C OLLOQ UIUM MATHEMATICUM

A BIFURCATION THEORY FOR SOME NONLINEAR ELLIPTIC EQUATIONS

By

BIAGIO RICCERI (Catania)

Dedicated to Professor G. Santagati, with my greatest esteem, on his seventieth birthday

Abstract. We deal with the problem

$$
\left\{\begin{array}{l}
-\Delta u=f(x, u)+\lambda g(x, u) \quad \text { in } \Omega, \\
u_{\mid \partial \Omega}=0,
\end{array}\right.
$$

where $\Omega \subset \mathbb{R}^{n}$ is a bounded domain, $\lambda \in \mathbb{R}$, and $f, g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ are two Carathéodory functions with $f(x, 0)=g(x, 0)=0$. Under suitable assumptions, we prove that there exists $\lambda^{*}>0$ such that, for each $\left.\lambda \in\right] 0, \lambda^{*}\left[\right.$, problem (P_{λ}) admits a non-zero, non-negative strong solution $u_{\lambda} \in \bigcap_{p \geq 2} W^{2, p}(\Omega)$ such that $\lim _{\lambda \rightarrow 0^{+}}\left\|u_{\lambda}\right\|_{W^{2, p}(\Omega)}=0$ for all $p \geq 2$. Moreover, the function $\lambda \mapsto I_{\lambda}\left(u_{\lambda}\right)$ is negative and decreasing in $] 0, \lambda^{*}\left[\right.$, where I_{λ} is the energy functional related to $\left(\mathrm{P}_{\lambda}\right)$.

1. Introduction and statement of the result. Throughout the paper, $\Omega \subset \mathbb{R}^{n}$ is an open, connected, bounded set with smooth boundary, and $f, g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ are two Carathéodory functions.

As usual, a weak solution of the problem

$$
\left\{\begin{array}{l}
-\Delta u=f(x, u)+\lambda g(x, u) \quad \text { in } \Omega \\
u_{\mid \partial \Omega}=0
\end{array}\right.
$$

where $\lambda \in \mathbb{R}$, is any $u \in W_{0}^{1,2}(\Omega)$ such that

$$
\int_{\Omega} \nabla u(x) \nabla v(x) d x-\int_{\Omega} f(x, u(x)) v(x) d x-\lambda \int_{\Omega} g(x, u(x)) v(x) d x=0
$$

for all $v \in W_{0}^{1,2}(\Omega)$. A strong solution of the problem is any $u \in W_{0}^{1,2}(\Omega) \cap$ $W^{2,2}(\Omega)$ which satisfies the equation almost everywhere in Ω. A classical solution is any $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$, zero on $\partial \Omega$, which satisfies the equation pointwise in Ω.

[^0]If u is a strong solution of $\left(\mathrm{P}_{\lambda}\right)$, we also put

$$
\begin{aligned}
I_{\lambda}(u)= & \frac{1}{2} \int_{\Omega}|\nabla u(x)|^{2} d x-\int_{\Omega}\left(\int_{0}^{u(x)} f(x, \xi) d \xi\right) d x \\
& -\lambda \int_{\Omega}\left(\int_{0}^{u(x)} g(x, \xi) d \xi\right) d x
\end{aligned}
$$

Above, of course, it is understood that the integrals which appear are well defined.

The aim of this paper is to prove the following theorem:
Theorem 1. Assume that:
(i) there is $s>1$ such that

$$
\limsup _{\xi \rightarrow 0^{+}} \frac{\sup _{x \in \Omega}|f(x, \xi)|}{\xi^{s}}<\infty
$$

(ii) there is $q \in] 0,1[$ such that

$$
\limsup _{\xi \rightarrow 0^{+}} \frac{\sup _{x \in \Omega}|g(x, \xi)|}{\xi^{q}}<\infty
$$

(iii) there are a non-empty open set $D \subseteq \Omega$ and a set $B \subseteq D$ of positive measure such that

$$
\limsup _{\xi \rightarrow 0^{+}} \frac{\inf _{x \in B} \int_{0}^{\xi} g(x, t) d t}{\xi^{2}}=\infty, \quad \liminf _{\xi \rightarrow 0^{+}} \frac{\inf _{x \in D} \int_{0}^{\xi} g(x, t) d t}{\xi^{2}}>-\infty
$$

Then, for some $\lambda^{*}>0$ and for each $\left.\lambda \in\right] 0, \lambda^{*}\left[\right.$, problem $\left(\mathrm{P}_{\lambda}\right)$ admits a non-zero, non-negative strong solution $u_{\lambda} \in \bigcap_{p \geq 2} W^{2, p}(\Omega)$. Moreover,

$$
\limsup _{\lambda \rightarrow 0^{+}} \frac{\left\|u_{\lambda}\right\|_{C^{1}(\bar{\Omega})}}{\lambda^{q /(1-q)}}<\infty, \quad \limsup _{\lambda \rightarrow 0^{+}} \frac{\left\|u_{\lambda}\right\|_{W^{2, p}(\Omega)}}{\lambda^{q^{2} /(1-q)}}<\infty
$$

for all $p \geq 2$, and the function $\lambda \mapsto I_{\lambda}\left(u_{\lambda}\right)$ is negative and decreasing in $] 0, \lambda^{*}$. If , in addition, f, g are continuous in $\Omega \times[0, \infty[$ and

