VOL. 95

2003

NO. 1

A BIFURCATION THEORY FOR SOME NONLINEAR ELLIPTIC EQUATIONS

BҮ

BIAGIO RICCERI (Catania)

Dedicated to Professor G. Santagati, with my greatest esteem, on his seventieth birthday

Abstract. We deal with the problem

$$(\mathbf{P}_{\lambda}) \begin{cases} -\Delta u = f(x, u) + \lambda g(x, u) & \text{in } \Omega, \\ u_{|\partial\Omega} = 0, \end{cases}$$

where $\Omega \subset \mathbb{R}^n$ is a bounded domain, $\lambda \in \mathbb{R}$, and $f, g: \Omega \times \mathbb{R} \to \mathbb{R}$ are two Carathéodory functions with f(x,0) = g(x,0) = 0. Under suitable assumptions, we prove that there exists $\lambda^* > 0$ such that, for each $\lambda \in]0, \lambda^*[$, problem (\mathbf{P}_{λ}) admits a non-zero, non-negative strong solution $u_{\lambda} \in \bigcap_{p \geq 2} W^{2,p}(\Omega)$ such that $\lim_{\lambda \to 0^+} ||u_{\lambda}||_{W^{2,p}(\Omega)} = 0$ for all $p \geq 2$. Moreover, the function $\lambda \mapsto I_{\lambda}(u_{\lambda})$ is negative and decreasing in $]0, \lambda^*[$, where I_{λ} is the energy functional related to (\mathbf{P}_{λ}) .

1. Introduction and statement of the result. Throughout the paper, $\Omega \subset \mathbb{R}^n$ is an open, connected, bounded set with smooth boundary, and $f, g: \Omega \times \mathbb{R} \to \mathbb{R}$ are two Carathéodory functions.

As usual, a *weak solution* of the problem

$$(\mathbf{P}_{\lambda}) \qquad \begin{cases} -\Delta u = f(x, u) + \lambda g(x, u) & \text{in } \Omega, \\ u_{|\partial\Omega} = 0, \end{cases}$$

where $\lambda \in \mathbb{R}$, is any $u \in W_0^{1,2}(\Omega)$ such that

$$\int_{\Omega} \nabla u(x) \nabla v(x) \, dx - \int_{\Omega} f(x, u(x)) v(x) \, dx - \lambda \int_{\Omega} g(x, u(x)) v(x) \, dx = 0$$

for all $v \in W_0^{1,2}(\Omega)$. A strong solution of the problem is any $u \in W_0^{1,2}(\Omega) \cap W^{2,2}(\Omega)$ which satisfies the equation almost everywhere in Ω . A classical solution is any $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$, zero on $\partial\Omega$, which satisfies the equation pointwise in Ω .

²⁰⁰⁰ Mathematics Subject Classification: 35J20, 35B32.

If u is a strong solution of (P_{λ}) , we also put

$$I_{\lambda}(u) = \frac{1}{2} \int_{\Omega} |\nabla u(x)|^2 dx - \int_{\Omega} \left(\int_{0}^{u(x)} f(x,\xi) d\xi \right) dx$$
$$-\lambda \int_{\Omega} \left(\int_{0}^{u(x)} g(x,\xi) d\xi \right) dx.$$

Above, of course, it is understood that the integrals which appear are well defined.

The aim of this paper is to prove the following theorem:

THEOREM 1. Assume that:

(i) there is s > 1 such that

$$\limsup_{\xi \to 0^+} \frac{\sup_{x \in \Omega} |f(x,\xi)|}{\xi^s} < \infty;$$

(ii) there is $q \in [0, 1[$ such that

$$\limsup_{\xi \to 0^+} \frac{\sup_{x \in \Omega} |g(x,\xi)|}{\xi^q} < \infty;$$

(iii) there are a non-empty open set $D \subseteq \Omega$ and a set $B \subseteq D$ of positive measure such that

$$\limsup_{\xi \to 0^+} \frac{\inf_{x \in B} \int_0^{\xi} g(x, t) \, dt}{\xi^2} = \infty, \quad \liminf_{\xi \to 0^+} \frac{\inf_{x \in D} \int_0^{\xi} g(x, t) \, dt}{\xi^2} > -\infty.$$

Then, for some $\lambda^* > 0$ and for each $\lambda \in [0, \lambda^*[$, problem (P_{λ}) admits a non-zero, non-negative strong solution $u_{\lambda} \in \bigcap_{p>2} W^{2,p}(\Omega)$. Moreover,

$$\limsup_{\lambda \to 0^+} \frac{\|u_\lambda\|_{C^1(\overline{\Omega})}}{\lambda^{q/(1-q)}} < \infty, \qquad \limsup_{\lambda \to 0^+} \frac{\|u_\lambda\|_{W^{2,p}(\Omega)}}{\lambda^{q^2/(1-q)}} < \infty$$

for all $p \geq 2$, and the function $\lambda \mapsto I_{\lambda}(u_{\lambda})$ is negative and decreasing in $]0, \lambda^*[$. If, in addition, f, g are continuous in $\Omega \times [0, \infty[$ and

$$\liminf_{\xi \to 0^+} \frac{\inf_{x \in \Omega} g(x,\xi)}{\xi |\log \xi|^2} > -\infty,$$

then u_{λ} is positive in Ω .

