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Preface

This volume contains revised versions of selected papers presented at the
biennial meeting of the Classification and Data Analysis Group (CLADAG)
of the Italian Statistical Society, which was held in Parma, June 6-8, 2005.
Sergio Zani chaired the Scientific Programme Committee and Andrea Cerioli
chaired the Local Organizing Committee.

The scientific programme of the conference included 127 papers, 42 in spe-
cialized sessions, 68 in contributed paper sessions and 17 in poster sessions.
Moreover, it was possible to recruit five notable and internationally renowned
invited speakers (including the 2004-2005 President of the International Fed-
eration of Classification Societies) for plenary talks on their current research
work. Among the specialized sessions, two were organized by Wolfgang Gaul
with five talks by members of the GfKl1 (German Classification Society), and
one by Jacqueline J. Meulman (Dutch /Flemish Classification Society). Thus,
the conference provided a large number of scientists and experts from home
and abroad with an attractive forum for discussion and mutual exchange of
knowledge. The topics of all plenary and specialized sessions were chosen to
fit, in the broadest possible sense, the mission of CLADAG, the aim of which
is “to further methodological, computational and applied research within the
fields of Classification, Data Analysis and Multivariate Statistics”.

A peer-review refereeing process led to the selection of 46 extended papers,
which are contained in this book. The more methodologically oriented papers
focus on developments in clustering and discrimination, multidimensional
data analysis, data mining, and robust statistics with a special emphasis on
the novel Forward Search approach. Many papers also provide significant, con-
tributions in a wide range of fields of application. Customer satisfaction and
service evaluation are two examples of such emerging fields. This suggested
the presentation of the 46 selected papers in six parts as follows:

. CLUSTERING AND DISCRIMINATION

. MULTIDIMENSIONAL DATA ANALYSIS AND MULTIVARIATE STATISTICS

. RoBUST METHODS AND THE FORWARD SEARCH

. DATA MINING METHODS AND SOFTWARE

. MULTIVARIATE METHODS FOR CUSTOMER SATISFACTION AND SERVICE
EVALUATION

6. MULTIVARIATE METHODS IN APPLIED SCIENCE

U= N =

We wish to express our gratitude to the other members of the Scientific
Programme Committee

B. Chiandotto, N.C. Lauro, P. Monari, A. Montanari, C. Provasi, G.
Vittadini
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and to the specialized session organizers
F. Camillo, M. Chiodi, W. Gaul, S. Ingrassia, J.J. Meulman

for their ability to attract interesting contributions, and to the authors, whose
enthusiastic participation made the meeting possible. We would also like to
extend our thanks to the chairpersons and discussants of the sessions for their
stimulating comments and suggestions. We are very grateful to the referees
for their careful reviews of all submitted papers and for the time spent in this
professional activity.

We gratefully acknowledge the University of Parma and its Department
of Economics for financial support and hospitality. We are also indebted to
Istat - Istituto Nazionale di Statistica and SAS for their support.

We thank all the members of the Local Organizing Committee

A. Corbellini, G. Gozzi, L. Grossi, F. Laurini, M.A. Milioli, G. Morelli, I.
Morlini

for their excellent work in managing the organization of the CLADAG-2005
conference. Special thanks go to Prof. Isabella Morlini, for her skilful accom-
plishment of the duties of Scientific Secretary of CLADAG-2005, and to Dr.
Fabrizio Laurini for his assistance in producing this volume.

Finally, we would like to thank Dr. Martina Bihn of Springer-Verlag, Hei-
delberg, for her support and dedication to the production of this volume.

Parma and Rome,
June 2006

Sergio Zani
Andrea Cerioli
Marco Riani
Maurizio Vichi
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Monotone Constrained EM Algorithms
for Multinormal Mixture Models

Salvatore Ingrassia! and Roberto Rocci?

! Dipartimento di Economia e Metodi Quantitativi,
Universita di Catania, Italy
s.ingrassia@unict.it

2 Dipartimento SEFEMEQ,
Universita di Tor Vergata, Italy
roberto.rocci@uniroma2.it

Abstract. We investigate the spectral decomposition of the covariance matrices
of a multivariate normal mixture distribution in order to construct constrained EM
algorithms which guarantee the monotonicity property. Furthermore we propose
different set of constraints which can be simply implemented. These procedures
have been tested on the ground of many numerical experiments.

