
C O L L O Q U I U M M A T H E M A T I C U M
VOL. 95 2003 NO. 1

A BIFURCATION THEORY
FOR SOME NONLINEAR ELLIPTIC EQUATIONS

BY

BIAGIO RICCERI (Catania)

Dedicated to Professor G. Santagati, with my greatest esteem,
on his seventieth birthday

Abstract. We deal with the problem

(Pλ)

{
−∆u = f(x, u) + λg(x, u) in Ω,

u|∂Ω = 0,

where Ω ⊂ Rn is a bounded domain, λ ∈ R, and f, g : Ω × R→ R are two Carathéodory
functions with f(x, 0) = g(x, 0) = 0. Under suitable assumptions, we prove that there
exists λ∗ > 0 such that, for each λ ∈ ]0, λ∗[, problem (Pλ) admits a non-zero, non-negative
strong solution uλ ∈

⋂
p≥2 W

2,p(Ω) such that limλ→0+ ‖uλ‖W 2,p(Ω) = 0 for all p ≥ 2.
Moreover, the function λ 7→ Iλ(uλ) is negative and decreasing in ]0, λ∗[, where Iλ is the
energy functional related to (Pλ).

1. Introduction and statement of the result. Throughout the pa-
per, Ω ⊂ Rn is an open, connected, bounded set with smooth boundary,
and f, g : Ω × R→ R are two Carathéodory functions.

As usual, a weak solution of the problem

(Pλ)
{−∆u = f(x, u) + λg(x, u) in Ω,

u|∂Ω = 0,

where λ ∈ R, is any u ∈W 1,2
0 (Ω) such that

�
Ω

∇u(x)∇v(x) dx−
�
Ω

f(x, u(x))v(x) dx− λ
�
Ω

g(x, u(x))v(x) dx = 0

for all v ∈W 1,2
0 (Ω). A strong solution of the problem is any u ∈W 1,2

0 (Ω)∩
W 2,2(Ω) which satisfies the equation almost everywhere in Ω. A classical
solution is any u ∈ C2(Ω)∩C1(Ω), zero on ∂Ω, which satisfies the equation
pointwise in Ω.
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If u is a strong solution of (Pλ), we also put

Iλ(u) =
1
2

�
Ω

|∇u(x)|2 dx−
�
Ω

( u(x)�
0

f(x, ξ) dξ
)
dx

− λ
�
Ω

( u(x)�
0

g(x, ξ) dξ
)
dx.

Above, of course, it is understood that the integrals which appear are well
defined.

The aim of this paper is to prove the following theorem:

Theorem 1. Assume that :

(i) there is s > 1 such that

lim sup
ξ→0+

supx∈Ω |f(x, ξ)|
ξs

<∞;

(ii) there is q ∈ ]0, 1[ such that

lim sup
ξ→0+

supx∈Ω |g(x, ξ)|
ξq

<∞;

(iii) there are a non-empty open set D ⊆ Ω and a set B ⊆ D of positive
measure such that

lim sup
ξ→0+

infx∈B � ξ0 g(x, t) dt
ξ2 =∞, lim inf

ξ→0+

infx∈D � ξ0 g(x, t) dt
ξ2 > −∞.

Then, for some λ∗ > 0 and for each λ ∈ ]0, λ∗[, problem (Pλ) admits a
non-zero, non-negative strong solution uλ ∈

⋂
p≥2W

2,p(Ω). Moreover ,

lim sup
λ→0+

‖uλ‖C1(Ω)

λq/(1−q)
<∞, lim sup

λ→0+

‖uλ‖W 2,p(Ω)

λq2/(1−q) <∞

for all p ≥ 2, and the function λ 7→ Iλ(uλ) is negative and decreasing in
]0, λ∗[. If , in addition, f, g are continuous in Ω × [0,∞[ and

lim inf
ξ→0+

infx∈Ω g(x, ξ)
ξ|log ξ|2 > −∞,

then uλ is positive in Ω.