Before giving the proof of Theorem 1, we make some remarks on it.

First of all, we observe that it is a bifurcation result. In fact, once we observe that (by (i) and (ii)) 0 is a solution of (P_{λ}) for each λ , this means, in particular, that $\lambda = 0$ is a bifurcation point for problem (P_{λ}) , in the sense that, for each $p \geq 2$, (0,0) belongs to the closure in $W^{2,p}(\Omega) \times \mathbb{R}$ of the set $\{(u, \lambda) \in W^{2,p}(\Omega) \times [0, \infty] : u \text{ is a strong solution of } (P_{\lambda}), u \neq 0, u \geq 0\}.$

Among the known results, the one which is closest to Theorem 1 is certainly Theorem 2.1 of [1].

Indeed, the latter, relating to the specific problem

$$\begin{cases} -\Delta u = u^s + \lambda u^q & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u_{|\partial\Omega} = 0, \end{cases}$$

with 0 < q < 1 < s, ensures the existence of $\lambda_0 > 0$ such that for each $\lambda \in [0, \lambda_0[$, the problem admits a classical minimal solution u_λ with $I_\lambda(u_\lambda) < 0$. Moreover, $\lim_{\lambda \to 0^+} \sup_{\Omega} |u_\lambda| = 0$ and the function $\lambda \mapsto u_\lambda(x)$ is increasing for each $x \in \Omega$. Finally, for $\lambda = \lambda_0$ there is a weak solution, while for $\lambda > \lambda_0$ there is no classical solution. In Remark 2.5 of [1], the authors observe that the result still holds if one replaces u^q with any concave function that behaves like u^q near u = 0, and u^s with any superlinear function that behaves like u^s near u = 0 and near $u = \infty$. We wish to stress that this remark concerns all the qualitative aspects of the result. In particular, in the approach of [1], concavity plays an essential role also in the proof that $I_\lambda(u_\lambda) < 0$. However, if one restricts oneself only to the solvability of the problem for each $\lambda > 0$ small enough, then the method of sub- and supersolutions as exploited in Lemma 3.1 of [1] can be readily applied under much more general assumptions which meet those of Theorem 1. Here is the statement one can obtain in this way:

THEOREM A. Besides conditions (i) and (ii) of Theorem 1, assume that

(iii')
$$\lim_{\xi \to 0^+} \frac{\inf_{x \in \Omega} g(x,\xi)}{\xi} = \infty.$$

Then, for some $\lambda^* > 0$ and for each $\lambda \in [0, \lambda^*[$, problem (P_{λ}) admits a positive weak solution $u_{\lambda} \in L^{\infty}(\Omega)$, and $\lim_{\lambda \to 0^+} \|u_{\lambda}\|_{L^{\infty}(\Omega)} = 0$.

Thus, Theorem 1 ensures not only that the conclusion of Theorem A holds, but also that the function $\lambda \mapsto I_{\lambda}(u_{\lambda})$ is negative and decreasing, even in the presence of condition (iii) which, of course, is much less restrictive than (iii').

It is clear that the superiority of Theorem 1 over Theorem A is maximum in the cases when (iii) holds, while (iii') is violated. For instance, we have the following examples of application of Theorem 1:

PROPOSITION 1. Let 0 < q < 1 < s and let α, β be two bounded and locally Hölder continuous functions on Ω . Assume that

$$(*) 0 \le \inf_{\Omega} \beta, 0 < \sup_{\Omega} \beta.$$

Then, for some $\lambda^* > 0$ and for each $\lambda \in]0, \lambda^*[$, the problem $\begin{cases} -\Delta u = \alpha(x)u^s + \lambda\beta(x)u^q & \text{in } \Omega, \\ u_{|\partial\Omega} = 0, \end{cases}$

admits a positive classical solution $u_{\lambda} \in \bigcap_{p \geq 2} W^{2,p}(\Omega)$. Moreover,

$$\limsup_{\lambda \to 0^+} \frac{\|u_\lambda\|_{C^1(\overline{\Omega})}}{\lambda^{q/(1-q)}} < \infty, \qquad \limsup_{\lambda \to 0^+} \frac{\|u_\lambda\|_{W^{2,p}(\Omega)}}{\lambda^{q^2/(1-q)}} < \infty$$

for all $p \geq 2$, and the function

$$\lambda \mapsto \frac{1}{2} \int_{\Omega} |\nabla u_{\lambda}(x)|^2 dx - \frac{1}{s+1} \int_{\Omega} \alpha(x) |u_{\lambda}(x)|^{s+1} dx$$
$$- \frac{\lambda}{q+1} \int_{\Omega} \beta(x) |u_{\lambda}(x)|^{q+1} dx$$

is negative and decreasing in $]0, \lambda^*[$.

