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Abstract. In this paper, we discuss improvements of the Suto et al. (2000) model, in the light of recent theoretical developments
(new theoretical mass functions, a more accurate mass-temperature relation and an improved bias model) to predict the cluster-
ing properties of galaxy clusters and to obtain constraints on cosmological parameters. We re-derive the two-point correlation
function of clusters of galaxies for OCDM and ΛCDM cosmological models, and we compare these results with the observed
spatial correlation function for clusters in RASS1 (ROSAT All-Sky Survey 1), and in XBACs (X-RAY Brighest Abell-Type)
samples. The comparison shows that the best agreement is obtained for the ΛCDM model with Ωm = 0.3. The values of the
correlation length obtained, (r0 � 28.2 ± 5.2 h−1 Mpc for ΛCDM), are larger than those found in the literature and comparable
with the results found in Borgani et al. (1999). In order to study the possible dependence of the clustering properties of the
X-ray clusters on the observational characteristics defining the survey, we calculated the values of the correlation length r0 in
the catalogues where we vary the limiting X-ray flux S lim. The result shows an increase of r0 with Llim, and correlation lengths
that are larger than in previous papers in literature (e.g. Moscardini et al. 2001 (hereafter MMM); Suto et al. 2000). These
differences are due essentially to the different M − T , mass function and bias model used in this paper. Then, we perform a
maximum-likelihood analysis by comparing the theoretical predictions to a set of observational data in the X-ray band (RASS1
Bright Sample, BCS (Rosat Brightest Cluster Sample), XBACs, REFLEX (ROSAT-ESO Flux Limited X-Ray Sample)), sim-
ilarly to MMM. In the framework of cold dark matter models, we compute the constraints on cosmological parameters, such
as the matter density Ωm, the contribution to density due to the cosmological constant, ΩΛ, the power-spectrum shape param-
eter Γ and normalization σ8. If we fix Γ and σ8, at the values suggested by different observational datasets, we obtain (for
flat cosmological models with varying cosmological constant Ω0Λ = 1 − Ω0m) constraints on the matter density parameter:
0.25 ≤ Ω0m ≤ 0.45 and 0.23 ≤ Ω0m ≤ 0.52 at the 95.4 and 99.73 per cent levels, respectively, which is 20–30% larger than the
values obtained MMM. Leaving Γ, and Ωm0, free for the flat model, the constraints for Γ are 0.1 ≤ Γ ≤ 0.14, while for the open
model 0.09 ≤ Γ ≤ 0.13. These values are smaller than those of MMM by about 20−30%. If we keep the values of ΩΛ fixed, we
obtain the constraints in the Γ − σ8 plane. For the open model with Ω0m = 0.3 the 2σ region for Γ is 0.11–0.2 for σ8 it is 0.7
and 1.55. For the flat model withΩ0m = 0.3 the 2σ region has 0.13 ≤ Γ ≤ 0.2 and 0.8 ≤ σ8 ≤ 1.6 The values of σ8 obtained are
larger than those of MMM by �20%. If we allow the shape parameter to vary, we find that the clustering properties of clusters
are almost independent of the matter density parameter and of the presence of a cosmological constant, while they appear to be
strongly dependent on the shape parameter.
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1. Introduction

X-ray studies of clusters of galaxies have provided a large
amount of quantitative data for the study of cosmology. The
mass of a rich cluster is approximately 1015 h−1 M�1. This mass
lies within a region of diameter �20 h−1 Mpc and consequently
the observations of clusters can provide information on the
mass distribution of the Universe on these scales. Furthermore,
since rich clusters are rare objects, their properties are expected

1 h = H0/(100 km s−1 Mpc−1), H0 being the Hubble constant at the
current epoch (in the paper we adopt h = 0.65) (see Spergel et al.
2003; Tegmark et al. 2004).

to be sensitive to the underlying mass density field from which
they originated. Therefore, clusters of galaxies appear to be
ideal tools for testing theories of structure formation as well
as studying large-scale structure.

X-ray catalogues of X-ray selected clusters are now avail-
able from ROSAT: RASS1 (De Grandi et al. 1999) (ROSAT
All-Sky survey 1), BCS (Ebeling et al. 1998) (ROSAT
Brightest Cluster Sample), XBACs (Ebeling et al. 1996) (X-ray
brightest Abell Cluster Sample), REFLEX (Böhringer et al.
1998) (ROSAT-ESO Flux-Limited X-ray sample) and the vol-
ume covered by the samples is expected to increase through the
X-ray satellites such as Astro-E, Chandra, and XMM. These
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data together with optical data have been used to compute
the cluster number counts and the X-ray luminosity function,
which have relevant cosmological implications. In particular,
the analysis of the cluster abundance (also as a function of red-
shift) has been used widely to provide estimates of the mass
fluctuation amplitude and of the matter density parameter Ωm,
with several, often discrepant results (Kitayama & Suto 1997;
Mathiesen & Evrard 1998; Sadat et al. 1998; Reichart et al.
1999a,b; Viana & Liddle 1999; Blanchard et al. 1998; Eke et al.
1998; Bahcall et al. 1997; Fan et al. 1997; Bahcall & Fan 1998;
Donahue & Voit 1999; Borgani et al. 2001). An alternative ap-
proach to the abundance of clusters is based on the study of the
spatial distribution of selected clusters. The standard statistical
tools used with this aim are the (spatial and angular) two-point
correlation function and the power-spectrum.

The two-point correlation function is a fundamental statis-
tical test for the study of the cluster distribution and is relatively
straightforward to determine from observational data. The spa-
tial correlation function of galaxy clusters provides an impor-
tant cosmological test, as both the amplitude of the correlation
function and its dependence upon the mean intercluster sepa-
ration are determined by the underlying cosmological model.
Like for the cluster abundance, discrepant results have been
found for, e.g., the correlation length (Hauser & Peebles 1973;
Bahcall & Soneira 1983; Klypin & Kopylov 1983; Bahcall
& Cen 1992; Bahcall & West 1992; Efstathiou et al. 1992;
Governato et al. 1999).