Before giving the proof of Theorem 1, we make some remarks on it.
First of all, we observe that it is a bifurcation result. In fact, once we

observe that (by (i) and (ii)) 0 is a solution of (Pλ) for each λ, this means,
in particular, that λ = 0 is a bifurcation point for problem (Pλ), in the sense
that, for each p ≥ 2, (0, 0) belongs to the closure in W 2,p(Ω)×R of the set

{(u, λ) ∈W 2,p(Ω)× ]0,∞[ : u is a strong solution of (Pλ), u 6= 0, u ≥ 0}.
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Among the known results, the one which is closest to Theorem 1 is certainly
Theorem 2.1 of [1].

Indeed, the latter, relating to the specific problem




−∆u = us + λuq in Ω,

u > 0 in Ω,

u|∂Ω = 0,

with 0 < q < 1 < s, ensures the existence of λ0 > 0 such that for each λ ∈
]0, λ0[, the problem admits a classical minimal solution uλ with Iλ(uλ) < 0.
Moreover, limλ→0+ supΩ |uλ| = 0 and the function λ 7→ uλ(x) is increasing
for each x ∈ Ω. Finally, for λ = λ0 there is a weak solution, while for λ > λ0

there is no classical solution. In Remark 2.5 of [1], the authors observe
that the result still holds if one replaces uq with any concave function that
behaves like uq near u = 0, and us with any superlinear function that
behaves like us near u = 0 and near u = ∞. We wish to stress that this
remark concerns all the qualitative aspects of the result. In particular, in
the approach of [1], concavity plays an essential role also in the proof that
Iλ(uλ) < 0. However, if one restricts oneself only to the solvability of the
problem for each λ > 0 small enough, then the method of sub- and super-
solutions as exploited in Lemma 3.1 of [1] can be readily applied under
much more general assumptions which meet those of Theorem 1. Here is the
statement one can obtain in this way:

Theorem A. Besides conditions (i) and (ii) of Theorem 1, assume that

(iii′) lim
ξ→0+

infx∈Ω g(x, ξ)
ξ

=∞.

Then, for some λ∗ > 0 and for each λ ∈ ]0, λ∗[, problem (Pλ) admits a
positive weak solution uλ ∈ L∞(Ω), and limλ→0+ ‖uλ‖L∞(Ω) = 0.

Thus, Theorem 1 ensures not only that the conclusion of Theorem A
holds, but also that the function λ 7→ Iλ(uλ) is negative and decreasing, even
in the presence of condition (iii) which, of course, is much less restrictive
than (iii′).

It is clear that the superiority of Theorem 1 over Theorem A is maximum
in the cases when (iii) holds, while (iii′) is violated. For instance, we have
the following examples of application of Theorem 1:

Proposition 1. Let 0 < q < 1 < s and let α, β be two bounded and
locally Hölder continuous functions on Ω. Assume that

(∗) 0 ≤ inf
Ω
β, 0 < sup

Ω
β.
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Then, for some λ∗ > 0 and for each λ ∈ ]0, λ∗[, the problem
{−∆u = α(x)us + λβ(x)uq in Ω,

u|∂Ω = 0,

admits a positive classical solution uλ ∈
⋂
p≥2 W

2,p(Ω). Moreover ,

lim sup
λ→0+

‖uλ‖C1(Ω)

λq/(1−q)
<∞, lim sup

λ→0+

‖uλ‖W 2,p(Ω)

λq2/(1−q) <∞

for all p ≥ 2, and the function

λ 7→ 1
2

�
Ω

|∇uλ(x)|2 dx− 1
s+ 1

�
Ω

α(x)|uλ(x)|s+1 dx

− λ

q + 1

�
Ω

β(x)|uλ(x)|q+1 dx

is negative and decreasing in ]0, λ∗[.

Note a remarkable improvement with respect to the version of Proposi-
tion 1 one would get by applying Theorem A. In this case, in fact, condition
(∗) should be replaced by infΩ β > 0.