$$
\liminf _{\xi \rightarrow 0^{+}} \frac{\inf _{x \in \Omega} g(x, \xi)}{\xi|\log \xi|^{2}}>-\infty
$$

then u_{λ} is positive in Ω.
Before giving the proof of Theorem 1, we make some remarks on it.
First of all, we observe that it is a bifurcation result. In fact, once we observe that (by (i) and (ii)) 0 is a solution of $\left(\mathrm{P}_{\lambda}\right)$ for each λ, this means, in particular, that $\lambda=0$ is a bifurcation point for problem $\left(\mathrm{P}_{\lambda}\right)$, in the sense that, for each $p \geq 2,(0,0)$ belongs to the closure in $W^{2, p}(\Omega) \times \mathbb{R}$ of the set $\left\{(u, \lambda) \in W^{2, p}(\Omega) \times\right] 0, \infty\left[: u\right.$ is a strong solution of $\left.\left(\mathrm{P}_{\lambda}\right), u \neq 0, u \geq 0\right\}$.

Among the known results, the one which is closest to Theorem 1 is certainly Theorem 2.1 of [1].

Indeed, the latter, relating to the specific problem

$$
\left\{\begin{array}{l}
-\Delta u=u^{s}+\lambda u^{q} \quad \text { in } \Omega \\
u>0 \quad \text { in } \Omega \\
u_{\mid \partial \Omega}=0
\end{array}\right.
$$

with $0<q<1<s$, ensures the existence of $\lambda_{0}>0$ such that for each $\lambda \in$ $] 0, \lambda_{0}\left[\right.$, the problem admits a classical minimal solution u_{λ} with $I_{\lambda}\left(u_{\lambda}\right)<0$. Moreover, $\lim _{\lambda \rightarrow 0^{+}} \sup _{\Omega}\left|u_{\lambda}\right|=0$ and the function $\lambda \mapsto u_{\lambda}(x)$ is increasing for each $x \in \Omega$. Finally, for $\lambda=\lambda_{0}$ there is a weak solution, while for $\lambda>\lambda_{0}$ there is no classical solution. In Remark 2.5 of [1], the authors observe that the result still holds if one replaces u^{q} with any concave function that behaves like u^{q} near $u=0$, and u^{s} with any superlinear function that behaves like u^{s} near $u=0$ and near $u=\infty$. We wish to stress that this remark concerns all the qualitative aspects of the result. In particular, in the approach of [1], concavity plays an essential role also in the proof that $I_{\lambda}\left(u_{\lambda}\right)<0$. However, if one restricts oneself only to the solvability of the problem for each $\lambda>0$ small enough, then the method of sub- and supersolutions as exploited in Lemma 3.1 of [1] can be readily applied under much more general assumptions which meet those of Theorem 1. Here is the statement one can obtain in this way:

Theorem A. Besides conditions (i) and (ii) of Theorem 1, assume that

$$
\begin{equation*}
\lim _{\xi \rightarrow 0^{+}} \frac{\inf _{x \in \Omega} g(x, \xi)}{\xi}=\infty \tag{iii'}
\end{equation*}
$$

Then, for some $\lambda^{*}>0$ and for each $\left.\lambda \in\right] 0, \lambda^{*}\left[\right.$, problem $\left(\mathrm{P}_{\lambda}\right)$ admits a positive weak solution $u_{\lambda} \in L^{\infty}(\Omega)$, and $\lim _{\lambda \rightarrow 0^{+}}\left\|u_{\lambda}\right\|_{L^{\infty}(\Omega)}=0$.

Thus, Theorem 1 ensures not only that the conclusion of Theorem A holds, but also that the function $\lambda \mapsto I_{\lambda}\left(u_{\lambda}\right)$ is negative and decreasing, even in the presence of condition (iii) which, of course, is much less restrictive than (iii^{\prime}).

It is clear that the superiority of Theorem 1 over Theorem A is maximum in the cases when (iii) holds, while (iii') is violated. For instance, we have the following examples of application of Theorem 1 :

Proposition 1. Let $0<q<1<s$ and let α, β be two bounded and locally Hölder continuous functions on Ω. Assume that

$$
\begin{equation*}
0 \leq \inf _{\Omega} \beta, \quad 0<\sup _{\Omega} \beta \tag{*}
\end{equation*}
$$

Then, for some $\lambda^{*}>0$ and for each $\left.\lambda \in\right] 0, \lambda^{*}[$, the problem

$$
\left\{\begin{array}{l}
-\Delta u=\alpha(x) u^{s}+\lambda \beta(x) u^{q} \quad \text { in } \Omega \\
u_{\mid \partial \Omega}=0
\end{array}\right.
$$

admits a positive classical solution $u_{\lambda} \in \bigcap_{p \geq 2} W^{2, p}(\Omega)$. Moreover,

$$
\limsup _{\lambda \rightarrow 0^{+}} \frac{\left\|u_{\lambda}\right\|_{C^{1}(\bar{\Omega})}}{\lambda^{q /(1-q)}}<\infty, \quad \limsup _{\lambda \rightarrow 0^{+}} \frac{\left\|u_{\lambda}\right\|_{W^{2, p}(\Omega)}}{\lambda^{q^{2} /(1-q)}}<\infty
$$

for all $p \geq 2$, and the function

$$
\begin{aligned}
\lambda \mapsto & \frac{1}{2} \int_{\Omega}\left|\nabla u_{\lambda}(x)\right|^{2} d x-\frac{1}{s+1} \int_{\Omega} \alpha(x)\left|u_{\lambda}(x)\right|^{s+1} d x \\
& -\frac{\lambda}{q+1} \int_{\Omega} \beta(x)\left|u_{\lambda}(x)\right|^{q+1} d x
\end{aligned}
$$

is negative and decreasing in $] 0, \lambda^{*}[$.
Note a remarkable improvement with respect to the version of Proposition 1 one would get by applying Theorem A. In this case, in fact, condition $(*)$ should be replaced by $\inf _{\Omega} \beta>0$.