As shown in some papers (Eke et al. 1998; Reichart
et al. 1999a,b; Donahue & Voit 1999; Borgani et al. 2001;
Del Popolo 2003), the reasons leading to the quoted discrepan-
cies are not only connected to the observational data used, but
other unknown systematic effects may be plaguing a large part
of the quoted results (Reichart et al. 1999a,b; Eke et al. 1998;
Donahue & Voit 1999; Borgani et al. 2001). Systematic effects
entering the quoted analyses are: 1) The inadequate approx-
imation given by the Press-Schechter relation (e.g., Bryan &
Norman 1998). 2) Inadequacy in the structure formation as de-
scribed by the spherical model leading to changes in the thresh-
old parameter δc (e.g., Governato et al. 1999). 3) Inadequacy
in the M − T relation obtained from the virial theorem (see
Voit & Donahue 1998; Del Popolo 2002a). 4) Effects of cool-
ing flows. 5) Missing high redshift clusters in the data used
(e.g., the EMSS). 6) Evolution of the L-T relation.

Although the quoted uncertainties have so far been of mi-
nor importance with respect to the paucity of observational
data, a breakthrough is needed in the quality of the theoretical
framework if high-redshift clusters are to contribute to in the
high-precision-era of observational cosmology.

Moreover, the proper comparison of the two-point correla-
tion function with X-ray data, requires better theoretical pre-
dictions which take account of the selection function of X-ray
clusters (Kitayama et al. 1998), the luminosity-and time de-
pendent bias (Mo & White 1996; Jing 1998; Moscardini et al.
1998), the light-cone effect (Matarrese et al. 1997; Matsubara
et al. 1997; Nakamura et al. 1998; Yamamoto & Suto 1999)
and the redshift-space distortion (Hamilton 1998; Matsubara
& Suto 1996; Suto et al. 2000; Nishioka & Yamamoto 1999;
Yamamoto et al. 1999; Magira et al. 2000).

The above discussion and recent developments in terms of
both theory (improved relations for the mass function, M−T re-
lation, and bias) and observation (X-ray data) suggest that it
would be useful to recalculate the two-point correlation func-
tion and to revisit the constraints on cosmological parameters
obtained until now.

Likely in Del Popolo (2003), in the present paper we are
principally interested in studying the effects of these changes
on the values of the cosmological parameters and in comparing
them with previous estimates, and then in the specific values
obtained. For this reason, we made a comparison of the the-
oretical results with observations using several samples such
as RASS1 and XBAC, even if it is known that the REFLEX
is more precise (small errorbars). The paper is organized as
follows: in Sect. 2, we introduce the model used. Section 3 is
devoted to the results and Sect. 4 to discussion and conclusions.

2. Theoretical model

2.1. Redshift-space distortion

In order to obtain a theoretical model for the spatial two-point
correlation function of galaxies in different cosmologies, we
follow and improve the paper of Suto et al. (2000, hereafter
S2000). Their model takes proper account of nonlinear gravita-
tional evolution of mass fluctuations, redshift-space distortion
due to the linear peculiar velocity field and to finger-of-god ef-
fect, cluster abundance and bias evolution on the basis of the
Press – Schechter theory, and the light-cone effect.

As previously reported, one of the effects to take into ac-
count is the two-point correlation function distortions due to the
peculiar velocity field. We take into account this redshift-space
distortion following Cole et al. (1994), Magira et al. (2000) and
Yamamoto et al. (1999). Assuming that the bias of the clus-
ter density field relative to the mass density field is linear and
scale-independent, the power spectrum in redshift space is well
approximated by:

PS
cl(k, µ, z) = PR

mass(k, z) [bcl(z)]2

[
1 + β(z)µ2

1 + (kµσv)2/2

]2

, (1)

where PR
mass(k, z) is the mass power spectrum in real space, µ

the direction cosine of the wavenumber vector and the line-
of-sight of the fiducial observer, and β is linear redshift-space
distortion (Kaiser 1987), defined by

β(z) =
1

bcl(z)
dln D1(z)
dln a(z)

, (2)

where bcl(z) is the redshift-dependent bias factor and D1(z)
is the linear growth factor normalized to be unity at the
present time.

The denominator in Eq. (1) takes account of the nonlin-
ear redshift-space distortion (finger-of-God) assuming that the
pair-wise velocity distribution in real space is exponential with
the velocity dispersion of σv(z).

As in S2000, to calculate σv we use the fitting formula of
Mo et al. (1997). Averaging Eq. (1) over the angle with re-
spect to the line-of-sight of the observer one obtains PS

cl(k, z)
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similarly to S2000 (Eqs. (4)–(7)). The corresponding two-point
correlation function of clusters in redshift space is computed as

ξScl(R, z) =
1

2π2

∫ ∞

0
dkk2PS

cl(k, z) j0(kR), (3)

where j0(kR) is the spherical Bessel function.

2.2. The evolution of the mass auto-correlation
function

To predict the clustering properties of X-ray clusters, we need
a description of the matter covariance function and its red-
shift evolution. To this aim we used the method of Smith et al.
(2003), which is an improvement of the method of Peacock
& Dodds (1994), and Peacock & Dodds (1996)2 for evolv-
ing ξ(r, z) into the fully non-linear regime. The authors adopted
a new approach to fitting power spectra, based upon a fusion of
the halo model and HKLM (Hamilton, Kumar, Lu, Matthews)
scaling. This approach has been empirically shown to allow an
accurate description of a very wide range of power spectrum
data. Their formula reproduced the scale-free power spectrum
data and also the CDM results of Jing (1998) with an rms er-
ror better than 7% (see Smith et al. (2003) for more details and
their Appendix for the fitting formula).