Proposition 2. Let ϕ ∈ C2([0,∞[) be bounded together with ϕ′ and
ϕ′′, and let a, µ, s ∈ R with a > 0 and s > 1. Then, for some λ∗ > 0 and
for each λ ∈ ]0, λ∗[, the problem
{
−∆u = µus + λ[(ϕ′(|logu|2)− a) log u+ ϕ(|logu|2)− a/2]u in Ω,

u|∂Ω = 0,

admits a positive classical solution uλ ∈ C2(Ω). Moreover , for each r > 0
and p ≥ 2,

lim sup
λ→0+

‖uλ‖W 2,p(Ω)

λr
<∞

and the function

λ 7→ 1
2

�
Ω

|∇uλ(x)|2 dx− µ

s+ 1

�
Ω

|uλ(x)|s+1 dx

− λ

2

�
Ω

|uλ(x)|2(ϕ(|loguλ(x)|2)− a log uλ(x)) dx

is negative and decreasing in ]0, λ∗[.

The proof of Proposition 2 is given in Section 3. In view of the above
discussion, Proposition 2 is particularly interesting when the set {ξ > 0 :
ϕ′(ξ) ≥ a} is unbounded.

On the other hand, from the comparison with Theorem 2.1 of [1], an
open question arises: under the assumptions of Theorem 1, does problem
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(Pλ) admit a non-zero, non-negative, minimal solution for each λ > 0 small
enough? We conjecture that the answer is negative.

Finally, we point out that our proof of Theorem 1 is genuinely variational.
Precisely, it comes from combining, in a careful way, a truncation and boot-
strap argument (inspired by [3]) with the general approach to finding local
minima proposed in [5].

2. Proof of Theorem 1. First of all, observe that, by (i) and (ii), there
are α,L > 0, with α ≤ 1, such that

|f(x, ξ)| ≤ L|ξ|s and |g(x, ξ)| ≤ L|ξ|q

for every x ∈ Ω, ξ ∈ [0, α]. Of course, if n ≥ 3, it is not restrictive to assume
that s ≤ (n+ 2)/(n− 2). Next, define f0, g0 : Ω × R→ R as follows:

f0(x, ξ) =





f(x, α) if ξ > α,

f(x, ξ) if ξ ∈ [0, α],

0 if ξ < 0,

g0(x, ξ) =





g(x, α) if ξ > α,

g(x, ξ) if ξ ∈ [0, α],

0 if ξ < 0.
Of course, we have

(1) |f0(x, ξ)| ≤ Lmin{|ξ|s, |ξ|}
and

(2) |g0(x, ξ)| ≤ L|ξ|q

for every x ∈ Ω, ξ ∈ R. For simplicity, denote by E the space W 1,2
0 (Ω)

equipped with the norm

‖u‖ =
( �
Ω

|∇u(x)|2 dx
)1/2

.

For each u ∈ E, put

Φ(u) = −
�
Ω

( u(x)�
0

g0(x, ξ) dξ
)
dx,

Ψ(u) =
�
Ω

|∇u(x)|2 dx− 2
�
Ω

( u(x)�
0

f0(x, ξ) dξ
)
dx.

First of all, note that, since f0, g0 are bounded, the functionals Φ, Ψ turn out
to be well defined, continuous and Gateaux differentiable in E. Moreover, by
the Rellich–Kondrashov theorem, Φ is sequentially weakly continuous and
Ψ is sequentially weakly lower semicontinuous. By (1) and by the Sobolev
embedding theorem, for some constant c > 1 and for all u ∈ E, we have

Ψ(u) ≥
�
Ω

|∇u(x)|2 dx− 2L
�
Ω

|u(x)|s+1 dx ≥ ‖u‖2(1− c‖u‖s−1).
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From this, since s > 1, we get

(3) inf
r≤‖u‖≤(2c)1/(1−s)

Ψ(u) ≥ r2/2

for all r ∈ ]0, (2c)1/(1−s)[.
We now prove that

(4) lim inf
‖u‖→0+

Φ(u)
Ψ(u)

= −∞.