Proposition 2. Let $\varphi \in C^{2}\left(\left[0, \infty[)\right.\right.$ be bounded together with φ^{\prime} and $\varphi^{\prime \prime}$, and let $a, \mu, s \in \mathbb{R}$ with $a>0$ and $s>1$. Then, for some $\lambda^{*}>0$ and for each $\lambda \in] 0, \lambda^{*}[$, the problem

$$
\left\{\begin{array}{l}
-\Delta u=\mu u^{s}+\lambda\left[\left(\varphi^{\prime}\left(|\log u|^{2}\right)-a\right) \log u+\varphi\left(|\log u|^{2}\right)-a / 2\right] u \quad \text { in } \Omega \\
u_{\mid \partial \Omega}=0
\end{array}\right.
$$

admits a positive classical solution $u_{\lambda} \in C^{2}(\bar{\Omega})$. Moreover, for each $r>0$ and $p \geq 2$,

$$
\limsup _{\lambda \rightarrow 0^{+}} \frac{\left\|u_{\lambda}\right\|_{W^{2, p}(\Omega)}}{\lambda^{r}}<\infty
$$

and the function

$$
\begin{aligned}
\lambda \mapsto & \frac{1}{2} \int_{\Omega}\left|\nabla u_{\lambda}(x)\right|^{2} d x-\frac{\mu}{s+1} \int_{\Omega}\left|u_{\lambda}(x)\right|^{s+1} d x \\
& -\frac{\lambda}{2} \int_{\Omega}\left|u_{\lambda}(x)\right|^{2}\left(\varphi\left(\left|\log u_{\lambda}(x)\right|^{2}\right)-a \log u_{\lambda}(x)\right) d x
\end{aligned}
$$

is negative and decreasing in $] 0, \lambda^{*}[$.
The proof of Proposition 2 is given in Section 3. In view of the above discussion, Proposition 2 is particularly interesting when the set $\{\xi>0$: $\left.\varphi^{\prime}(\xi) \geq a\right\}$ is unbounded.

On the other hand, from the comparison with Theorem 2.1 of [1], an open question arises: under the assumptions of Theorem 1, does problem
$\left(\mathrm{P}_{\lambda}\right)$ admit a non-zero, non-negative, minimal solution for each $\lambda>0$ small enough? We conjecture that the answer is negative.

Finally, we point out that our proof of Theorem 1 is genuinely variational. Precisely, it comes from combining, in a careful way, a truncation and bootstrap argument (inspired by [3]) with the general approach to finding local minima proposed in [5].
2. Proof of Theorem 1. First of all, observe that, by (i) and (ii), there are $\alpha, L>0$, with $\alpha \leq 1$, such that

$$
|f(x, \xi)| \leq L|\xi|^{s} \quad \text { and } \quad|g(x, \xi)| \leq L|\xi|^{q}
$$

for every $x \in \Omega, \xi \in[0, \alpha]$. Of course, if $n \geq 3$, it is not restrictive to assume that $s \leq(n+2) /(n-2)$. Next, define $f_{0}, g_{0}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ as follows:

$$
f_{0}(x, \xi)=\left\{\begin{array}{ll}
f(x, \alpha) & \text { if } \xi>\alpha \\
f(x, \xi) & \text { if } \xi \in[0, \alpha], \\
0 & \text { if } \xi<0,
\end{array} \quad g_{0}(x, \xi)= \begin{cases}g(x, \alpha) & \text { if } \xi>\alpha \\
g(x, \xi) & \text { if } \xi \in[0, \alpha] \\
0 & \text { if } \xi<0\end{cases}\right.
$$

Of course, we have

$$
\begin{equation*}
\left|f_{0}(x, \xi)\right| \leq L \min \left\{|\xi|^{s},|\xi|\right\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|g_{0}(x, \xi)\right| \leq L|\xi|^{q} \tag{2}
\end{equation*}
$$

for every $x \in \Omega, \xi \in \mathbb{R}$. For simplicity, denote by E the space $W_{0}^{1,2}(\Omega)$ equipped with the norm

$$
\|u\|=\left(\int_{\Omega}|\nabla u(x)|^{2} d x\right)^{1 / 2}
$$

For each $u \in E$, put

$$
\begin{aligned}
& \Phi(u)=-\int_{\Omega}\left(\int_{0}^{u(x)} g_{0}(x, \xi) d \xi\right) d x \\
& \Psi(u)=\int_{\Omega}|\nabla u(x)|^{2} d x-2 \int_{\Omega}\left(\int_{0}^{u(x)} f_{0}(x, \xi) d \xi\right) d x
\end{aligned}
$$