The linear power spectrum used in this paper, PL ∝
knT 2(k), uses the Bardeen et al. (1986) transfer function T (k)
(Bardeen et al. 1986, Eq. (G3)), and the shape parameter Γ is
given by:

Γ = Ω0mh exp(−Ω0b −
√

h/0.5Ω0b/Ω0m), (4)

(Sugiyama 1995), where Ω0m is the baryonic contribution to
the density parameter. In the part of the paper dealing with the
direct comparison with XBACs and RASS1 data, we consider
an open CDM model (OCDM), with matter density parameter
Ω0m = 0.3 and σ8 = 0.87, and a low-density flat CDM model
(ΛCDM), with Ω0m = 0.3, and σ8 = 0.93 (see e.g. Liddle et al.
1996a,b and references therein).

In the part of the paper dealing with the maximum-
likelihood analysis the value of Γ is allowed to vary in the range
0.05–0.5, while Ω0m ranges from 0.1 to 1 in the framework of
both open and flat models. The normalizations of the primor-
dial power-spectrum, parameterized by σ8 (the rms fluctuation
amplitude in a sphere of 8 h−1 Mpc) is allowed to vary in the
range 0.2 ≤ σ8 ≤ 2. In the maximum-likelihood analysis the
cosmological models considered, are defined by four parame-
ters: Ω0m, Ω0Λ, Γ and σ8.

2.3. Bias evolution

In order to predict the clustering properties of clusters as
a function of redshift, we need to know how bias evolves.
S2000 adopted for the “monochromatic” bias b(M, z) the ex-
pression which holds for virialized dark matter haloes (see their
Eq. (17)) (e.g. Mo & White 1996; Catelan et al. 1998), and to
get the effective bias factor the Mo & White (1996) equation

2 Based on Hamilton et al. (1991) original ansatz.

was combined with the Press-Schechter relation to translate the
quoted bias factor into a function of X-ray flux limit (see their
Eq. (18)).

Several papers in literature has shown that the Mo & White
(1996) bias formula does not correctly reproduce the correla-
tion of low mass haloes in numerical simulations.

Several alternative fits have been proposed (Del Popolo
& Gambera 1998; Jing 1998; Porciani et al. 1999; Sheth &
Tormen 1999; Jing 1999; Del Popolo 2001). The bias model of
Sheth & Tormen (1999) has been shown to produce an accurate
fit of the distribution of the halo populations in the GIF simu-
lations (Kauffmann et al. 1999).

In this paper we adopt the bias model described in
Del Popolo & Gambera (1998), and Del Popolo (2001), be-
cause it produces a mass function that is in better agreement
with the predictions of Jenkins et al. (2001) (see below). The
quoted biased model is based on the threshold:

δc = δco

[
1 +

∫ rta

ri

rtaL2 · dr
GM3r3

]
(5)

where δco = 1.68 is the critical threshold for a spherical model,
ri is the initial radius, rta is the turn-around radius, and L is the
angular momentum3. Equation (5), is obtained taking account
of the effect of asphericities. In Fig. 1, we plot the bias parame-
ter, b, as a function of the peak height ν4, which is proportional
to the halo mass. The solid line shows the spherical collapse
prediction of Mo & White (1996), the dotted line the predic-
tion for b obtained from our model, and the dashed line the
ellipsoidal collapse prediction of Sheth & Tormen (1999). As
shown in the figure, taking account of the effects of asphericity
produces a change in the dependence of b on ν in good agree-
ment with Sheth & Tormen (1999). From Fig. 1 it is evident
that at the low mass end the bias relation has an upturn, mean-
ing that less massive haloes are more strongly clustered than in
the prediction of the spherical collapse model of Mo & White
(1996) and in agreement with N-body simulations (Jing 1998;
Sheth & Lemson 1999; Kauffmann et al. 1999).

The above bias factor can be translated into a function of
X-ray flux limit according to:

beff(z, > S lim) =

∫ ∞

Mlim(S lim)
dM b(z,M) n(z,M)

∫ ∞

Mlim

dM n(z,M)
(6)

where n(z,M) is the number of objects actually present in
the catalogue with redshift in the range z, z + dz and M in
the range M, M + dM. One can estimate n(z,M) from the
Press-Schechter (1974, PS) formula; however, several studies
have shown some discrepancies between PS and simulations.

3 The angular momentum appearing in Eq. (5) is the total angular
momentum acquired by the proto-structure during evolution. In order
to calculate L, We will use the same model as described in Del Popolo
& Gambera (1998, 1999) (more hints on the model and some of the
model limits can be found in Del Popolo et al. 2001).

4 ν =
(
δc(z)
σ(M)

)2
is the ratio between the critical overdensity required

for collapse in the spherical model, δc(z), to the rms density fluctua-
tion σ(M), on the scale r of the initial size of the object M.
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Fig. 1. The bias factor b(ν) as a function of ν2. The solid line represents
the spherical collapse prediction of Mo & White (1996), the dotted
line the prediction for b obtained from the model of this paper and
the dashed line the ellipsoidal collapse prediction of Sheth & Tormen
(1999).

In order to obtain a better estimate of n(M, z), we can
use the excursion set approach which allows one to calculate
good approximations to several important quantities, such as
the “unconditional” and “conditional” mass functions. Sheth
& Tormen (2002, hereafter ST) provided formulas to calcu-
late these last quantities starting from the shape of the bar-
rier. They also showed that the “unconditional” mass function,
which is the one we need now, is in good agreement with results
from numerical simulations. Using the barrier shape obtained
in Del Popolo & Gambera (1998), obtained from the param-
eterization of the nonlinear collapse discussed in that paper,
together with the results of ST we can calculate the “uncondi-
tional” mass function.

Assuming that the barrier is proportional to the threshold
for the collapse, as in ST, the barrier can be expressed in the
form:

B(M) = δc = δco

[
1 +

∫ rta

ri

rtaL2 · dr
GM3r3

]
� δco

[
1 +
β1

να1

]
(7)

(Del Popolo 2001), where δco = 1.68 is the critical threshold for
a spherical model, ri is the initial radius, rta is the turn-around
radius, L the angular momentum, α1 = 0.585 and β1 = 0.46.