1 Introduction

Let f(x;%) be the density of a mixture of k multinormal distribution
f(x54) = aup(x; oy, X1) + - - -+ cup(x; py,, X') where the «; are the mixing
weights and p(x; p;, X'5) is the density function of a g—multivariate normal
distribution with mean vector p; and covariance matrix X';. Finally, we set
P = {(aj,p;, X;5), j=1,...,k} € ¥, where ¥ is the parameter space. It is
well known that the log-likelihood function £(#) coming from a sample of
N i.i.d. observations with law f(x;1/) is unbounded and presents many local
spurious maxima, see McLachlan and Peel (2000); however under suitable
hypotheses in Hathaway (1985) a constrained (global) maximum-likelihood
formulation has been proposed which presents no singularities and a smaller
number of spurious maxima by imposing the following constraint satisfied by
the true set of parameters

i - >
lgg%gkAmm(zhzj ) > e, c € (0,1] (1)

where Apin(A) is the smallest eigenvalue of A. Such constraints are difficult
to apply in algorithms like the EM, where the estimates of the covariance
matrices are iteratively updated; for this aim they have been reformulated as

where \;(A) is the i*" eigenvalue of A, in non increasing order, and a and b
are positive numbers such that a/b = ¢, see Ingrassia (2004). In this way a
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set of stronger constraints are obtained; in fact, the inequalities

Amm (2 )

/\mln (th ) b\ ( )
max 7

>

G“IQ

=c, 1<h#j<k 3)

show that (2) implies (1).

In this paper we analyze the eigenvalue and eigenvector structure of the
covariance matrices X; in order to construct constrained EM algorithms
which guarantee the monotonicity property of the unconstrained version. We
also propose a new set of simple constraints which are weaker than (2).

2 An Algebraic Analysis of the Covariance Matrices

The EM algorithm generates a sequence of estimates {1/;( )}m where 'q’)(o)
denotes the initial guess and w(m) € ¥ for m € N, so that the corresponding
sequence {ﬁ(t/l(m) )}m, is not decreasing. The theory of the EM algorithm
assures that £(p™ V) > £(p"™). The E-step, on the (m + 1) iteration
computes the quantities

(m) (m) y+(m)
LD Y PEnip; X5 ) n=1,...,N, j=1,...,k.
! Zh 1042 )p(xnvﬂi(z ) Egzm))

The M-step on the (m + 1) iteration requires the global maximization of the
complete log-likelihood

k N k
=ZZ " (nag) + Y gy, 25) (4)
j=1n=1

=1

with respect to 1 over the parameter space ¥ to give the update esti-
mate 1/:<m+1). To achieve this global maximization, let us first study the
three separate maximizations with respect to a = [, ..., ax]’, p; and X
(j=1,2,...,k).

1) Maximization with respect to a. It can be easily shown that the
complete log-likelihood (4) obtains a maximum with respect to a by setting

1 ey Lsm (met)
+1 Z +1 .
aj:ﬁu.]m :N ’u’n7]n J:]_’,”’k,

n=1

2) Maximization with respect to p;. In this case, the maximization
of (4) can be split into k independent maximizations of the terms q;(p;, ;)
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(j =1,...,k). Thus, let us write

1
q(py, 2 Zu(m+ In p(xns g1, 3;)

[\3|>—l

N
Z v [aln(2m) 25— (o0 — ) T 00— )] ()

>From (5) easily follows that (4) obtains a maximum with respect to p,

when
N
Z mtly F=1,..k;

3) Maximization w1th respect to X; which is the most relevant for
our scope. Again the maximization of Q(%) can be split into k independent
maximizations of the terms g;(u;, X';) (j = 1,..., k). By noting that

(Xn — Mj)/zj—l(xn - .Uj) = tr((x, — I*I’j)/zj‘—l(Xn - Nj))
= tr(zil(xn - F"j)(xn - :u’j)/)v

the function (5) can be also written as

g1y, X)) =
N
S [ghn(an) I 5l () ) 1))
=3 Uy qIn(2m n|x; r( X (Xn — p) (X0 — p45)")] -
After some algebras we get

1 _
qj(pj, Xj5) = 7](.m+1> 3 <]m+1> [ln X |—|—tr( r ISj)] (6)

where for simplicity we set

1 N

(m+1 m+1

v = ——1n(2ﬂ' + )a Sj = (m+1) 7(7/J+ )(X
U5 n=1

n = H) (X0 = py)"

The relation (6) shows that the maximization of ¢;(pu;, X';) with respect to
X/; amounts to the minimization of In |¥;| 4 tr (E;lSj).

