of the artificial atom or the Jaynes-Cummings ladder if control at the single-photon level
is achieved in the system. In this case the Hilbert space is large enough to separate the nonadiabatic
Rabi pulse and the STIRAP.

The state at a time t reads in this case

|ψ(t)〉 = α cos Θ (t)|0〉 − α sin Θ (t)e−i(φ01+φ12)|2〉+ β |a〉. (22)

In this configuration, STIRAP and the initial Rabi pulse on the 0− a transition with Rabi coupling
Ω(R)

0a allow us to create an arbitrary superposition in the subspace {|0〉, |2〉, |a〉}. The populations in
the three states |0〉 , |2〉 , and |a〉 are given by |α|2 cos2 Θ, |α|2 sin2 Θ, and |β |2 respectively. The phases
are correspondingly controlled by the phase of α together with STIRAP, and of β.

1 - 2
pulse

0

1

2

0 - 1
pulse

t

t

0

01�

12�

ancilla
pulses

t� �
t 0

0

a

R)(

0a
�

R)(

2a
�

12�

01�

R)(

0a
�

R)(

2a
�

Figure 6. Schematic of the three-level system augmented by a fourth ancillary state |a〉.
The nonadiabatic pulse couples the states |0〉 and |a〉 and the two STIRAP pulses drive the transitions
0–1 and 1–2.

Besides the realization of superpositions in the {|0〉, |2〉, |a〉} subspace, this configuration can be
used for the nondestructive monitoring of the STIRAP phases, as detailed below. Suppose that we
interrupt the STIRAP sequence (see Figure 6) at some mixing angle Θ, and at the end of the sequence
depicted in Figure 6 we apply another Rabi pulse Ω(R)

2a that couples levels |2〉 and |a〉. In general,
an unitary acting only on {|2〉, |a〉} has the form

U′ = |0〉〈0|+ α ′|a〉〈a|+ β ′|a〉〈2| − e−iφ′β ′|2〉〈a|+ eiφ′α ′∗|2〉〈2|, (23)

with normalization |α ′|2 + |β ′|2 = 1. Applying this operator to Equation (22) we obtain

U′|ψ〉 = α cos θ |0〉 −
[
α α ′∗ sin Θ e−i(φ01+φ12−φ′) + β β ′e−iφ′

]
|2〉 (24)

−
[
αβ ′ sin Θ e−i(φ01+φ12) − β α ′

]
|a〉. (25)

One sees the formation of an interference structure in the amplitude corresponding to the
ancillary state |a〉. Let us consider from now on φ′ = 0 and real α = |α |, α′ = |α′|, β = |β |,
and β′ = |β ′|. Then the occupation probability of the ancillary state is Pa = α 2β′2 sin2 Θ + β2α′2 −
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2α β α′β′ sin Θ cos(φ01 + φ12). Measuring the population of the ancillary state would then reveal
an interference pattern as a function of φ01 + φ12 with visibility

v =
P(max)

a − P(min)
a

P(max)
a + P(min)

a

=
2α β α ′β ′ sin Θ

α 2β′2 sin2 Θ + β 2α′2
. (26)

Let us consider now the case β � 1 and β ′ � 1. We obtain U′|ψ〉 ≈ cos Θ |0〉 −
sin Θ e−i(φ01+φ12)|2〉, in other words the STIRAP is unaffected by pulses that address the ancilla state.
However, the visibility remains large,

v ≈ 2β β ′ sin Θ
β′2 sin2 Θ + β 2

, (27)

and can reach even the value v = 1 if we arrange the Rabi pulses such that β = β′ sin Θ. This technique
can be immediately extended to the detection of phases produced by Hamiltonians more general
than Equation (1); for example it can be used for the detection of Berry phases and of the phases
involved in holonomic quantum gates [29–31].