As described in Del Popolo (2002b), the mass function can
be approximated by:

n(M, z) =
ρ

M2

dlog ν
dlog M

ν f (ν) � 1.21
ρ

M2

dlog (ν)
dlog M

×
(
1 +

0.06

(aν)0.585

) √
aν
2π

× exp

−aν

[
1 +

0.57

(aν)0.585

]2

/2

 (8)

0.1 1 10
0.001

0.01

0.1

Fig. 2. Comparison of various mass functions. The dotted line rep-
resents the Sheth & Tormen (2002) prediction, the solid line that of
Jenkins et al. (2001) and the dashed line that of Del Popolo (2002b).

where a = 0.707, and ρ is the background density5. In Fig. 2
we plot a comparison of the various mass functions: the dot-
ted line represents Sheth & Tormen (2002) prediction, the solid
line that of Jenkins et al. (2001) and the dashed line that of
Del Popolo (2002b). As Fig. 2 shows, the mass function ob-
tained in this paper is in very good agreement with that of
Jenkins et al. (2001) in the regime probed by the simula-
tions. Notice that a large part of the constraints obtained in
the past has been obtained using the PS mass function. Only
in some more recent papers has the mass function been calcu-
lated by means of ST model (e.g. Borgani et al. 2001) or that of
Jenkins et al. (2001) (Hamana et al. 2001; MMM). Moreover
the M − T relation chosen is the usual one obtained simply
from the virial theorem (see next subsection). In other words,
this paper introduces noteworthy improvements on the previous
calculations in literature.

Before concluding this subsection, following Hamana et al.
(2001), we further attempt to incorporate the scale-dependence
on the basis of the results of Taruya & Suto (2000), in which the
scale-dependence arises as a natural consequence of the forma-
tion epoch distribution of halos. Yoshikawa et al. (2001), had
shown that the scale-dependence of the Taruya & Suto (2000)
model agrees with their numerical simulations. Therefore we
construct an empirical halo bias model of the two-point statis-
tics which reproduces the scale-dependence of the Taruya
& Suto (2000) bias with the amplitude fixed by the mass-
dependent bias obtained in Del Popolo & Gambera (1998) and
Del Popolo (2001). Following Hamana et al. (2001), the scale
dependent bias shall be described by the following simple fit-
ting formula:

bh(M,R, z) = b(M, z) [1.0 + b(M, z)σR(R, z)]0.15 , (9)

for R > 2Rvir(M, z), and otherwise 0, where Rvir(M, z) is the
virial radius of the halo of mass M at z and σR(R, z) is the mass
variance smoothed over the top-hat radius R. The bias factor b

5 Note that in this formula ν =
(
δc(z)
σ(M)

)2
.
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Fig. 3. a) M − T relation predicted by the modified continous cluster formation model. The solid line is the prediction of the quoted model,
described in Del Popolo (2002a), for ΩΛ = 0, Ω0 = 1, shifted downwards, similarly as in Afshordi & Cen (2002), to fit the Finoguenov
et al. (2001) observational data at the massive end. The dotted line represents the prediction of the same model for ΩΛ = 0.7 and Ω0 = 0.3.
b) Temperature evolution predicted by the modified continous cluster formation model in the case Ω0 = 0.3. The dotted line represents the
“classical” prediction, TX ∝ (1 + z). The short-dashed line represents the late-formation approximation as expressed by Eq. (8) in Voit (2000),

namely TX ∝ ∆1/3
vir

[
Ω0
Ω0(z)

]1/3
(1 + z). The long-dashed line and the dot-dashed one plot Eq. (40) in Del Popolo (2002a) for the spherical collapse

model n = −2, n = −1, respectively. The solid line plots the same equation for n = −1 and taking account of angular momentum acquisition by
the protostructure.

contained in Eq. (3) through the spectrum PS
cl should then be

substituted by Eq. (9).
Although the modeling is not completely self-consistent in

the sense that the scale-dependence of the halo biasing fac-
tor is neglected in describing the redshift distortion, the above
prescription provides a good approximation since the scale-
dependence in the biasing is of secondary importance in the
redshift distortion effect of halos (see Hamana et al. 2001).

2.4. Limiting flux and halo mass

In order to predict the abundance and clustering of X-ray clus-
ters in a given sample, it is necessary to relate the X-ray fluxes
to the corresponding halo mass at each redshift. As a first step,
we relate the total mass of the dark halo of a cluster to the
temperature of the gas. The M − T relation that we shall use
is that calculated in Del Popolo (2002a). The M − T relation
is calculated using the merging-halo formalism of Lacey &
Cole (1993), which takes account of the fact that massive clus-
ters accrete matter quasi-continuously, and the present paper
is an improvement of a model proposed by Voit (2000) (here-
after V2000), again to take account of angular momentum ac-
quisition by protostructures and of an external pressure term in
the virial theorem. The M − T relation obtained in Del Popolo
(2002a), is given by:

kT � 8 keV

 M
2
3

1015 h−1 M�


[

1
m +

(
tΩ
t

) 2
3
+

K(m,x)
M8/3

]
[

1
m +

(
tΩ
t0

) 2
3
+

K0(m,x)
M8/3

0

] , (10)

where tΩ =
πΩ0m

H0(1−Ω0m−Ω0Λ)
3
2

, m = 5/(n + 3) (where n is the spec-

tral index), M0 is defined in Del Popolo (2002a), and:

K(m, x) = Fx (m − 1) LerchPhi(x, 1, 3m/5 + 1)

−F (m − 1) LerchPhi(x, 1, 3m/5), (11)

where F is defined in Del Popolo (2002a) (Eq. (35)) and the
LerchPhi function is defined as follows:

LerchPhi(z, a, v) =
∞∑

n=0

zn

(v + n)a
, (12)

and where K0(m, x) indicates that K(m, x) must be calculated
assuming t = t0.