Let X; = I';A;I"; be the spectral decomposition of X;, where A; =
diag(A1;, ..., Ag;) is the diagonal matrix of the eigenvalues of X; in non de-
creasing order, and I'; is an orthogonal matrix whose columns are the stan-
dardized eigenvectors of X';. It is well known that (see for example: Theobald,
1975)

tr (2;18;) > tr ( Z)\wlzw (7)
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where L; = diag(l;,...,(q;) is the diagonal matrix of the eigenvalues, in non
decreasing order, of S;. In particular, the equality in (7) holds if and only if
X; and S; have the same eigenvectors which are ordered with respect both
Alj, ..., Agj and l15,...,lg;. This implies that the minimum can be reached
if and only if X'; has the same eigenvectors of S;. Under this condition, since
In|X;| =32, In Ay, the minimization of In | Y| +tr (%7 'S;) with respect to
2/; amounts to the minimization of

Z In\g; + Z Al = Z (In g + A5 ) (8)

=1

with respect to A1y, ..., Ag;, which is equivalent to ¢ independent minimiza-
tions of In A;; + )\;jllij with respect to Ayj,..., Agj, which give A;; = [;;. In
conclusion, the optimal 3J; is obtained first by setting its eigenvectors equal
to the ones of S; and then doing the same with the eigenvalues. This can be
simply done by setting X'; = S;.

On the basis of the previous results, it should be noted that only the
maximization with respect to X'; depends on the current values of the other
parameters. It follows that the M-step can be done by maximizing:

1. Q(a, ,u(lm), ,pl(c m) E(m) fcm)) with respect to o to get

(m+1) _ 1 )
O[j = Nu'j ;
2. Q™Y ..y, Z’gm), s El(ﬁm)) with respect to p; (j =1,...,k) to

get
(m+1) _ (m+1)
IJ’J (m+1) Z

3. Qalm ), ym ) ,p,,(cmﬂ) 21, <oy Xi) with respect to X; (j = 1,...,k)
to get

m+1 m+1 m+1 m—+1 m-+1
Z = s mm Z A T bl

The third step can be regarded as obtained according to the following
three substeps:

i) set F;m-l_l) equal to the orthonormal matrix whose columns are standard-

ized eigenvectors of glmty)

i) set A;mH) “ diag(li’]ﬂﬂ) l(m-|—1))7
it) compute Z’§m+1) - F§m+1)A(m+l)1-.(m+1)
This split into three substeps is not convenient in the ordinary EM algorithm.

However, in the next section it will be shown how this help to formulate
monotone algorithms for the constrained case.
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3 Constrained Monotone EM Algorithms

The reformulation of the update of the covariance matrices ¥; (j = 1,...,k)
presented in the previous section suggests some ideas for the the construc-
tion of EM algorithms such that the constraints (1) are satisfied while the
monotonicity is preserved.

Approach A. The simplest approach is the following:

i) if )\min(S§m+1))/Amax(S§-m+1)) > ¢ then set E;mﬂ) — ngﬂ) otherwise
set 3mTD _ glm)
j i

Approach B. A more refined strategy is:

i) set F§m+1> equal to the orthogonal matrix whose columns are standard-

ized eigenvectors of S;mH);

ii) if Anin(SS )/ Amax(SS V) > ¢ then
+1 . +1 +1

set Ag-m ) dlag(lg.” ). .,l((l;n )
i) compute the covariance matrix by X

) otherwise set Ag.m“) — A,

m—+1 m+1 m—+1 m+1)’
(D) plotD) g ) plont 1)
Approach C. Another approach consists in imposing the constraints to the
eigenvalues, that is to find an update of X'; which maximizes (4) under the
constraints (3), see Ingrassia (2004). According to the results given in the
previous section, the optimal update is a symmetric matrix having the same
eigenvectors as S;mﬂ), and eigenvalues minimizing (8) under (2). It is easy
to show that this can be achieved by setting

a i1V <a
Nij = 1Y i a < 1Y <p
e

We can summarize this strategy as follows:

i) set F§m+1> equal to the orthogonal matrix whose columns are standard-
ized eigenvectors of S;mH);
i1) afterward set
)\Zﬁ“) + min (b, max (a l(mH))) . 9)

Y%

(m+1) - F(m+1)A(m+1)F(m+1)'.

i) update the covariance matrix as X p J i

)

In this way the monotonicity is guaranteed once the initial guess ZJ;O satis-

fies the constraints.