4. Experimental Implementation in Circuit QED

The protocols presented here can be implemented in any quantum system that has three or
more accessible and coherent energy levels (atoms, ions, nitrogen-vacancy centres in diamond,
superconducting circuits, etc.). The configuration of these energy levels does not matter: the hybrid
Rabi-STIRAP pulses can be applied to the ladder, Λ, or V configurations. Here we present an analysis
of the parameters needed to run the hybrid STIRAP protocol for a particular kind of superconducting
circuit, the transmon.

4.1. Superconducting Circuits Realizing Qutrits

Superconducting circuits that realize qubits and qutrits can be made with present microfabrication
technology. These are artificial atoms governed by a Hamiltonian that comprise a Josephson part
and potential energy terms (inductive or capacitive). The Josephson energy appears whenever two
superfluids or superconductors are connected via a weak link: it appears not only in metallic
superconductors [32] where it was originally investigated, but also in superfluid 3He [33] and
4He [34], in Bose-Einstein atomic condensates [35] as well as in quantum degenerate Fermi gases with
interatomic interactions [36,37]. The capacitive (charge) energy results from the junction capacitance
itself or from additional capacitors realized on-purpose on the chip. Depending on the value of
these capacitors, phenomena such as Coulomb blockade can appear. Such charging effects have
found a variety of applications, for example Coulomb thermometry [38,39], sensitive charge detection
by single-electron transistors [40–42], on-chip coolers [43], subgap thermometry [44], and thermal
machines [45]. The interplay between the charging energy and the Josephson energy in nanoelectronics
has been studied since the late ‘80s [46], leading to the observation of effects such as the resonant
tunneling of Cooper pairs [44,47]. The transmon [19], which is the focus of the present work, combines
in a clever way the Josephson and charging energy to realize a slightly anharmonic multilevel system
which at the same time is immune to spurious charge fluctuations due to nonequilibrium electrons [48].
Thus one can identify in this system three or more levels in the ladder configuration, which are stable
and addressable by microwave field.

4.2. Effective Hamiltonian in a Circuit QED Setup

The proposed experiment can be realized in a typical circuit QED architecture—with the transmon
embedded (with generic coupling strength g) in a cavity with decay rate κ [49]. To neglect the effects of
the environment, we assume that the coherence time of the transmon is larger than the duration of the
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protocol (usually of the order of tens to hundreds of nanoseconds), a situation that has already been
achieved in experiments. Typically the three-level system is far-off resonant with respect to the cavity,
and in this dispersive regime the cavity can be used as a readout device (interrogated with a probe
measurement of frequency ω(m)), see Figure 7.

g g

Transmission line resonator

The measurement 
probe

Transmon

Figure 7. In a circuit QED architecture, the three-level system (for example a transmon) is dispersively
coupled to the modes of a cavity, which is used as a read-out. In this configuration, one can perform
full quantum tomography of the three-level system.

Indeed, due to the coupling between the transmon and the resonator cavity, the resonant frequency
of the later ωr changes depending on the state of the three-level system. This effect is used for quantum
tomography in the following way. A probe pulse at fixed frequency ω(m) and fixed amplitude is sent to
the resonator, and the reflected or transmitted signal is downconverted and recorded in time domain.
The shape of the recorded trace r(τ) depends on the qubit state, and this allows to map the state of
the transmon into a specific trace. Once the calibration traces are recorded rj(τ), j = 0, 1, 2, where j
corresponds to preparing the transmon in either of |0〉, |1〉 or |2〉 states, it is possible to decompose the
trace r(τ) of any superposition of the above three basis states with some weights pj, where pj is the
probability to find the system in the state |j〉. Thus, given a recorded trace r(τ), we can identify the
occupation probabilities pj.

When the transmon is radiated with two fields resonant to the first and second transition,
the Hamiltonian reads

H =h̄ω0|0〉〈0|+ h̄ω1|1〉〈1|+ h̄ω2|2〉〈2|+
h̄Ω01

2

(
σ†

01e−iω(d)
01 t + h.c.