Equation (10) takes account of the fact that massive clusters
accrete matter quasi-continuously, and also of tidal interaction
between clusters. The obtained M−T relation is no longer self-
similar, there is a break at the low mass end (T ∼ 3−4 keV) of
the M−T relation is present. The behavior of the M−T relation
is as usual, M ∝ T 3/2, at the high mass end, and M ∝ T γ, with a
value of γ > 3/2 dependening on the chosen cosmology. Larger
values of γ are related to open cosmologies, while ΛCDM cos-
mologies give a slope intermediate between the flat case and
the open case.

In Fig. 3a, we plot the M−T relation predicted by the mod-
ified continous formation model. The solid line is the predic-
tion of the quoted model, described in Del Popolo (2002a), for
ΩΛ = 0, Ω0 = 1, shifted downwards, as in Afshordi & Cen
(2002), to fit the FRB observational data at the massive end.
The dotted line represents the prediction of the same model for
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ΩΛ = 0.7 and Ω0 = 0.3. In Fig. 3b, we plot the temperature
evolution predicted by the modified model for Ω0 = 0.3. The
dotted line represents the “classical” prediction, TX ∝ (1 + z).
The short-dashed line represents the late-formation approxi-
mation as expressed by Eq. (8) in Voit (2000), namely TX ∝
∆

1/3
vir

[
Ω0
Ω0(z)

]1/3
(1 + z). The long-dashed line and the dot-dashed

one plot Eq. (40) in Del Popolo (2002a) for the spherical col-
lapse model n = −2, n = −1, respectively. The solid line plots
the same equation for n = −1 and taking account of angular
momentum acquisition by the protostructure.

The next step (see S2000) is to transform the temperature
to the luminosity of clusters using the observed luminosity-
temperature relation. In S2000, they assumed:

Lbol = L44

(
Tgas

6 keV

)α
(1 + z)ζ 1044 h−2 erg s−1 (13)

with L44 = 2.9, α = 3.4 and ζ = 0 on the basis of the quoted
observational indications (e.g., David et al. 1993; Ebeling et al.
1996; Ponman et al. 1996; Mushotzky & Scharf 1997).

Several independent analyses of nearby clusters with TX ≥
1 keV consistently show that L44 � 3 and α � 2.5−3.5 (e.g.,
White et al. 1997; Wu et al. 1999, and references therein).
For cooler groups, ≤1 keV, the Lbol − T relation steepens.
Mushotzky & Scharf (1997) found that data out to z � 0.4 are
consistent with no redshift evolution in the Lbol−T relation out
to z � 0.4. In Moscardini et al. (2000a,b) the authors translated
the cluster bolometric luminosity into a temperature, adopting
the empirical relation

T = ALBbol(1 + z)−η (14)

where the temperature is expressed in keV and Lbol is in units
of 1044 h−2 erg/s and A = 4.2 and B = 1/3, which are a good
representation of the data with T ≥ 1 keV (e.g. Markevitch
1998, and references therein).

From what was previously said, it is clear that the L− T re-
lation is a source of uncertainties. As in Del Popolo (2003),
in the present paper we are principally interested in studying
the effects of the improvements on the M − T relation, mass
function and bias model on cosmological parameters and to
compare them with previous estimates. For this reason, in the
following, we shall follow the philosophy of Moscardini et al.
(2000a), Borgani et al. (1999), namely we shall adopt a “de-
fault” value for α and L44, (L44 = 2.9, and α = 3.4 as the ref-
erence values), and we calculate the correlation function and
the constraints on cosmological parameters. We shall compare
these with the results of previous papers (e.g., Moscardini et al.
2000a,b; S2000). Finally, we shall calculate the effects of the
variation of α (in the range 2.5 ≤ α ≤ 3.5) on the result-
ing model constraints. Notice that all plots shown in the next
sections are based on these “default” values L44 = 2.9, and
α = 3.4.

After fixing the L − T relation, Lbol(Tgas) is transformed
in the band-limited luminosity Lband[Tgas, E1, E2] as shown by
S2000 (Sect. 2.2).

To obtain Mlim, necessary to calculate beff in Eq. (6), we use
the method of S2000 (see their Sect. 2.4)

2.5. The light-cone effect

The final step is to calculate the two-point correlation function
on the light cone (Yamamoto & Suto 1999):

ξLC
X−cl(R;> S lim) =

∫ zmin

zmax

dz
dVc

dz
n2

0(z)ξScl(R, z(r);> S lim)

∫ zmin

zmax

dz
dVc

dz
n2

0(z)

where R is the comoving separation of a pair of clusters, zmax

and zmin denote the redshift range of the survey, and ξScl(R, z;>
S lim) is the corresponding two-point correlation function on a
constant-time hypersurface at z in redshift space (Eq. (3)). The
comoving number density of clusters in the flux-limited sur-
vey, n0(z;>S lim), is computed by integrating the mass function
Eq. (8) as:

n0(z;> S lim) =
∫ ∞

Mlim(S lim)
n(M, z)dM.

Finally the comoving volume element per unit solid angle is

dVc

dz
=

d2
C(z)

H(z)
·

where:

H(z) = H0

√
Ω0m(1 + z)3 + (1 −Ω0m −Ω0Λ)(1 + z)2 + Ω0Λ.

(15)

2.6. Maximum-likelihood analysis

In order to obtain constraints for cosmological models, we
use a maximum-likelihood analysis. One possibility to accom-
plish the quoted analysis is as shown by Marshall et al. (1983),
Del Popolo (2003), or Borgani et al. (1998).