First of all, note that, since f_{0}, g_{0} are bounded, the functionals Φ, Ψ turn out to be well defined, continuous and Gateaux differentiable in E. Moreover, by the Rellich-Kondrashov theorem, Φ is sequentially weakly continuous and Ψ is sequentially weakly lower semicontinuous. By (1) and by the Sobolev embedding theorem, for some constant $c>1$ and for all $u \in E$, we have

$$
\Psi(u) \geq \int_{\Omega}|\nabla u(x)|^{2} d x-2 L \int_{\Omega}|u(x)|^{s+1} d x \geq\|u\|^{2}\left(1-c\|u\|^{s-1}\right)
$$

From this, since $s>1$, we get

$$
\begin{equation*}
\inf _{r \leq\|u\| \leq(2 c)^{1 /(1-s)}} \Psi(u) \geq r^{2} / 2 \tag{3}
\end{equation*}
$$

for all $r \in] 0,(2 c)^{1 /(1-s)}[$.
We now prove that

$$
\begin{equation*}
\liminf _{\|u\| \rightarrow 0^{+}} \frac{\Phi(u)}{\Psi(u)}=-\infty \tag{4}
\end{equation*}
$$

To this end, we use condition (iii). So, fix a sequence $\left\{\xi_{k}\right\}$ in $] 0,1[$, converging to 0 , and constants $\delta \in] 0, \alpha]$ and Λ in such a way that

$$
\lim _{k \rightarrow \infty} \frac{\inf _{x \in B} \int_{0}^{\xi_{k}} g(x, t) d t}{\xi_{k}^{2}}=\infty
$$

and

$$
\inf _{x \in D} \int_{0}^{\xi} g(x, t) d t \geq \Lambda \xi^{2}
$$

for all $\xi \in[0, \delta]$. Next, fix a set $C \subset B$ of positive measure and a function $v \in E$ such that $v(x) \in[0,1]$ for all $x \in \Omega, v(x)=1$ for all $x \in C$ and $v(x)=0$ for all $x \in \Omega \backslash D$. Finally, fix $Q>0$ and M satisfying

$$
Q<\frac{M \operatorname{meas}(C)+\Lambda \int_{D \backslash C}|v(x)|^{2} d x}{\|v\|^{2}+\frac{2 L}{s+1} \int_{D}|v(x)|^{s+1} d x}
$$

Then there is $\nu \in \mathbb{N}$ such that $\xi_{k}<\delta, \Psi\left(\xi_{k} v\right)>0$ (recall (3)) and

$$
\inf _{x \in B} \int_{0}^{\xi_{k}} g(x, t) d t \geq M \xi_{k}^{2}
$$

for all $k>\nu$. Taking into account (1) and that $\xi_{k}<1$, for each $k>\nu$ we have

$$
\begin{aligned}
-\frac{\Phi\left(\xi_{k} v\right)}{\Psi\left(\xi_{k} v\right)} & \geq \frac{\int_{C}\left(\int_{0}^{\xi_{k}} g_{0}(x, t) d t\right) d x+\int_{D \backslash C}\left(\int_{0}^{\xi_{k} v(x)} g_{0}(x, t) d t\right) d x}{\xi_{k}^{2}\|v\|^{2}+\frac{2 L}{s+1} \xi_{k}^{s+1} \int_{D}|v(x)|^{s+1} d x} \\
& \geq \frac{M \operatorname{meas}(C)+\Lambda \int_{D \backslash C}|v(x)|^{2} d x}{\|v\|^{2}+\frac{2 L}{s+1} \int_{D}|v(x)|^{s+1} d x}>Q
\end{aligned}
$$

Since Q could be arbitrarily large, it follows that

$$
\lim _{k \rightarrow \infty}-\frac{\Phi\left(\xi_{k} v\right)}{\Psi\left(\xi_{k} v\right)}=\infty
$$

from which (4) clearly follows.

Now, for each $\varrho>0$, we denote by X_{ϱ} the closed ball in E, centred at 0 , of radius ϱ. Note that, by (4), one has $\inf _{X_{\varrho}} \Phi<0$. Put

$$
\gamma=\sup _{\varrho>0} \frac{-\inf _{X_{\varrho}} \Phi}{\varrho^{q+1}}
$$

By (2), it follows that $\gamma<\infty$. So, we have

$$
\begin{equation*}
\frac{\varrho^{2}}{-\inf _{X_{\varrho}} \Phi} \geq \frac{1}{\gamma} \varrho^{1-q} \tag{5}
\end{equation*}
$$

for all $\varrho>0$. Next, fix λ satisfying

$$
\begin{equation*}
0<\lambda \leq \bar{\lambda} \tag{6}
\end{equation*}
$$

where

$$
\bar{\lambda}=\frac{1}{8} \min \left\{\frac{1}{\gamma}(2 c)^{(1-q) /(1-s)},-\frac{1}{\inf _{X_{1}} \Phi}\right\}
$$

the constant c being that in (3). Also, put

$$
\begin{equation*}
\varrho_{\lambda}=(8 \gamma \lambda)^{1 /(1-q)} \tag{7}
\end{equation*}
$$

So, in particular, we have

$$
\begin{equation*}
\varrho_{\lambda} \leq(2 c)^{1 /(1-s)} \tag{8}
\end{equation*}
$$

Since E is reflexive, $X_{\varrho_{\lambda}}$ is sequentially weakly compact. Thus, since $\Phi+\frac{1}{2 \lambda} \Psi$ is sequentially weakly lower semicontinuous, there is $u_{\lambda} \in X_{\varrho_{\lambda}}$ such that

$$
\Phi\left(u_{\lambda}\right)+\frac{1}{2 \lambda} \Psi\left(u_{\lambda}\right)=\inf _{u \in X_{\varrho_{\lambda}}}\left(\Phi(u)+\frac{1}{2 \lambda} \Psi(u)\right)
$$