Note a remarkable improvement with respect to the version of Proposition 1 one would get by applying Theorem A. In this case, in fact, condition (*) should be replaced by $\inf_{\Omega} \beta > 0$.

PROPOSITION 2. Let $\varphi \in C^2([0,\infty[)$ be bounded together with φ' and φ'' , and let $a, \mu, s \in \mathbb{R}$ with a > 0 and s > 1. Then, for some $\lambda^* > 0$ and for each $\lambda \in [0, \lambda^*[$, the problem

$$\begin{cases} -\Delta u = \mu u^s + \lambda [(\varphi'(|\log u|^2) - a) \log u + \varphi(|\log u|^2) - a/2] u & \text{in } \Omega, \\ u_{|\partial\Omega} = 0, \end{cases}$$

admits a positive classical solution $u_{\lambda} \in C^{2}(\overline{\Omega})$. Moreover, for each r > 0and $p \geq 2$,

$$\limsup_{\lambda \to 0^+} \frac{\|u_\lambda\|_{W^{2,p}(\Omega)}}{\lambda^r} < \infty$$

and the function

$$\lambda \mapsto \frac{1}{2} \int_{\Omega} |\nabla u_{\lambda}(x)|^2 dx - \frac{\mu}{s+1} \int_{\Omega} |u_{\lambda}(x)|^{s+1} dx$$
$$- \frac{\lambda}{2} \int_{\Omega} |u_{\lambda}(x)|^2 (\varphi(|\log u_{\lambda}(x)|^2) - a \log u_{\lambda}(x)) dx$$

is negative and decreasing in $]0, \lambda^*[$.

The proof of Proposition 2 is given in Section 3. In view of the above discussion, Proposition 2 is particularly interesting when the set $\{\xi > 0 : \varphi'(\xi) \ge a\}$ is unbounded.

On the other hand, from the comparison with Theorem 2.1 of [1], an open question arises: under the assumptions of Theorem 1, does problem (P_{λ}) admit a non-zero, non-negative, minimal solution for each $\lambda > 0$ small enough? We conjecture that the answer is negative.

Finally, we point out that our proof of Theorem 1 is genuinely variational. Precisely, it comes from combining, in a careful way, a truncation and bootstrap argument (inspired by [3]) with the general approach to finding local minima proposed in [5].

2. Proof of Theorem 1. First of all, observe that, by (i) and (ii), there are $\alpha, L > 0$, with $\alpha \leq 1$, such that

$$|f(x,\xi)| \le L|\xi|^s$$
 and $|g(x,\xi)| \le L|\xi|^q$

for every $x \in \Omega$, $\xi \in [0, \alpha]$. Of course, if $n \ge 3$, it is not restrictive to assume that $s \le (n+2)/(n-2)$. Next, define $f_0, g_0 : \Omega \times \mathbb{R} \to \mathbb{R}$ as follows:

$$f_0(x,\xi) = \begin{cases} f(x,\alpha) & \text{if } \xi > \alpha, \\ f(x,\xi) & \text{if } \xi \in [0,\alpha], \\ 0 & \text{if } \xi < 0, \end{cases} \qquad g_0(x,\xi) = \begin{cases} g(x,\alpha) & \text{if } \xi > \alpha, \\ g(x,\xi) & \text{if } \xi \in [0,\alpha], \\ 0 & \text{if } \xi < 0. \end{cases}$$

Of course, we have

(1)
$$|f_0(x,\xi)| \le L \min\{|\xi|^s, |\xi|\}$$

and

$$|g_0(x,\xi)| \le L|\xi|^q$$

for every $x \in \Omega$, $\xi \in \mathbb{R}$. For simplicity, denote by E the space $W_0^{1,2}(\Omega)$ equipped with the norm

$$||u|| = \left(\int_{\Omega} |\nabla u(x)|^2 dx\right)^{1/2}.$$

For each $u \in E$, put

$$\Phi(u) = -\int_{\Omega} \left(\int_{0}^{u(x)} g_0(x,\xi) \, d\xi \right) dx,$$

$$\Psi(u) = \int_{\Omega} |\nabla u(x)|^2 \, dx - 2 \int_{\Omega} \left(\int_{0}^{u(x)} f_0(x,\xi) \, d\xi \right) dx.$$