To this end, we use condition (iii). So, fix a sequence {ξk} in ]0, 1[, converging
to 0, and constants δ ∈ ]0, α] and Λ in such a way that

lim
k→∞

infx∈B � ξk0 g(x, t) dt
ξ2
k

=∞

and

inf
x∈D

ξ�
0

g(x, t) dt ≥ Λξ2

for all ξ ∈ [0, δ]. Next, fix a set C ⊂ B of positive measure and a function
v ∈ E such that v(x) ∈ [0, 1] for all x ∈ Ω, v(x) = 1 for all x ∈ C and
v(x) = 0 for all x ∈ Ω \D. Finally, fix Q > 0 and M satisfying

Q <
M meas(C) + Λ � D\C |v(x)|2 dx
‖v‖2 + 2L

s+1 � D |v(x)|s+1 dx
.

Then there is ν ∈ N such that ξk < δ, Ψ(ξkv) > 0 (recall (3)) and

inf
x∈B

ξk�
0

g(x, t) dt ≥Mξ2
k

for all k > ν. Taking into account (1) and that ξk < 1, for each k > ν we
have

−Φ(ξkv)
Ψ(ξkv)

≥
� C( � ξk0 g0(x, t) dt) dx+ � D\C( � ξkv(x)

0 g0(x, t) dt) dx

ξ2
k‖v‖2 + 2L

s+1ξ
s+1
k � D |v(x)|s+1 dx

≥
M meas(C) + Λ � D\C |v(x)|2 dx
‖v‖2 + 2L

s+1 � D |v(x)|s+1dx
> Q.

Since Q could be arbitrarily large, it follows that

lim
k→∞

−Φ(ξkv)
Ψ(ξkv)

=∞

from which (4) clearly follows.
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Now, for each % > 0, we denote by X% the closed ball in E, centred at 0,
of radius %. Note that, by (4), one has infX% Φ < 0. Put

γ = sup
%>0

− infX% Φ
%q+1 .

By (2), it follows that γ <∞. So, we have

(5)
%2

− infX% Φ
≥ 1
γ
%1−q

for all % > 0. Next, fix λ satisfying

(6) 0 < λ ≤ λ,
where

λ =
1
8

min
{

1
γ

(2c)(1−q)/(1−s),− 1
infX1 Φ

}
,

the constant c being that in (3). Also, put

(7) %λ = (8γλ)1/(1−q).

So, in particular, we have

(8) %λ ≤ (2c)1/(1−s).

Since E is reflexive, X%λ is sequentially weakly compact. Thus, since Φ+ 1
2λΨ

is sequentially weakly lower semicontinuous, there is uλ ∈ X%λ such that

Φ(uλ) +
1

2λ
Ψ(uλ) = inf

u∈X%λ

(
Φ(u) +

1
2λ

Ψ(u)
)
.

We claim that

(9) Ψ(uλ) < −4λ inf
X%λ

Φ.

Arguing by contradiction, assume that Ψ(uλ) ≥ −4λ infX%λ Φ. Then, taking
into account that infX%λ Φ < 0, we would have

Φ(uλ)− 2 inf
X%λ

Φ = Φ(uλ) +
1

2λ

(
−4λ inf

X%λ

Φ

)
≤ Φ(uλ) +

1
2λ

Ψ(uλ)

≤ Φ(0)+
1

2λ
Ψ(0)=0< inf

X%λ

Φ− 2 inf
X%λ

Φ ≤ Φ(uλ)− 2 inf
X%λ

Φ,

which is absurd.
Now, observe that, due to (4), there is a sequence {vk} in X%λ \{0} such

that limk→∞ Φ(vk)/Ψ(vk) = −∞. Hence, for k large enough, we have

Φ(vk)
Ψ(vk)

< − 1
2λ
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and so (by (3) and (8))

Φ(vk) +
1

2λ
Ψ(vk) < 0 = Φ(0) +

1
2λ

Ψ(0).

This means that

(10) inf
X%λ

(
Φ+

1
2λ

Ψ

)
< 0.

Hence, uλ 6= 0. Next, from (5) and (7), we get

%2
λ ≥ −

1
γ

inf
X%λ

Φ%1−q
λ = −8λ inf

X%λ

Φ.