We claim that

$$
\begin{equation*}
\Psi\left(u_{\lambda}\right)<-4 \lambda \inf _{X_{e_{\lambda}}} \Phi \tag{9}
\end{equation*}
$$

Arguing by contradiction, assume that $\Psi\left(u_{\lambda}\right) \geq-4 \lambda \inf _{X_{e_{\lambda}}} \Phi$. Then, taking into account that $\inf _{X_{e_{\lambda}}} \Phi<0$, we would have

$$
\begin{aligned}
\Phi\left(u_{\lambda}\right)-2 \inf _{X_{\varrho_{\lambda}}} \Phi & =\Phi\left(u_{\lambda}\right)+\frac{1}{2 \lambda}\left(-4 \lambda \inf _{X_{\varrho_{\lambda}}} \Phi\right) \leq \Phi\left(u_{\lambda}\right)+\frac{1}{2 \lambda} \Psi\left(u_{\lambda}\right) \\
& \leq \Phi(0)+\frac{1}{2 \lambda} \Psi(0)=0<\inf _{X_{\varrho_{\lambda}}} \Phi-2 \inf _{X_{\varrho_{\lambda}}} \Phi \leq \Phi\left(u_{\lambda}\right)-2 \inf _{X_{\varrho_{\lambda}}} \Phi
\end{aligned}
$$

which is absurd.
Now, observe that, due to (4), there is a sequence $\left\{v_{k}\right\}$ in $X_{\varrho_{\lambda}} \backslash\{0\}$ such that $\lim _{k \rightarrow \infty} \Phi\left(v_{k}\right) / \Psi\left(v_{k}\right)=-\infty$. Hence, for k large enough, we have

$$
\frac{\Phi\left(v_{k}\right)}{\Psi\left(v_{k}\right)}<-\frac{1}{2 \lambda}
$$

and so (by (3) and (8))

$$
\Phi\left(v_{k}\right)+\frac{1}{2 \lambda} \Psi\left(v_{k}\right)<0=\Phi(0)+\frac{1}{2 \lambda} \Psi(0)
$$

This means that

$$
\begin{equation*}
\inf _{X_{e_{\lambda}}}\left(\Phi+\frac{1}{2 \lambda} \Psi\right)<0 \tag{10}
\end{equation*}
$$

Hence, $u_{\lambda} \neq 0$. Next, from (5) and (7), we get

$$
\varrho_{\lambda}^{2} \geq-\frac{1}{\gamma} \inf _{X_{\varrho_{\lambda}}} \Phi \varrho_{\lambda}^{1-q}=-8 \lambda \inf _{X_{\varrho_{\lambda}}} \Phi
$$

Consequently,

$$
\left(-8 \lambda \inf _{X_{\varrho_{\lambda}}} \Phi\right)^{1 / 2} \leq \varrho_{\lambda}
$$

From (3) and (8), we infer that for each $u \in X_{\varrho_{\lambda}}$ satisfying

$$
\left(-8 \lambda \inf _{X_{e_{\lambda}}} \Phi\right)^{1 / 2} \leq\|u\|
$$

one has

$$
\Psi(u) \geq-4 \lambda \inf _{X_{e_{\lambda}}} \Phi
$$

Hence, in view of (9), since $u_{\lambda} \in X_{\varrho_{\lambda}}$, one has

$$
\begin{equation*}
\left\|u_{\lambda}\right\|<\left(-8 \lambda \inf _{X_{\varrho_{\lambda}}} \Phi\right)^{1 / 2} \tag{11}
\end{equation*}
$$

From this, in particular, it follows that u_{λ} is a local minimum in E of the functional $\Phi+\frac{1}{2 \lambda} \Psi$, and hence

$$
\Phi^{\prime}\left(u_{\lambda}\right)+\frac{1}{2 \lambda} \Psi^{\prime}\left(u_{\lambda}\right)=0
$$

This means that

$$
\begin{align*}
\int_{\Omega} \nabla u_{\lambda}(x) \nabla & v(x) d x \tag{12}\\
& -\int_{\Omega} f_{0}\left(x, u_{\lambda}(x)\right) v(x) d x-\lambda \int_{\Omega} g_{0}\left(x, u_{\lambda}(x)\right) v(x) d x=0
\end{align*}
$$

for all $v \in E$.
We claim that u_{λ} is non-negative in Ω. Assume the contrary. Then, by the continuity of u_{λ} (see below), the set $A=\left\{x \in \Omega: u_{\lambda}(x)<0\right\}$ is non-empty and open. Of course, $u_{\lambda \mid A} \in W_{0}^{1,2}(A)$, and (by (12)), for each $v \in C_{0}^{\infty}(A)$, one has

$$
\int_{A} \nabla u_{\lambda}(x) \nabla v(x) d x=0 .
$$

By density, this equality actually holds for each $v \in W_{0}^{1,2}(A)$, and so, in particular, $\int_{A}\left|\nabla u_{\lambda}(x)\right|^{2} d x=0$, which is absurd.