First of all, note that, since f_0, g_0 are bounded, the functionals Φ, Ψ turn out to be well defined, continuous and Gateaux differentiable in E. Moreover, by the Rellich–Kondrashov theorem, Φ is sequentially weakly continuous and Ψ is sequentially weakly lower semicontinuous. By (1) and by the Sobolev embedding theorem, for some constant c > 1 and for all $u \in E$, we have

$$\Psi(u) \ge \int_{\Omega} |\nabla u(x)|^2 \, dx - 2L \int_{\Omega} |u(x)|^{s+1} \, dx \ge \|u\|^2 (1 - c\|u\|^{s-1}).$$

From this, since s > 1, we get

(3)
$$\inf_{r \le \|u\| \le (2c)^{1/(1-s)}} \Psi(u) \ge r^2/2$$

for all $r \in [0, (2c)^{1/(1-s)}[.$

We now prove that

(4)
$$\liminf_{\|u\| \to 0^+} \frac{\Phi(u)}{\Psi(u)} = -\infty.$$

To this end, we use condition (iii). So, fix a sequence $\{\xi_k\}$ in]0, 1[, converging to 0, and constants $\delta \in]0, \alpha]$ and Λ in such a way that

$$\lim_{k \to \infty} \frac{\inf_{x \in B} \int_0^{\xi_k} g(x, t) \, dt}{\xi_k^2} = \infty$$

and

$$\inf_{x\in D} \int_{0}^{\xi} g(x,t) \, dt \geq \Lambda \xi^2$$

for all $\xi \in [0, \delta]$. Next, fix a set $C \subset B$ of positive measure and a function $v \in E$ such that $v(x) \in [0, 1]$ for all $x \in \Omega$, v(x) = 1 for all $x \in C$ and v(x) = 0 for all $x \in \Omega \setminus D$. Finally, fix Q > 0 and M satisfying

$$Q < \frac{M \operatorname{meas}(C) + \Lambda \int_{D \setminus C} |v(x)|^2 \, dx}{\|v\|^2 + \frac{2L}{s+1} \int_D |v(x)|^{s+1} \, dx}.$$

Then there is $\nu \in \mathbb{N}$ such that $\xi_k < \delta$, $\Psi(\xi_k v) > 0$ (recall (3)) and

$$\inf_{x \in B} \int_{0}^{\xi_k} g(x, t) \, dt \ge M \xi_k^2$$

for all $k > \nu$. Taking into account (1) and that $\xi_k < 1$, for each $k > \nu$ we have

$$-\frac{\Phi(\xi_k v)}{\Psi(\xi_k v)} \ge \frac{\int_C (\int_0^{\xi_k} g_0(x,t) \, dt) \, dx + \int_{D \setminus C} (\int_0^{\xi_k v(x)} g_0(x,t) \, dt) \, dx}{\xi_k^2 \|v\|^2 + \frac{2L}{s+1} \xi_k^{s+1} \int_D |v(x)|^{s+1} \, dx}$$
$$\ge \frac{M \operatorname{meas}(C) + \Lambda \int_{D \setminus C} |v(x)|^2 \, dx}{\|v\|^2 + \frac{2L}{s+1} \int_D |v(x)|^{s+1} dx} > Q.$$

Since Q could be arbitrarily large, it follows that

$$\lim_{k \to \infty} -\frac{\Phi(\xi_k v)}{\Psi(\xi_k v)} = \infty$$

from which (4) clearly follows.

Now, for each $\rho > 0$, we denote by X_{ρ} the closed ball in E, centred at 0, of radius ρ . Note that, by (4), one has $\inf_{X_{\rho}} \Phi < 0$. Put

$$\gamma = \sup_{\varrho > 0} \frac{-\inf_{X_{\varrho}} \Phi}{\varrho^{q+1}}.$$

By (2), it follows that $\gamma < \infty$. So, we have

(5)
$$\frac{\varrho^2}{-\inf_{X_{\varrho}} \Phi} \ge \frac{1}{\gamma} \, \varrho^{1-q}$$

for all $\rho > 0$. Next, fix λ satisfying

(6)
$$0 < \lambda \leq \overline{\lambda},$$

where

$$\overline{\lambda} = \frac{1}{8} \min\left\{\frac{1}{\gamma} \left(2c\right)^{(1-q)/(1-s)}, -\frac{1}{\inf_{X_1} \Phi}\right\},\$$

the constant c being that in (3). Also, put

(7)
$$\varrho_{\lambda} = (8\gamma\lambda)^{1/(1-q)}.$$

So, in particular, we have

(8)
$$\varrho_{\lambda} \le (2c)^{1/(1-s)}$$

Since E is reflexive, $X_{\varrho_{\lambda}}$ is sequentially weakly compact. Thus, since $\Phi + \frac{1}{2\lambda}\Psi$ is sequentially weakly lower semicontinuous, there is $u_{\lambda} \in X_{\varrho_{\lambda}}$ such that

$$\Phi(u_{\lambda}) + \frac{1}{2\lambda} \Psi(u_{\lambda}) = \inf_{u \in X_{\varrho_{\lambda}}} \left(\Phi(u) + \frac{1}{2\lambda} \Psi(u) \right).$$