Consequently,
(−8λ inf

X%λ

Φ)1/2 ≤ %λ.

From (3) and (8), we infer that for each u ∈ X%λ satisfying

(−8λ inf
X%λ

Φ)1/2 ≤ ‖u‖

one has
Ψ(u) ≥ −4λ inf

X%λ

Φ.

Hence, in view of (9), since uλ ∈ X%λ , one has

(11) ‖uλ‖ < (−8λ inf
X%λ

Φ)1/2.

From this, in particular, it follows that uλ is a local minimum in E of the
functional Φ+ 1

2λΨ , and hence

Φ′(uλ) +
1

2λ
Ψ ′(uλ) = 0.

This means that

(12)
�
Ω

∇uλ(x)∇v(x) dx

−
�
Ω

f0(x, uλ(x))v(x)dx− λ
�
Ω

g0(x, uλ(x))v(x) dx = 0

for all v ∈ E.
We claim that uλ is non-negative in Ω. Assume the contrary. Then, by

the continuity of uλ (see below), the set A = {x ∈ Ω : uλ(x) < 0} is
non-empty and open. Of course, uλ|A ∈ W 1,2

0 (A), and (by (12)), for each
v ∈ C∞0 (A), one has �

A

∇uλ(x)∇v(x) dx = 0.
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By density, this equality actually holds for each v ∈ W 1,2
0 (A), and so, in

particular, � A |∇uλ(x)|2 dx = 0, which is absurd.
Next, since f0, g0 are bounded, from standard regularity results ([2, The-

orems 8.8 and 8.12 and Lemmas 9.16 and 9.17]), it follows that, for each
p > 1, uλ belongs to W 2,p(Ω), one has

(13) −∆uλ(x) = f0(x, uλ(x)) + λg0(x, uλ(x))

for almost every x ∈ Ω, and there exists some constant cp independent of λ
such that

‖uλ‖W 2,p(Ω) ≤ cp
( �
Ω

|f0(x, uλ(x)) + λg0(x, uλ(x))|p dx
)1/p

.

Then, in view of (1), (2) and (6), taking into account that q < 1, by the
Hölder inequality, we have

(14) ‖uλ‖W 2,p(Ω) ≤ c′p(‖uλ‖Lp(Ω) + ‖uλ‖qLp(Ω))

where

c′p = cpLmax{1, λ(meas(Ω))(1−q)/p}.

We now claim that there is a constant c′′ independent of λ such that

(15) ‖uλ‖C1(Ω) ≤ c′′(‖uλ‖+ ‖uλ‖q).

The basic fact is that W 2,t(Ω) is continuously embedded in C1(Ω) for each
t > n. So, if n = 1, then (15) follows directly from (14) for p = 2. If
n = 2, the same happens by taking p = 3 and observing that W 1,2(Ω) is
continuously embedded in L3(Ω). If n > 2, since W 2,p(Ω) (resp. W 2,n/2(Ω))
is continuously embedded in Lnp/(n−2p)(Ω) for p < n/2 (resp. in Lr(Ω) for
each r ≥ 1), we use (14) iteratively starting from p = 3/2. We thus get (15)
after a finite number of steps.

Now, putting together (5), (7), (11) and (15), and recalling that ‖uλ‖ ≤ 1
(by (6)), we get

‖uλ‖C1(Ω) ≤ 2c′′‖uλ‖q < 2c′′(8γ(8γλ)(q+1)/(1−q)λ)q/2(16)

≤ 2c′′(8γ)q/(1−q)λq/(1−q).