Next, since f_{0}, g_{0} are bounded, from standard regularity results ([2, Theorems 8.8 and 8.12 and Lemmas 9.16 and 9.17$]$), it follows that, for each $p>1, u_{\lambda}$ belongs to $W^{2, p}(\Omega)$, one has

$$
\begin{equation*}
-\Delta u_{\lambda}(x)=f_{0}\left(x, u_{\lambda}(x)\right)+\lambda g_{0}\left(x, u_{\lambda}(x)\right) \tag{13}
\end{equation*}
$$

for almost every $x \in \Omega$, and there exists some constant c_{p} independent of λ such that

$$
\left\|u_{\lambda}\right\|_{W^{2, p}(\Omega)} \leq c_{p}\left(\int_{\Omega}\left|f_{0}\left(x, u_{\lambda}(x)\right)+\lambda g_{0}\left(x, u_{\lambda}(x)\right)\right|^{p} d x\right)^{1 / p}
$$

Then, in view of (1), (2) and (6), taking into account that $q<1$, by the Hölder inequality, we have

$$
\begin{equation*}
\left\|u_{\lambda}\right\|_{W^{2, p}(\Omega)} \leq c_{p}^{\prime}\left(\left\|u_{\lambda}\right\|_{L^{p}(\Omega)}+\left\|u_{\lambda}\right\|_{L^{p}(\Omega)}^{q}\right) \tag{14}
\end{equation*}
$$

where

$$
c_{p}^{\prime}=c_{p} L \max \left\{1, \bar{\lambda}(\operatorname{meas}(\Omega))^{(1-q) / p}\right\}
$$

We now claim that there is a constant $c^{\prime \prime}$ independent of λ such that

$$
\begin{equation*}
\left\|u_{\lambda}\right\|_{C^{1}(\bar{\Omega})} \leq c^{\prime \prime}\left(\left\|u_{\lambda}\right\|+\left\|u_{\lambda}\right\|^{q}\right) \tag{15}
\end{equation*}
$$

The basic fact is that $W^{2, t}(\Omega)$ is continuously embedded in $C^{1}(\bar{\Omega})$ for each $t>n$. So, if $n=1$, then (15) follows directly from (14) for $p=2$. If $n=2$, the same happens by taking $p=3$ and observing that $W^{1,2}(\Omega)$ is continuously embedded in $L^{3}(\Omega)$. If $n>2$, since $W^{2, p}(\Omega)$ (resp. $W^{2, n / 2}(\Omega)$) is continuously embedded in $L^{n p /(n-2 p)}(\Omega)$ for $p<n / 2$ (resp. in $L^{r}(\Omega)$ for each $r \geq 1$), we use (14) iteratively starting from $p=3 / 2$. We thus get (15) after a finite number of steps.

Now, putting together (5), (7), (11) and (15), and recalling that $\left\|u_{\lambda}\right\| \leq 1$ (by (6)), we get

$$
\begin{align*}
\left\|u_{\lambda}\right\|_{C^{1}(\bar{\Omega})} & \leq 2 c^{\prime \prime}\left\|u_{\lambda}\right\|^{q}<2 c^{\prime \prime}\left(8 \gamma(8 \gamma \lambda)^{(q+1) /(1-q)} \lambda\right)^{q / 2} \tag{16}\\
& \leq 2 c^{\prime \prime}(8 \gamma)^{q /(1-q)} \lambda^{q /(1-q)}
\end{align*}
$$

Therefore, if $\lambda<\lambda^{*}$ with $\lambda^{*} \leq \bar{\lambda}$ small enough, then $\left\|u_{\lambda}\right\|_{C^{1}(\bar{\Omega})} \leq \alpha$, and hence $f_{0}\left(x, u_{\lambda}(x)\right)=f\left(x, u_{\lambda}(x)\right), g_{0}\left(x, u_{\lambda}(x)\right)=g\left(x, u_{\lambda}(x)\right)$ for all $x \in \Omega$. So, in view of (13), u_{λ} is a non-zero, non-negative strong solution of problem $\left(\mathrm{P}_{\lambda}\right)$, and, by (14) and (16), one has

$$
\limsup _{\lambda \rightarrow 0^{+}} \frac{\left\|u_{\lambda}\right\|_{C^{1}(\bar{\Omega})}}{\lambda^{q /(1-q)}}<\infty, \quad \limsup _{\lambda \rightarrow 0^{+}} \frac{\left\|u_{\lambda}\right\|_{W^{2, p}(\Omega)}}{\lambda^{q^{2} /(1-q)}}<\infty
$$

for all $p>1$. Now, let $0<\lambda^{\prime}<\lambda^{\prime \prime}<\lambda^{*}$. Then, since $\varrho_{\lambda^{\prime}}<\varrho_{\lambda^{\prime \prime}}$ and $\Psi\left(u_{\lambda^{\prime}}\right)>0$, we have

$$
\Phi\left(u_{\lambda^{\prime \prime}}\right)+\frac{1}{2 \lambda^{\prime \prime}} \Psi\left(u_{\lambda^{\prime \prime}}\right) \leq \Phi\left(u_{\lambda^{\prime}}\right)+\frac{1}{2 \lambda^{\prime \prime}} \Psi\left(u_{\lambda^{\prime}}\right)<\Phi\left(u_{\lambda^{\prime}}\right)+\frac{1}{2 \lambda^{\prime}} \Psi\left(u_{\lambda^{\prime}}\right)
$$

For each $\lambda \in] 0, \lambda^{*}[$, we have

$$
I_{\lambda}\left(u_{\lambda}\right)=\lambda\left(\Phi\left(u_{\lambda}\right)+\frac{1}{2 \lambda} \Psi\left(u_{\lambda}\right)\right)
$$

Then, recalling (10), we conclude that the function $\lambda \mapsto I_{\lambda}\left(u_{\lambda}\right)$ is negative and decreasing in $] 0, \lambda^{*}[$.