We claim that

(9)
$$\Psi(u_{\lambda}) < -4\lambda \inf_{X_{\varrho_{\lambda}}} \Phi$$

Arguing by contradiction, assume that $\Psi(u_{\lambda}) \geq -4\lambda \inf_{X_{\varrho_{\lambda}}} \Phi$. Then, taking into account that $\inf_{X_{\varrho_{\lambda}}} \Phi < 0$, we would have

$$\begin{split} \varPhi(u_{\lambda}) - 2 \inf_{X_{\varrho_{\lambda}}} \varPhi &= \varPhi(u_{\lambda}) + \frac{1}{2\lambda} \left(-4\lambda \inf_{X_{\varrho_{\lambda}}} \varPhi \right) \le \varPhi(u_{\lambda}) + \frac{1}{2\lambda} \varPsi(u_{\lambda}) \\ &\le \varPhi(0) + \frac{1}{2\lambda} \varPsi(0) = 0 < \inf_{X_{\varrho_{\lambda}}} \varPhi - 2 \inf_{X_{\varrho_{\lambda}}} \varPhi \le \varPhi(u_{\lambda}) - 2 \inf_{X_{\varrho_{\lambda}}} \varPhi, \end{split}$$

which is absurd.

Now, observe that, due to (4), there is a sequence $\{v_k\}$ in $X_{\varrho_\lambda} \setminus \{0\}$ such that $\lim_{k\to\infty} \Phi(v_k)/\Psi(v_k) = -\infty$. Hence, for k large enough, we have

$$\frac{\Phi(v_k)}{\Psi(v_k)} < -\frac{1}{2\lambda}$$

and so (by (3) and (8))

$$\Phi(v_k) + \frac{1}{2\lambda}\Psi(v_k) < 0 = \Phi(0) + \frac{1}{2\lambda}\Psi(0).$$

This means that

(10)
$$\inf_{X_{\varrho_{\lambda}}} \left(\varPhi + \frac{1}{2\lambda} \varPsi \right) < 0.$$

Hence, $u_{\lambda} \neq 0$. Next, from (5) and (7), we get

$$\varrho_{\lambda}^{2} \geq -\frac{1}{\gamma} \inf_{X_{\varrho_{\lambda}}} \varPhi \varrho_{\lambda}^{1-q} = -8\lambda \inf_{X_{\varrho_{\lambda}}} \varPhi.$$

Consequently,

$$(-8\lambda \inf_{X_{\varrho_{\lambda}}} \Phi)^{1/2} \le \varrho_{\lambda}.$$

From (3) and (8), we infer that for each $u \in X_{\varrho_{\lambda}}$ satisfying

$$(-8\lambda \inf_{X_{\varrho_{\lambda}}} \Phi)^{1/2} \le \|u\|$$

one has

$$\Psi(u) \ge -4\lambda \inf_{X_{\varrho_{\lambda}}} \Phi.$$

Hence, in view of (9), since $u_{\lambda} \in X_{\varrho_{\lambda}}$, one has

(11)
$$\|u_{\lambda}\| < (-8\lambda \inf_{X_{\varrho_{\lambda}}} \Phi)^{1/2}.$$

From this, in particular, it follows that u_{λ} is a local minimum in E of the functional $\Phi + \frac{1}{2\lambda}\Psi$, and hence

$$\Phi'(u_{\lambda}) + \frac{1}{2\lambda} \Psi'(u_{\lambda}) = 0.$$

This means that

(12)
$$\int_{\Omega} \nabla u_{\lambda}(x) \nabla v(x) dx - \int_{\Omega} f_0(x, u_{\lambda}(x)) v(x) dx - \lambda \int_{\Omega} g_0(x, u_{\lambda}(x)) v(x) dx = 0$$

for all $v \in E$.

We claim that u_{λ} is non-negative in Ω . Assume the contrary. Then, by the continuity of u_{λ} (see below), the set $A = \{x \in \Omega : u_{\lambda}(x) < 0\}$ is non-empty and open. Of course, $u_{\lambda|A} \in W_0^{1,2}(A)$, and (by (12)), for each $v \in C_0^{\infty}(A)$, one has

$$\int_{A} \nabla u_{\lambda}(x) \nabla v(x) \, dx = 0.$$

By density, this equality actually holds for each $v \in W_0^{1,2}(A)$, and so, in particular, $\int_A |\nabla u_\lambda(x)|^2 dx = 0$, which is absurd.