Therefore, if λ < λ∗ with λ∗ ≤ λ small enough, then ‖uλ‖C1(Ω) ≤ α, and
hence f0(x, uλ(x)) = f(x, uλ(x)), g0(x, uλ(x)) = g(x, uλ(x)) for all x ∈ Ω.
So, in view of (13), uλ is a non-zero, non-negative strong solution of problem
(Pλ), and, by (14) and (16), one has

lim sup
λ→0+

‖uλ‖C1(Ω)

λq/(1−q)
<∞, lim sup

λ→0+

‖uλ‖W 2,p(Ω)

λq2/(1−q) <∞
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for all p > 1. Now, let 0 < λ′ < λ′′ < λ∗. Then, since %λ′ < %λ′′ and
Ψ(uλ′) > 0, we have

Φ(uλ′′) +
1

2λ′′
Ψ(uλ′′) ≤ Φ(uλ′) +

1
2λ′′

Ψ(uλ′) < Φ(uλ′) +
1

2λ′
Ψ(uλ′).

For each λ ∈ ]0, λ∗[, we have

Iλ(uλ) = λ

(
Φ(uλ) +

1
2λ

Ψ(uλ)
)
.

Then, recalling (10), we conclude that the function λ 7→ Iλ(uλ) is negative
and decreasing in ]0, λ∗[.

Finally, assume the additional hypotheses to prove that uλ is positive.
Of course, we can assume that α < 1/e and that

g(x, ξ) ≥ −Lξ|log ξ|2

for all x ∈ Ω and ξ ∈ ]0, α]. Put

h(ξ) =





L(1 + λ∗)ξ|log ξ|2 if ξ ∈ ]0, α],

0 if ξ = 0,

L(1 + λ∗)α|logα|2 if ξ > α.

Recalling (1), for λ ∈ ]0, λ∗[, we have

f0(x, ξ) + λg0(x, ξ) ≥ −Lξ − λLξ|log ξ|2 > −L(1 + λ)ξ|log ξ|2

for all x ∈ Ω and ξ ∈ ]0, α]. Consequently,

(17) f0(x, ξ) + λg0(x, ξ) ≥ −h(ξ)

for all x ∈ Ω and ξ ≥ 0. Clearly,

(18)
1�
0

(ξh(ξ))−1/2 dξ = (L(1 + λ∗))−1/2
1�
0

1
ξ| log ξ| dξ =∞.

Now, in view of (12), (17) and (18), the positivity of uλ in Ω is ensured by
Theorem 3 of [4] (see also [6]). The proof is complete.

3. Remarks. With obvious changes in the above proof, we also obtain

Theorem 2. Assume that :

(i1) there is s > 1 such that

lim sup
ξ→0−

supx∈Ω |f(x, ξ)|
|ξ|s <∞;

(ii1) there is q ∈ ]0, 1[ such that

lim sup
ξ→0−

supx∈Ω |g(x, ξ)|
|ξ|q <∞;
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(iii1) there are a non-empty open set D ⊆ Ω and a set B ⊆ D of positive
measure such that

lim sup
ξ→0−

infx∈B � ξ0 g(x, t) dt
ξ2 =∞, lim inf

ξ→0−

infx∈D � ξ0 g(x, t) dt
ξ2 > −∞.

Then, for some λ∗ > 0 and for each λ ∈ ]0, λ∗[, problem (Pλ) admits a
non-zero, non-positive strong solution uλ ∈

⋂
p≥2 W

2,p(Ω). Moreover ,

lim sup
λ→0+

‖uλ‖C1(Ω)

λq/(1−q)
<∞, lim sup

λ→0+

‖uλ‖W 2,p(Ω)

λq2/(1−q) <∞

for all p ≥ 2, and the function λ 7→ Iλ(uλ) is negative and decreasing in
]0, λ∗[.

So, putting together Theorems 1 and 2, we get

Theorem 3. Assume that :

(i2) there is s > 1 such that

lim sup
ξ→0

supx∈Ω |f(x, ξ)|
|ξ|s <∞;

(ii2) there is q ∈ ]0, 1[ such that

lim sup
ξ→0

supx∈Ω |g(x, ξ)|
|ξ|q <∞;

(iii2) there are a non-empty open set D ⊆ Ω and a set B ⊆ D of positive
measure such that

lim sup
ξ→0−

infx∈B � ξ0 g(x, t) dt
ξ2 = lim sup

ξ→0+

infx∈B � ξ0 g(x, t) dt
ξ2 =∞,

lim inf
ξ→0

infx∈D � ξ0 g(x, t) dt
ξ2 > −∞.