Finally, assume the additional hypotheses to prove that u_{λ} is positive. Of course, we can assume that $\alpha<1 / e$ and that

$$
g(x, \xi) \geq-L \xi|\log \xi|^{2}
$$

for all $x \in \Omega$ and $\xi \in] 0, \alpha]$. Put

$$
h(\xi)= \begin{cases}L\left(1+\lambda^{*}\right) \xi|\log \xi|^{2} & \text { if } \xi \in] 0, \alpha] \\ 0 & \text { if } \xi=0 \\ L\left(1+\lambda^{*}\right) \alpha|\log \alpha|^{2} & \text { if } \xi>\alpha\end{cases}
$$

Recalling (1), for $\lambda \in] 0, \lambda^{*}[$, we have

$$
f_{0}(x, \xi)+\lambda g_{0}(x, \xi) \geq-L \xi-\lambda L \xi|\log \xi|^{2}>-L(1+\lambda) \xi|\log \xi|^{2}
$$

for all $x \in \Omega$ and $\xi \in] 0, \alpha]$. Consequently,

$$
\begin{equation*}
f_{0}(x, \xi)+\lambda g_{0}(x, \xi) \geq-h(\xi) \tag{17}
\end{equation*}
$$

for all $x \in \Omega$ and $\xi \geq 0$. Clearly,

$$
\begin{equation*}
\int_{0}^{1}(\xi h(\xi))^{-1 / 2} d \xi=\left(L\left(1+\lambda^{*}\right)\right)^{-1 / 2} \int_{0}^{1} \frac{1}{\xi|\log \xi|} d \xi=\infty \tag{18}
\end{equation*}
$$

Now, in view of (12), (17) and (18), the positivity of u_{λ} in Ω is ensured by Theorem 3 of [4] (see also [6]). The proof is complete.
3. Remarks. With obvious changes in the above proof, we also obtain Theorem 2. Assume that:
(i_{1}) there is $s>1$ such that

$$
\limsup _{\xi \rightarrow 0^{-}} \frac{\sup _{x \in \Omega}|f(x, \xi)|}{|\xi|^{s}}<\infty
$$

(ii_{1}) there is $\left.q \in\right] 0,1[$ such that

$$
\limsup _{\xi \rightarrow 0^{-}} \frac{\sup _{x \in \Omega}|g(x, \xi)|}{|\xi|^{q}}<\infty
$$

(iii ${ }_{1}$) there are a non-empty open set $D \subseteq \Omega$ and a set $B \subseteq D$ of positive measure such that

$$
\limsup _{\xi \rightarrow 0^{-}} \frac{\inf _{x \in B} \int_{0}^{\xi} g(x, t) d t}{\xi^{2}}=\infty, \quad \liminf _{\xi \rightarrow 0^{-}} \frac{\inf _{x \in D} \int_{0}^{\xi} g(x, t) d t}{\xi^{2}}>-\infty
$$

Then, for some $\lambda^{*}>0$ and for each $\left.\lambda \in\right] 0, \lambda^{*}\left[\right.$, problem $\left(\mathrm{P}_{\lambda}\right)$ admits a non-zero, non-positive strong solution $u_{\lambda} \in \bigcap_{p \geq 2} W^{2, p}(\Omega)$. Moreover,

$$
\limsup _{\lambda \rightarrow 0^{+}} \frac{\left\|u_{\lambda}\right\|_{C^{1}(\bar{\Omega})}}{\lambda^{q /(1-q)}}<\infty, \quad \limsup _{\lambda \rightarrow 0^{+}} \frac{\left\|u_{\lambda}\right\|_{W^{2, p}(\Omega)}}{\lambda^{q^{2} /(1-q)}}<\infty
$$

for all $p \geq 2$, and the function $\lambda \mapsto I_{\lambda}\left(u_{\lambda}\right)$ is negative and decreasing in] $0, \lambda^{*}[$.

So, putting together Theorems 1 and 2, we get
Theorem 3. Assume that:
(i_{2}) there is $s>1$ such that

$$
\limsup _{\xi \rightarrow 0} \frac{\sup _{x \in \Omega}|f(x, \xi)|}{|\xi|^{s}}<\infty
$$

(ii ${ }_{2}$) there is $\left.q \in\right] 0,1[$ such that

$$
\limsup _{\xi \rightarrow 0} \frac{\sup _{x \in \Omega}|g(x, \xi)|}{|\xi|^{q}}<\infty
$$

(iii ${ }_{2}$) there are a non-empty open set $D \subseteq \Omega$ and a set $B \subseteq D$ of positive measure such that

$$
\begin{gathered}
\limsup _{\xi \rightarrow 0^{-}} \frac{\inf _{x \in B} \int_{0}^{\xi} g(x, t) d t}{\xi^{2}}=\limsup _{\xi \rightarrow 0^{+}} \frac{\inf _{x \in B} \int_{0}^{\xi} g(x, t) d t}{\xi^{2}}=\infty \\
\liminf _{\xi \rightarrow 0} \frac{\inf _{x \in D} \int_{0}^{\xi} g(x, t) d t}{\xi^{2}}>-\infty
\end{gathered}
$$