Next, since f_0, g_0 are bounded, from standard regularity results ([2, Theorems 8.8 and 8.12 and Lemmas 9.16 and 9.17]), it follows that, for each $p > 1, u_{\lambda}$ belongs to $W^{2,p}(\Omega)$, one has

(13)
$$-\Delta u_{\lambda}(x) = f_0(x, u_{\lambda}(x)) + \lambda g_0(x, u_{\lambda}(x))$$

for almost every $x \in \Omega$, and there exists some constant c_p independent of λ such that

$$\|u_{\lambda}\|_{W^{2,p}(\Omega)} \leq c_p \Big(\int_{\Omega} |f_0(x, u_{\lambda}(x)) + \lambda g_0(x, u_{\lambda}(x))|^p \, dx\Big)^{1/p}.$$

Then, in view of (1), (2) and (6), taking into account that q < 1, by the Hölder inequality, we have

(14)
$$\|u_{\lambda}\|_{W^{2,p}(\Omega)} \le c'_{p}(\|u_{\lambda}\|_{L^{p}(\Omega)} + \|u_{\lambda}\|_{L^{p}(\Omega)}^{q})$$

where

$$c'_p = c_p L \max\{1, \overline{\lambda}(\operatorname{meas}(\Omega))^{(1-q)/p}\}.$$

We now claim that there is a constant c'' independent of λ such that

(15)
$$||u_{\lambda}||_{C^{1}(\overline{\Omega})} \leq c''(||u_{\lambda}|| + ||u_{\lambda}||^{q}).$$

The basic fact is that $W^{2,t}(\Omega)$ is continuously embedded in $C^1(\overline{\Omega})$ for each t > n. So, if n = 1, then (15) follows directly from (14) for p = 2. If n = 2, the same happens by taking p = 3 and observing that $W^{1,2}(\Omega)$ is continuously embedded in $L^3(\Omega)$. If n > 2, since $W^{2,p}(\Omega)$ (resp. $W^{2,n/2}(\Omega)$) is continuously embedded in $L^{np/(n-2p)}(\Omega)$ for p < n/2 (resp. in $L^r(\Omega)$ for each $r \ge 1$), we use (14) iteratively starting from p = 3/2. We thus get (15) after a finite number of steps.

Now, putting together (5), (7), (11) and (15), and recalling that $||u_{\lambda}|| \leq 1$ (by (6)), we get

(16)
$$\|u_{\lambda}\|_{C^{1}(\overline{\Omega})} \leq 2c'' \|u_{\lambda}\|^{q} < 2c'' (8\gamma(8\gamma\lambda)^{(q+1)/(1-q)}\lambda)^{q/2}$$
$$\leq 2c''(8\gamma)^{q/(1-q)}\lambda^{q/(1-q)}.$$

Therefore, if $\lambda < \lambda^*$ with $\lambda^* \leq \overline{\lambda}$ small enough, then $\|u_\lambda\|_{C^1(\overline{\Omega})} \leq \alpha$, and hence $f_0(x, u_\lambda(x)) = f(x, u_\lambda(x)), g_0(x, u_\lambda(x)) = g(x, u_\lambda(x))$ for all $x \in \Omega$. So, in view of (13), u_λ is a non-zero, non-negative strong solution of problem (P_{λ}), and, by (14) and (16), one has

$$\limsup_{\lambda \to 0^+} \frac{\|u_\lambda\|_{C^1(\overline{\Omega})}}{\lambda^{q/(1-q)}} < \infty, \quad \limsup_{\lambda \to 0^+} \frac{\|u_\lambda\|_{W^{2,p}(\Omega)}}{\lambda^{q^2/(1-q)}} < \infty$$

for all p > 1. Now, let $0 < \lambda' < \lambda'' < \lambda^*$. Then, since $\varrho_{\lambda'} < \varrho_{\lambda''}$ and $\Psi(u_{\lambda'}) > 0$, we have

$$\Phi(u_{\lambda^{\prime\prime}}) + \frac{1}{2\lambda^{\prime\prime}}\Psi(u_{\lambda^{\prime\prime}}) \le \Phi(u_{\lambda^{\prime}}) + \frac{1}{2\lambda^{\prime\prime}}\Psi(u_{\lambda^{\prime}}) < \Phi(u_{\lambda^{\prime}}) + \frac{1}{2\lambda^{\prime}}\Psi(u_{\lambda^{\prime}}).$$

For each $\lambda \in (0, \lambda^*)$, we have

$$I_{\lambda}(u_{\lambda}) = \lambda \bigg(\Phi(u_{\lambda}) + \frac{1}{2\lambda} \Psi(u_{\lambda}) \bigg).$$

Then, recalling (10), we conclude that the function $\lambda \mapsto I_{\lambda}(u_{\lambda})$ is negative and decreasing in $]0, \lambda^*[$.