)
+

h̄Ω12

2

(
σ†

12e−iω(d)
12 t + h.c.

)
+

h̄Ω(01)→(12)

2

(
σ†

12e−iω(d)
01 t + h.c.

)
+

h̄Ω(12)→(01)

2

(
σ†

01e−iω(d)
12 t + h.c.

)
,

(28)

where Ω(01)→(12) and Ω(12)→(01) are the cross-couplings of the 0–1 pulse into the 1–2 transition and of
the 1–2 pulse into the 0–1 transition respectively. The Pauli annihilation and creation operators for
the 0–1 and 1–2 transitions are defined as σ01 = |0〉〈1| and σ12 = |1〉〈2|. For the particular case of the
transmon in the harmonic approximation, the cross-couplings are given by Ω(01)→(12) =

√
2Ω01 and

Ω(12)→(01) = (1/
√

2)Ω12.
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Next, we take the drives resonant with the corresponding transitions (ω(d)
01 = ω1 −ω0 = ω01 and

ω
(d)
12 = ω2 −ω1 = ω12), then move to a rotating frame and perform the rotating wave approximation.

Now, if |ω(d)
01 − (ω2 − ω1)|, |ω

(d)
12 − (ω1 − ω0)| � Ω(01)→(12), Ω(12)→(01), then we can neglect the

cross-coupling terms. In this case, we are left precisely with our starting Hamiltonian Equation (1).

4.3. Hybrid Pulses under Realistic Experimental Conditions

We discuss here the nonidealities caused by the driving. With resonant driving fields, we have
ω
(d)
01 = ω01, ω

(d)
12 = ω12, then

∣∣∣ω(d)
01 − (ω2 −ω1)

∣∣∣ = |ω01 −ω12| and
∣∣∣ω(d)

12 − (ω1 −ω0)
∣∣∣ =

|ω12 −ω01| = |ω01 −ω12|. Therefore both expressions refer to the anharmonicity of a three-level
system. For the transmon this gives

∣∣∣ω(d)
01 − (ω2 −ω1)

∣∣∣ = ∣∣∣ω(d)
12 − (ω1 −ω0)

∣∣∣ = Ec/h̄ in the first order
approximation, which is typically around 2π · 300 MHz.

Next, we estimate the cross-coupling strengths for a two-field driving due to the imperfect
cancellation of the fast rotating terms under the rotating wave approximation, as in Equation (28)
of the previous subsection. We take the expressions

∫ ∞
−∞ |Ω01(t)| dt =

∫ ∞
−∞ |Ω12(t)| dt ' 10π,

and extract the maximum driving amplitudes Ω(0)
01 = Ω(0)

12 ' 5
√

2π/σ. For σ = 50 ns this gives

Ω(0)
01 = Ω(0)

12 ' 2π · 40 MHz. With this the cross-couplings in the harmonic approximation will be

Ω(01)→(12) =
√

2Ω(0)
01 ' 2π · 57 MHz, and Ω(12)→(01) = (1/

√
2)Ω(0)

12 ' 2π · 28 MHz, and the above
condition takes the form 300 � 57, 28. Thus, for the parameters used here it is possible to neglect
these terms, however, due to the low anharmonicity of the transmon this approximation becomes
worse if we need to use higher powers.

Using the Hamiltonian Equation (28) we can study in detail the situation when the cross-driving
terms are not negligible. This is relevant for systems with low anharmonicity (such as the
transmon) or for systems with small coherence times (in which case one has to increase the
Rabi and STIRAP strengths in order to achieve a fast enough operation). Surprisingly, we find
that the phase relations obtained in the ideal case (without cross-coupings) in Section 2 are not
altered much: the relative phase Arg(AB∗) as plotted in Figure 4 left panel remains unchanged
Arg(AB∗) = −π/2 + φ01, while the relative phase Arg(AC∗) from Figure 3 right panel only acquires
a constant shift Arg(AC∗) = const. + Arg(β )−Arg(α ) + 2φ01 + φ12. This demonstrates again the
robustness of our method.