Then, for some $\lambda^{*}>0$ and for each $\left.\lambda \in\right] 0, \lambda^{*}\left[\right.$, problem $\left(\mathrm{P}_{\lambda}\right)$ admits a non-zero, non-negative strong solution $u_{\lambda} \in \bigcap_{p \geq 2} W^{2, p}(\Omega)$ and a non-zero, non-positive strong solution $v_{\lambda} \in \bigcap_{p \geq 2} W^{2, p}(\Omega)$. Moreover,

$$
\begin{aligned}
& \limsup _{\lambda \rightarrow 0^{+}} \frac{\max \left\{\left\|u_{\lambda}\right\|_{C^{1}(\bar{\Omega})},\left\|v_{\lambda}\right\|_{C^{1}(\bar{\Omega})}\right\}}{\lambda^{q /(1-q)}}<\infty \\
& \limsup _{\lambda \rightarrow 0^{+}} \frac{\max \left\{\left\|u_{\lambda}\right\|_{W^{2, p}(\Omega)},\left\|v_{\lambda}\right\|_{W^{2, p}(\Omega)}\right\}}{\lambda^{q^{2} /(1-q)}}<\infty
\end{aligned}
$$

for all $p \geq 2$, and the functions $\lambda \mapsto I_{\lambda}\left(u_{\lambda}\right), \lambda \mapsto I_{\lambda}\left(v_{\lambda}\right)$ are negative and decreasing in $] 0, \lambda^{*}[$.

Remark 1. Assume that the assumptions of Theorem 1 are satisfied. In addition, suppose that there exists $\eta>0$ such that the functions f, g are locally Hölder continuous in $\Omega \times[0, \eta]$. Then each u_{λ} is a classical solution of problem $\left(\mathrm{P}_{\lambda}\right)$. If f, g are Hölder continuous in $\Omega \times[0, \eta]$, we even have $u_{\lambda} \in C^{2}(\bar{\Omega})$.

To see this, we can assume $\sup _{\Omega} u_{\lambda} \leq \eta$. Since u_{λ} is Lipschitzian in Ω and Ω is bounded, the composite function $x \mapsto f\left(x, u_{\lambda}(x)\right)+\lambda g\left(x, u_{\lambda}(x)\right)$ is then locally Hölder continuous in Ω (it turns out to be Hölder continuous in Ω when so f, g are in $\Omega \times[0, \eta]$). Now, our claim follows directly from Theorem 9.19 of [2].

Remark 2. Clearly, Remark 1 applies to Proposition 1.
Proof of Proposition 2. Apply Theorem 1 taking $f(\xi)=\mu \xi^{s}$ for all $\xi \geq 0$ and

$$
g(\xi)= \begin{cases}{\left[\left(\varphi^{\prime}\left(|\log \xi|^{2}\right)-a\right) \log \xi+\varphi\left(|\log \xi|^{2}\right)-a / 2\right] \xi} & \text { if } \xi>0 \\ 0 & \text { if } \xi=0\end{cases}
$$

So, f, g are continuous, and (i), (ii) (with any $q \in] 0,1[$) are clearly satisfied. For $\xi>0$, we have

$$
\int_{0}^{\xi} g(t) d t=\frac{1}{2} \xi^{2}\left(\varphi\left(|\log \xi|^{2}\right)-a \log \xi\right)
$$

Hence, since $a>0$ and φ is bounded, (iii) also holds. Furthermore, since φ^{\prime} is bounded, we have

$$
\liminf _{\xi \rightarrow 0^{+}} \frac{g(\xi)}{\xi|\log \xi|}>-\infty
$$

and hence, a fortiori,

$$
\liminf _{\xi \rightarrow 0^{+}} \frac{g(\xi)}{\xi|\log \xi|^{2}}>-\infty
$$

Finally, since $\varphi^{\prime \prime}$ is bounded, for each $\left.\alpha \in\right] 0,1[$, we have

$$
\lim _{\xi \rightarrow 0^{+}}\left(g^{\prime}(\xi)+\alpha \xi^{\alpha-1}\right)=\infty, \quad \lim _{\xi \rightarrow 0^{+}}\left(g^{\prime}(\xi)-\alpha \xi^{\alpha-1}\right)=-\infty
$$

Hence, in a (right, bounded) neighbourhood of 0 , the function $\xi \mapsto g(\xi)+\xi^{\alpha}$ is increasing and the function $\xi \mapsto g(\xi)-\xi^{\alpha}$ is decreasing. Of course, this implies that the function g (as well as f, of course) is Hölder continuous, with exponent α, in that neighbourhood. Now, the conclusion follows directly from Theorem 1 jointly with Remark 1.

REFERENCES

[1] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519-543.
[2] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2001.
[3] L. Jeanjean, Local conditions insuring bifurcation from the continuum spectrum, Math. Z. 232 (1999), 651-664.
[4] P. Pucci and J. Serrin, A note on the strong maximum principle for elliptic differential inequalities, J. Math. Pures Appl. 79 (2000), 57-71.
[5] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000), 401-410.
[6] J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202.

Department of Mathematics
University of Catania
Viale A. Doria 6
95125 Catania, Italy
E-mail: ricceri@dipmat.unict.it

Received 25 March 2002;
revised 26 August 2002

[^0]: 2000 Mathematics Subject Classification: 35J20, 35B32.