Finally, assume the additional hypotheses to prove that u_{λ} is positive. Of course, we can assume that $\alpha < 1/e$ and that

$$g(x,\xi) \ge -L\xi |\log \xi|^2$$

for all $x \in \Omega$ and $\xi \in [0, \alpha]$. Put

$$h(\xi) = \begin{cases} L(1+\lambda^*)\xi|\log\xi|^2 & \text{if } \xi \in]0,\alpha],\\ 0 & \text{if } \xi = 0,\\ L(1+\lambda^*)\alpha|\log\alpha|^2 & \text{if } \xi > \alpha. \end{cases}$$

Recalling (1), for $\lambda \in (0, \lambda^*)$, we have

$$f_0(x,\xi) + \lambda g_0(x,\xi) \ge -L\xi - \lambda L\xi |\log \xi|^2 > -L(1+\lambda)\xi |\log \xi|^2$$

for all $x \in \Omega$ and $\xi \in [0, \alpha]$. Consequently,

(17)
$$f_0(x,\xi) + \lambda g_0(x,\xi) \ge -h(\xi)$$

for all $x \in \Omega$ and $\xi \ge 0$. Clearly,

(18)
$$\int_{0}^{1} (\xi h(\xi))^{-1/2} d\xi = (L(1+\lambda^*))^{-1/2} \int_{0}^{1} \frac{1}{\xi |\log \xi|} d\xi = \infty.$$

Now, in view of (12), (17) and (18), the positivity of u_{λ} in Ω is ensured by Theorem 3 of [4] (see also [6]). The proof is complete.

3. Remarks. With obvious changes in the above proof, we also obtain THEOREM 2. Assume that:

(i₁) there is s > 1 such that

$$\limsup_{\xi \to 0^-} \frac{\sup_{x \in \Omega} |f(x,\xi)|}{|\xi|^s} < \infty;$$

(ii₁) there is $q \in [0, 1[$ such that

$$\limsup_{\xi \to 0^-} \frac{\sup_{x \in \Omega} |g(x,\xi)|}{|\xi|^q} < \infty;$$

(iii₁) there are a non-empty open set $D \subseteq \Omega$ and a set $B \subseteq D$ of positive measure such that

$$\limsup_{\xi \to 0^-} \frac{\inf_{x \in B} \int_0^{\xi} g(x, t) \, dt}{\xi^2} = \infty, \quad \liminf_{\xi \to 0^-} \frac{\inf_{x \in D} \int_0^{\xi} g(x, t) \, dt}{\xi^2} > -\infty.$$

Then, for some $\lambda^* > 0$ and for each $\lambda \in]0, \lambda^*[$, problem (P_{λ}) admits a non-zero, non-positive strong solution $u_{\lambda} \in \bigcap_{p>2} W^{2,p}(\Omega)$. Moreover,

$$\limsup_{\lambda \to 0^+} \frac{\|u_\lambda\|_{C^1(\overline{\Omega})}}{\lambda^{q/(1-q)}} < \infty, \qquad \limsup_{\lambda \to 0^+} \frac{\|u_\lambda\|_{W^{2,p}(\Omega)}}{\lambda^{q^2/(1-q)}} < \infty$$

for all $p \geq 2$, and the function $\lambda \mapsto I_{\lambda}(u_{\lambda})$ is negative and decreasing in $]0, \lambda^*[$.

So, putting together Theorems 1 and 2, we get

THEOREM 3. Assume that:

 (i_2) there is s > 1 such that

$$\limsup_{\xi \to 0} \frac{\sup_{x \in \Omega} |f(x,\xi)|}{|\xi|^s} < \infty;$$

(ii₂) there is $q \in [0, 1[$ such that

$$\limsup_{\xi \to 0} \frac{\sup_{x \in \Omega} |g(x,\xi)|}{|\xi|^q} < \infty;$$

(iii₂) there are a non-empty open set $D \subseteq \Omega$ and a set $B \subseteq D$ of positive measure such that

$$\limsup_{\xi \to 0^{-}} \frac{\inf_{x \in B} \int_{0}^{\xi} g(x, t) \, dt}{\xi^2} = \limsup_{\xi \to 0^{+}} \frac{\inf_{x \in B} \int_{0}^{\xi} g(x, t) \, dt}{\xi^2} = \infty,$$
$$\liminf_{\xi \to 0} \frac{\inf_{x \in D} \int_{0}^{\xi} g(x, t) \, dt}{\xi^2} > -\infty.$$