5. Conclusions

We have shown that hybrid pulses consisting of standard nonadiabatic Rabi pulses followed by
Raman sequences can be used to create arbitrary superpositions between the three states of a qutrit.
The concepts developed here apply to any physical realization of the qutrit. We have demonstrated
that the population of the target state |2〉 of STIRAP is controlled exclusively by the initial Rabi pulse,
while the population of the initial |0〉 and intermediate |1〉 state depends also on the width of the
STIRAP pulse, in agreement with previous experimental results. To achieve full quantum control,
we have analyzed the phase differences of the amplitudes of the qutrit states. We have found that,
for a given pulse area, any phase difference can be realized by varying the phases of the two STIRAP
pulses in a relatively simple way: the phase difference added by the STIRAP pulses with phases φ01

and φ12 turn out to be φ01 (between the initial state and the intermediate state) and 2φ01 + φ12 (between
the initial and final states). This holds only in the adiabatic regime - when the separation between
pulses becomes either too long or too short, these simple relations are no longer satisfied. We also
have shown that if a fourth state (ancillary state) is available, we can use it to find nondestructively
the phase differences. Finally, we have identified the conditions under which these protocols can be
realized experimentally in circuit QED setups.
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Abbreviations

The following abbreviations are used in this manuscript:

STIRAP stimulated Raman adiabatic passage
QED quantum electrodynamics

Appendix A. General Three-Level Superposition as Initial State for STIRAP

Our focus in this work has been on a single nonadiabatic pulse that prepares a superposition of
the states |0〉 and |1〉 that serves as the initial state for STIRAP. However, in general we can consider
an arbitrary three-level superposition of the type

|ψ(tτ) = α |0〉+ β |1〉+ γ |2〉 (A1)

as the input state for the STIRAP: this can be realized at some time tτ for example by using two Rabi
pulses (one acting on the 0–1 transition and the other on the 1–2 transition). In this case, we have
instead of Equation (12) the following expression for the state after a fractional STIRAP sequence

|ψ(t)〉 =
[

α cos Θ (t)− iβ eiφ01 sin Θ (t) sin
(

1
2

∫ t

tτ

dt′Ω (t′)
)
+ γ sin Θ (t) cos

(
1
2

∫ t

tτ

dt′Ω (t′)
)

eiφ01+iφ12

]
|0〉

+

[
β cos

(
1
2

∫ t

tτ

dt′Ω (t′)
)
− iγ sin

(
1
2

∫ t

tτ

dt′Ω (t′)
)

eiφ12

]
|1〉 (A2)

−
[

α e−iφ01−iφ12 sin Θ (t) + iβ cos Θ (t) sin
(

1
2

∫ t

tτ

dt′Ω (t′)
)

e−iφ12 + γ cos Θ (t) cos
(

1
2

∫ t

tτ

dt′Ω (t′)
)]
|2〉 .

For a full STIRAP we then obtain

|ψ(∞)〉 =

[
−iβ eiφ01 sin

(
1
2

∫ ∞

tτ

dt′Ω (t′)
)
+ γ cos

(
1
2

∫ t

tτ

dt′Ω (t′)
)

eiφ01+iφ12

]
|0〉

+

[
β cos

(
1
2

∫ ∞

tτ

dt′Ω (t′)
)
− iγ sin

(
1
2

∫ t

tτ

dt′Ω (t′)
)

eiφ12

]
|1〉 (A3)

−α e−i(φ01+φ12)|2〉.

The result is somewhat unexpected: we see that the population of state |2〉 does not depend on
the initial amplitude γ. If we attempt to “cheat” by first transferring population on |2〉, then applying
STIRAP, we will not achieve a higher final population.
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