In the present paper, We used the same model as MMM.
The likelihood is L ∝ exp(−χ2/2), where

χ2 =

Ndata∑
i=1

[r0(i) − r0(i;Ω0m,Ω0Λ, Γ, σ8)]2

σ2
r0

(i)
· (16)

The sum runs over the observational dataset described in Sect. 2
of MMM, i.e. Ndata = 3 and Ndata = 4 for the optical and X-ray
bands, respectively (in the present paper we shall use only
X-ray data). The quantities r0(i) and σr0 (i) represent the val-
ues of the correlation length and its 1σ errorbar for each cata-
logue, as reported in Table 1 of MMM; r0(i;Ω0m,Ω0Λ, Γ, σ8) is
the corresponding theoretical prediction obtained with a given
choice of cosmological parameters. The best-fit cosmological
parameters are obtained by maximizing L, i.e. by minimiz-
ing χ2. The 95.4 and 99.73 per cent confidence levels for the
parameters are computed by finding the region corresponding
to an increase ∆χ2 with respect to the minimum value of χ2.
Other details of the maximum-likelihood analysis are given in
the next section.
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Fig. 4. Comparison of the cluster space correlations in the RASS1
sample with the theoretical model of the present paper. In the plot, the
dashed line represents the prediction of Moscardini et al. (2000b) for
their ΛCDM model, and the solid line that of the ΛCDM (Ω0m = 0.3,
σ8 = 0.93) calculated using the model of this paper.

3. Results

We begin the analysis by comparing the theoretical predictions
for the two-point correlation function to the observational clus-
tering properties of RASS1 and afterwards to those of XBACs.

Figure 4 shows the comparison with RASS1. In the plot,
the dashed line represents the prediction of Moscardini et al.
(2000b) for their ΛCDM model, and the solid line represents
the prediction of the ΛCDM, with Ω0m = 0.3, σ8 = 0.93,
and Γ = 0.21 (see e.g. Liddle et al. 1996a,b and references
therein), for the “default” value of α = 3.4. The plot for the
OCDM model was not reported since it gives very similar pre-
dictions to the ΛCDM model. The ΛCDM model is in good
agreement with the data and the predictions are always inside
the 1σ errorbars, r0 � 28.2 h−1 Mpc. A comparison with the
Moscardini et al. (2000b) results, after the latter has been cor-
rected taking account of the description of clustering in the
past-light cone, (which gives r0 � 22.4 h−1 Mpc), shows that
in our model the correlations are higher, by more than 20%.
Varying the value of α in the range 2.5–3.5, not plotted in
Fig. 4, the resulting spatial correlation function does not change
its shape, but only its amplitude: the smaller α is, the smaller
ξ(r) is. However, the changes are quite small, as shown in
Fig. 11 of Moscardini et al. (2000a). The induced change of r0,
can be written as r0 � 28.2 ± 5.2 h−1 Mpc.

In Fig. 5 the model is compared with the XBACs cata-
logue. Abadi et al. (1998) found that the XBACs spatial cor-
relation function can be fitted by the usual power-law relation
ξ(r) = (r/r0)−γ with γ = 1.92 and r0 = 21.1+1.6

−2.3 h−1 Mpc
(the errors correspond to 1σ), while Borgani et al. (1999), who
adopted an analytical approximation to the bootstrap errors for
the variance of ξ(r), found γ = 1.98+0.35

−0.53 and a slightly larger
value of r0 = 26.0+4.1

−4.7 h−1 Mpc (the errors in this case are 2-σ
uncertainties). In Fig. 5, these observational estimates are com-
pared with the theoretical predictions of this paper. The ob-
servational estimates are shown by two regions: the first one

10 100
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0.1

1

10

r(Mpc/h)

Fig. 5. Comparison of the cluster space correlations in the XBACs
sample with the theoretical model of this paper. The observational es-
timates are shown by two regions: the first (enclosed in the solid lines
connected by the vertical solid lines), refers to the (1σ) estimates ob-
tained by Abadi et al. (1998), while the second region (enclosed in
the dashed lines connected by the horizontal dashed lines), shows the
(2σ) estimates by Borgani et al. (1999). The solid curve represents the
Ω0m = 0.3, σ8 = 0.93ΛCDM model calculated using the model of this
paper, while the dashed line represents the prediction of Moscardini
et al. (2000a) for their ΛCDM model.

(enclosed in the solid lines connected by the vertical solid
lines), refers to the (1σ) estimates obtained by Abadi et al.
(1998), while the second region (enclosed in the dashed lines
connected by the horizontal dashed lines), shows the (2σ) esti-
mates by Borgani et al. (1999). The solid curve represents the
Ω0m = 0.3, σ8 = 0.93 ΛCDM model, while the dashed line
represents the prediction of Moscardini et al. (2000a) for their
ΛCDM model6.

The results are in qualitative agreement with MMM, but the
value for r0 (r0 � 28.2h−1 Mpc) obtained here is larger than the
value in the quoted paper (r0 � 22 h−1 Mpc for ΛCDM), while
it is in better agreement with that of Borgani et al. (1999), who
found a value of r0 = 26+4.1

−4.7 h−1 Mpc. Similar considerations to
those relative to Fig. 4 are valid if we vary the value of α.

In order to study the possible dependence of the clustering
properties of the X-ray clusters on the observational character-
istics defining the survey, we plot the values of the correlation
length r0 in the catalogues where we vary the limiting X-ray
flux S lim. The result is shown in Fig. 6: the dashed line is the re-
sult obtained by MMM, and the solid line that using the model
of this paper, in the case of a ΛCDM model. The other cosmo-
logical models, not plotted, have a similar behavior but smaller
amplitude (see MMM). In Fig. 6, r0 increases with Llim. The in-
crease is more rapid for ΛCDM models (see MMM). A similar
analysis has been made by S2000 (see their Fig. 8) and MMM.
Even if the S2000 results cannot be directly compared with
those of MMM, (differences in cosmological parameters, for-
malism for the past-light cone effect, etc.) or even with those

6 For the ΛCDM model (solid line), the results are in good agree-
ment with the observational data (r0 � 28.2 h−1 Mpc).
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Fig. 6. The behavior of the correlation length r0 as a function of the
limiting X-ray flux S lim. The solid line represents the ΛCDM model
according to the model of this paper, and the dashed line that of
Moscardini et al. (2000a).

of this paper (differences in cosmological models parameters
adopted), it is clear that there is a qualitative agreement but
MMM tends to predict smaller correlation lengths (by approx-
imately 20–30%) with respect to S2000 and the latter predicts
smaller correlation lengths than this paper. Part of the differ-
ence between MMM and S2000 comes from the different val-
ues of the exponent of the temperature used by the quoted au-
thors in the temperature-luminosity relation: in MMMB = 1/3
(see Sect. 2.4), and that used in S2000 (α = 1/3.4 (see their
Eq. (11))). Moreover, in their approach S2000 include a method
to take account of redshift-space distortion effects not com-
pletely considered by MMM7 which tends to increase the cor-
relation estimates.