Then, for some λ∗ > 0 and for each λ ∈ ]0, λ∗[, problem (Pλ) admits a
non-zero, non-negative strong solution uλ ∈

⋂
p≥2W

2,p(Ω) and a non-zero,
non-positive strong solution vλ ∈

⋂
p≥2 W

2,p(Ω). Moreover ,

lim sup
λ→0+

max{‖uλ‖C1(Ω), ‖vλ‖C1(Ω)}
λq/(1−q)

<∞,

lim sup
λ→0+

max{‖uλ‖W 2,p(Ω), ‖vλ‖W 2,p(Ω)}
λq2/(1−q) <∞

for all p ≥ 2, and the functions λ 7→ Iλ(uλ), λ 7→ Iλ(vλ) are negative and
decreasing in ]0, λ∗[.
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Remark 1. Assume that the assumptions of Theorem 1 are satisfied. In
addition, suppose that there exists η > 0 such that the functions f, g are
locally Hölder continuous in Ω × [0, η]. Then each uλ is a classical solution
of problem (Pλ). If f, g are Hölder continuous in Ω × [0, η], we even have
uλ ∈ C2(Ω).

To see this, we can assume supΩ uλ ≤ η. Since uλ is Lipschitzian in Ω
and Ω is bounded, the composite function x 7→ f(x, uλ(x)) + λg(x, uλ(x))
is then locally Hölder continuous in Ω (it turns out to be Hölder continuous
in Ω when so f, g are in Ω × [0, η]). Now, our claim follows directly from
Theorem 9.19 of [2].

Remark 2. Clearly, Remark 1 applies to Proposition 1.

Proof of Proposition 2. Apply Theorem 1 taking f(ξ) = µξs for all ξ ≥ 0
and

g(ξ) =

{
[(ϕ′(|log ξ|2)− a) log ξ + ϕ(|log ξ|2)− a/2]ξ if ξ > 0,

0 if ξ = 0.

So, f, g are continuous, and (i), (ii) (with any q ∈ ]0, 1[) are clearly satisfied.
For ξ > 0, we have

ξ�
0

g(t) dt =
1
2
ξ2(ϕ(|log ξ|2)− a log ξ).

Hence, since a > 0 and ϕ is bounded, (iii) also holds. Furthermore, since ϕ′

is bounded, we have

lim inf
ξ→0+

g(ξ)
ξ|log ξ| > −∞

and hence, a fortiori,

lim inf
ξ→0+

g(ξ)
ξ|log ξ|2 > −∞.

Finally, since ϕ′′ is bounded, for each α ∈ ]0, 1[, we have

lim
ξ→0+

(g′(ξ) + αξα−1) =∞, lim
ξ→0+

(g′(ξ)− αξα−1) = −∞.

Hence, in a (right, bounded) neighbourhood of 0, the function ξ 7→ g(ξ)+ξα

is increasing and the function ξ 7→ g(ξ) − ξα is decreasing. Of course, this
implies that the function g (as well as f , of course) is Hölder continuous, with
exponent α, in that neighbourhood. Now, the conclusion follows directly
from Theorem 1 jointly with Remark 1.



BIFURCATION THEORY 151

REFERENCES

[1] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex
nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519–543.

[2] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second
Order , Springer, 2001.

[3] L. Jeanjean, Local conditions insuring bifurcation from the continuum spectrum,
Math. Z. 232 (1999), 651–664.

[4] P. Pucci and J. Serrin, A note on the strong maximum principle for elliptic differential
inequalities, J. Math. Pures Appl. 79 (2000), 57–71.

[5] B. Ricceri, A general variational principle and some of its applications, J. Comput.
Appl. Math. 113 (2000), 401–410.

[6] J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations,
Appl. Math. Optim. 12 (1984), 191–202.

Department of Mathematics
University of Catania
Viale A. Doria 6
95125 Catania, Italy
E-mail: ricceri@dipmat.unict.it

Received 25 March 2002;
revised 26 August 2002 (4190)