Then, for some $\lambda^* > 0$ and for each $\lambda \in [0, \lambda^*[$, problem (P_{λ}) admits a non-zero, non-negative strong solution $u_{\lambda} \in \bigcap_{p \geq 2} W^{2,p}(\Omega)$ and a non-zero, non-positive strong solution $v_{\lambda} \in \bigcap_{p \geq 2} W^{2,p}(\Omega)$. Moreover,

$$\begin{split} & \limsup_{\lambda \to 0^+} \frac{\max\{\|u_{\lambda}\|_{C^1(\overline{\Omega})}, \|v_{\lambda}\|_{C^1(\overline{\Omega})}\}}{\lambda^{q/(1-q)}} < \infty, \\ & \limsup_{\lambda \to 0^+} \frac{\max\{\|u_{\lambda}\|_{W^{2,p}(\Omega)}, \|v_{\lambda}\|_{W^{2,p}(\Omega)}\}}{\lambda^{q^2/(1-q)}} < \infty \end{split}$$

for all $p \geq 2$, and the functions $\lambda \mapsto I_{\lambda}(u_{\lambda}), \lambda \mapsto I_{\lambda}(v_{\lambda})$ are negative and decreasing in $]0, \lambda^*[$.

REMARK 1. Assume that the assumptions of Theorem 1 are satisfied. In addition, suppose that there exists $\eta > 0$ such that the functions f, g are locally Hölder continuous in $\Omega \times [0, \eta]$. Then each u_{λ} is a classical solution of problem (P_{λ}). If f, g are Hölder continuous in $\Omega \times [0, \eta]$, we even have $u_{\lambda} \in C^2(\overline{\Omega})$.

To see this, we can assume $\sup_{\Omega} u_{\lambda} \leq \eta$. Since u_{λ} is Lipschitzian in Ω and Ω is bounded, the composite function $x \mapsto f(x, u_{\lambda}(x)) + \lambda g(x, u_{\lambda}(x))$ is then locally Hölder continuous in Ω (it turns out to be Hölder continuous in Ω when so f, g are in $\Omega \times [0, \eta]$). Now, our claim follows directly from Theorem 9.19 of [2].

REMARK 2. Clearly, Remark 1 applies to Proposition 1.

Proof of Proposition 2. Apply Theorem 1 taking $f(\xi) = \mu \xi^s$ for all $\xi \ge 0$ and

$$g(\xi) = \begin{cases} [(\varphi'(|\log \xi|^2) - a) \log \xi + \varphi(|\log \xi|^2) - a/2]\xi & \text{if } \xi > 0, \\ 0 & \text{if } \xi = 0. \end{cases}$$

So, f, g are continuous, and (i), (ii) (with any $q \in [0, 1[)$ are clearly satisfied. For $\xi > 0$, we have

$$\int_{0}^{\xi} g(t) dt = \frac{1}{2} \xi^{2} (\varphi(|\log \xi|^{2}) - a \log \xi).$$

Hence, since a > 0 and φ is bounded, (iii) also holds. Furthermore, since φ' is bounded, we have

$$\liminf_{\xi \to 0^+} \frac{g(\xi)}{\xi |\log \xi|} > -\infty$$

and hence, a fortiori,

$$\liminf_{\xi \to 0^+} \frac{g(\xi)}{\xi |\log \xi|^2} > -\infty.$$

Finally, since φ'' is bounded, for each $\alpha \in [0, 1]$, we have

$$\lim_{\xi \to 0^+} (g'(\xi) + \alpha \xi^{\alpha - 1}) = \infty, \quad \lim_{\xi \to 0^+} (g'(\xi) - \alpha \xi^{\alpha - 1}) = -\infty.$$

Hence, in a (right, bounded) neighbourhood of 0, the function $\xi \mapsto g(\xi) + \xi^{\alpha}$ is increasing and the function $\xi \mapsto g(\xi) - \xi^{\alpha}$ is decreasing. Of course, this implies that the function g (as well as f, of course) is Hölder continuous, with exponent α , in that neighbourhood. Now, the conclusion follows directly from Theorem 1 jointly with Remark 1.

REFERENCES

- A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519–543.
- [2] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2001.
- [3] L. Jeanjean, Local conditions insuring bifurcation from the continuum spectrum, Math. Z. 232 (1999), 651–664.
- [4] P. Pucci and J. Serrin, A note on the strong maximum principle for elliptic differential inequalities, J. Math. Pures Appl. 79 (2000), 57–71.
- [5] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000), 401–410.
- [6] J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191–202.

Department of Mathematics University of Catania Viale A. Doria 6 95125 Catania, Italy E-mail: ricceri@dipmat.unict.it

> Received 25 March 2002; revised 26 August 2002

(4190)