In the present paper, the correlation lengths are larger in
comparison with both the previous two quoted papers predic-
tions. These differences, expecially when we compare the re-
sults with those of S2000, are due essentially to the different
M−T relation, mass function and bias model used in this paper.
As reported in Sect. 2, the fundamental goal of this paper is to
study the effects of the improvements quoted above on the val-
ues of the, cosmological parameters, and then to constrain the
cosmological parameters by the clustering properties of clus-
ters of galaxy using a maximum-likelihood analysis. This anal-
ysis was started by considering as a free parameter Ωm only,
fixing Γ = 0.2, which is in the range suggested by various other
works (see e.g. Peacock & Dodds 1996), and σ8 to reproduce
the cluster abundance.

For the normalization we adopt the fitting formula by
Pierpaoli et al. (2003), with the M − T normalization param-
eter T∗ = 1.75 (see Pierpaoli et al. 2003).

7 They used a zero-order model similar to that of Kaiser.
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Fig. 7. The variation of ∆χ2 around the best-fitting value of the matter
density parameter Ω0m for flat CDM models (with varying cosmo-
logical constant Ω0Λ = 1 − Ω0m) with shape parameter Γ = 0.2 and
normalization reproducing the cluster abundance. The solid line rep-
resents the result of MMM (obtained using the X-ray complete cluster
dataset), and the dashed line that of this paper. Horizontal lines cor-
responding to the 95.4 and 99.73 per cent confidence levels are also
shown.

In Fig. 7, we plot the results of the maximum likelihood
analysis obtained by using X-ray band data (RASS1, BCS,
XBACs, REFLEX) for flat models with varying cosmological
constant (Ω0Λ = 1 − Ω0m), with Γ = 0.2. The solid line rep-
resents the results obtained using the complete X-ray data set
by MMM, and the dotted line gives the results for the model in
the present paper.

The constraints on Ωm are: 0.25 ≤ Ω0m ≤ 0.45 and 0.23 ≤
Ω0m ≤ 0.52 at 95.4 and 99.73 per cent levels, respectively. The
result shows larger values for Ω0m on the order of 20–30%,
when compared with MMM results (0.2 ≤ Ω0m ≤ 0.35 and
0.2 ≤ Ω0m ≤ 0.45 at the 95.4 and 99.73 per cent levels, respec-
tively).

In Fig. 8 we show the results of the maximum likelihood
analysis fixing the model normalization to reproduce the clus-
ter abundance, and leaving two free parameters: Γ, and Ωm0.
The solid lines represents the 99.73 confidence levels, and the
dashed lines the 95.4 confidence levels. The figure shows that
the allowed regions, at least for Ω0m ≥ 0.5, depend strongly
on Γ. In the case of the flat model (Fig. 8a), the constraints
for Γ are 0.1 ≤ Γ ≤ 0.14, and in the case of the open model
(Fig. 8b) 0.09 ≤ Γ ≤ 0.13. These values are smaller than those
of MMM, by about 20−30%. (Note that in MMM paper, the re-
ported values are approximated. A comparison of our and their
confidence contours shows the difference).

In Fig. 9 we show the constraints in the Γ − σ8 plane (after
keeping the values of ΩΛ fixed). We consider an open model
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Fig. 8. Confidence contours of Γ and Ω0m. Dashed and solid lines represent 95.4 and 99.73 per cent confidence levels. The left panel refers to
flat cosmological models with varying cosmological constant the right one to open models with vanishing Ω0Λ.
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Fig. 9. Confidence contours of Γ and σ8. Dotted and solid lines represent 95.4 and 99.73 per cent confidence levels. Panel a) refers to a CDM
model with Ω0m = 0.3, Ω0Λ = 0. Panel b) refers to a CDM model with Ω0m = 0.3, Ω0Λ = 0.7.

with Ω0m = 0.3, Fig. 9a, and a flat model, Fig. 9b, again with
Ω0m = 0.38.

For the open model with Ω0m = 0.3 the 2σ region has Γ
in the range 0.11–0.2 and σ8 between 0.7 and 1.55. The values
of σ8 obtained here are larger by �20% than those of MMM.

For a flat model with Ω0m = 0.3 the 2σ region has 0.13 ≤
Γ ≤ 0.2 and 0.8 ≤ σ8 ≤ 1.6. The values of σ8 obtained are
larger than those of MMM by �20%

The effect of varying α on the maximum-likelihood anal-
ysis has been also studied. From the study, it turns out that Γ
is quite insensitive to a change of α, while σ8 is only weakly
dependent on it: the minimum in the maximum-likelihood anal-
ysis decreases (increases) by �10% for α = 2.5, (for α = 3.5)
(see also Fig. 8 of Borgani et al. 1999). ForΩ0m the changes are

8 Note that the value of Ω0m chosen is not too different from that
obtained by WMAP: Ω0m h2 = 0.14 ± 0.02 and h = 0.72 ± 0.05
(Spergel et al. 2003).

similar to those of Γ but larger (of the order of 20%) (see also
Fig. 4 of Borgani et al. 2001; and Fig. 10 of Eke et al. 1998).

Notice that in the analysis of this paper, we used only the
data from the X-ray catalogues and not a combination of optical
and X-ray catalogues. This is because, as shown by MMM,
the combination of optical and X-ray catalogues gives results
that are almost indistinguishable from those obtained by the
X-ray analysis only. As in MMM, the constraints from the X-
ray datasets are in general tighter than those obtained from the
optical data.

Although the quoted uncertainties have so far been of mi-
nor importance because of the paucity of observational data, a
breakthrough is needed in the quality of the theoretical mod-
eling if high-redshift clusters are to take part in the high-
precision-era of observational cosmology. As shown, using
models like PS for the mass function instead of models that
are in agreement with Jenkins et al. (2001), introduces errors
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of the order of 20–30% in the values of the parameters con-
strained (see Del Popolo 2003) and other errors are introduced
if one uses a simplified version of the M−T relation. Moreover
a proper interpretation of such redshift surveys in terms of the
clustering evolution requires an understanding of many cos-
mological effects which can be neglected for z 
 1 and thus
have not been considered seriously so far. For example, ne-
glecting the light-cone effect leads to underestimates of �20%
in samples like RASS1, and of up to 25% for a deeper survey
such ABRIXAS (Moscardini et al. 2000a). Neglecting red-shift
space distortions produces underestimates of r0 of �10%: as re-
ported in the present paper, a comparison between the behavior
of the correlation length as a function of the limiting X-ray flux,
in papers like S2000 and MMM shows a difference of �30%
because in MMM the redshift-space distortion effects were not
taken into account, and because of a difference in the exponent
in the temperature-luminosity relation. Taking into account the
asphericity in gravitational collapse that leads to a different re-
lation for bias (Del Popolo & Gambera 1998; Sheth & Tormen
1999), to a modified version of the mass function (Del Popolo
& Gambera 1998; Sheth & Tormen 2002; Del Popolo 2002b),
and a different M − T relation (Del Popolo 2002a), leads to
higher values of Ω0m, σ8, r0 by at least 20%. In the near fu-
ture theory and observations should converge towards a more
precise constraining of cosmological parameters.

4. Discussion and conclusions

In this paper, we have recalculated the two-point correlation
function of clusters of galaxies for OCDM and ΛCDM cos-
mological models, improving the model of S2000, in the light
of recent theoretical developments, by using the theoretical
mass function derived in Del Popolo (2002a), the M − T re-
lation derived in Del Popolo (2002b) and the bias model of
Del Popolo (2001). As in Suto’s paper, the model properly
takes account of nonlinear gravitational evolution of mass fluc-
tuations, redshift-space distortion due to the linear peculiar ve-
locity field and to finger-of-god, cluster abundance and bias
evolution, and the light-cone effect. This theoretical model
has before been compared with the observed spatial correla-
tion function for clusters in RASS1, and in XBACs samples.
The comparison shows that only the predictions of models
with Ωm = 0.3 are in good agreement with data. The re-
sults are in qualitative agreement with MMM, but the values
for r0 here obtained (r0 � 28.2 h−1 Mpc for the ΛCDM model)
are larger than the values of the quoted paper (MMM), (r0 �
22 h−1 Mpc for ΛCDM), while they are in better agreement
with that of Borgani et al. (1999), who found a value of r0 =

26+4.1
−4.7 h−1 Mpc. In order to study the possible dependence of the

clustering properties of the X-ray clusters on the observational
characteristics defining the survey, we plot the values of the
correlation length r0 in the catalogues where we vary the limit-
ing X-ray flux S lim

9. All the cosmological models displays an

9 Notice that this analysis can be related to the study of the richness
dependence of the cluster correlation function. In fact, a change in the
observational limits implies a change in the expected mean intercluster
separation dc.

increase of r0 with Llim. The increase is more rapid for ΛCDM
models (see MMM). Comparing the result with those of a sim-
ilar analysis by S2000, (see their Fig. 8) and MMM it is clear
that there is a qualitative agreement but MMM tends to pre-
dict smaller correlation lengths (by approximately 20–30%)
with respect to S2000, and the latter predicts smaller corre-
lation lengths than the present paper. These differences, ex-
pecially when we compare the results with those of S2000,
are due essentially to the different M − T relation and mass
function used in this paper. In order to obtain constraints on
cosmological parameters we performed a maximum-likelihood
analysis by comparing the theoretical predictions to a set of
observational data in the X-ray band (RASS1 Bright Sample,
BCS, XBACs, REFLEX), similarly to MMM. The parameters
to be constrained are: Ωm, ΩΛ, the power-spectrum shape pa-
rameter Γ and the normalization σ8. The constraints obtained
for the matter density parameter in a flat CDM model, are:
0.25 ≤ Ω0m ≤ 0.45 and 0.23 ≤ Ω0m ≤ 0.52 at the 95.4
and 99.73 per cent levels, respectively, larger by �20% than
the MMM predictions. Keeping the model normalization fixed
to reproduce the cluster abundance, and leaving two free pa-
rameters: Γ, and Ωm0, we find that for the flat model the con-
straints for Γ are 0.1 ≤ Γ ≤ 0.14, while for the open model
0.09 ≤ Γ ≤ 0.13. These values are smaller than those of MMM,
by about 20−30%. After fixing the values of ΩΛ, we obtain the
constraints in the Γ−σ8 plane, showing that if we keep the value
of ΩΛ fixed the open model with Ω0m = 0.3 the 2σ region has
Γ in the range 0.11–0.2 and σ8 between 0.7 and 1.55. In the
flat model with Ω0m = 0.3 the 2σ region has 0.13 ≤ Γ ≤ 0.2
and 0.8 ≤ σ8 ≤ 1.6 In all three cases, the values of σ8 obtained
are larger than those of MMM by �20%. Varying α, it turns
out that Γ is quite insensitive to the change of α, while σ8 is
only weakly dependent on it: the minimum in the maximum-
likelihood analysis decreases (increases) by �10% for α = 2.5,
(for α = 3.5). In the case of Ω0m the changes are similar to
those of Γ but larger (of the order of 20%). Allowing the shape
parameter to vary, we find that the clustering properties of clus-
ters are almost independent of the matter density parameter and
of the presence of a cosmological constant, while they appear to
be strongly dependent on the shape parameter. The constraints
from X-ray data are tighter than those coming from optical
data. In conclusion, the data on clustering properties of galax-
ies can be used to constrain important cosmological parameters
like Ω0m, Γ and σ8.
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