Approach D. A different kind of constraints on eigenvalues is here proposed
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by introducing a suitable parameterization for the covariance matrices of the
mixture components. Let us rewrite X'; = ngﬂj (j = 1,...,k), where the
matrices §2; are such that

Ai(82;) < and min A;(£2;) =1 (10)

)

Ql'—‘

fori =1,...,¢ and 7 = 1,..., k. They are weaker than (2), indeed if con-
straints (2) are satisfied and we set n* = min;; \;(¥;) and £2; = X, /n? then,
by noting that \;(X;) = \;(§2;)n%, we get (10) since

1
=— and minX($2;)=1.

C ij

)\Z(Ej)gb?)\l(ﬂj) < — S

b b
a

3

However they are stronger than (1), indeed if the constraints (10) hold then

_ Ami (Zh) /\mm(‘f2 ) .
Amin(Xp 271 > 22 ——c, 1<h <k
mm( j ) >\max(2j> /\max( ) / 7é J
In order to implement in the EM algorithm the new set of constraints, only
the last step must be changed. The update of 7* and §2; must maximize the
complete log-likelihood, i.e., they have to maximize the function

k k
1 m+1 — -1
S aipn® 25) = - 3 ZU(] DI 025] + tr (n72027'S;)]
. =
It can be shown that the maximum with respect to 7? is achieved by setting

k
1 _
0 = N_q ;uF?+l) [tr (Qj 1Sj)] , (11)

while, on the basis of the results shown in this section and in the previous
one, it can be easily shown that the maximum with respect to £2; is obtained
by setting its eigenvectors equal to the eigenvectors of S; and the eigenvalues

@) i (L (1)), a2

We can summarize this fourth strategy as follows:

F;mﬂ) equal to the orthogonal matrix whose columns are standard-

ized eigenvectors of S;m-l_l);

i) update n? as

0 = S o )

i) set
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( y 1 l(m-}—l)
m-—+ ( +1) 2 . - 17 .
)\ij — ('™ FY2 min (C,max (17—(77<m+1))2>> ;

(m+1) (m+1) 4(m+1) p{m+1)’
p — Fj Aj Fj .

iti) set

iv) update the covariance matrix as X7

It is important to note that in (12) the maximizer depends on the current
value of 72, while in (11) the maximizer depends on the current values of
02; (j=1,...,k). It follows that the sequential implementation of the above
four steps leads to an increment of the complete log-likelihood but does not
necessarily maximize it with respect to n? and £2; (j = 1,..., k). This implies
that the resulting algorithm is of the class ECM (Expectation Conditional
Maximization) (see e.g. McLachlan & Krishnan, 1997) rather than EM. It is
also important to note that the proposed algorithm does not necessarily gives
a solution satisfying the constraint min;; A\;(£2;) = 1 in (10); in this case, a
correct solution can be obtained by setting

Ai(£2;)

AZ(QJ) o Hlil’lij )\Z(‘Qj)

and 7% «— n% min \;(£2;) (13)
ij

and thus a new solution is obtained that satisfy the complete set of constraints

by giving the same value of the log-likelihood. Also in this case the mono-

tonicity is guaranteed once the initial guess 25.0) satisfies the constraints.

Finally, it should be noted that strategies A and B do not necessarily maxi-

mize the complete log-likelihood at each iteration.

4 Numerical Results and Concluding Remarks

In this section we present some numerical results in order to evaluate the
performance of approaches C'and D, corresponding to the constraints (2) and
(10). Further experiments have been carried out and they are presented in
Ingrassia and Rocci (2006). We considered samples of size N = 200 generated
from a mixture of three bi-variate normal distributions (k = 3 and ¢ = 2)
having the parameters ¥ = (o, i1, po, 3, 21, X2, X'3) where

a=(03,04,03 p, =03 py=(15" p3=(38)

10 1 -1 21
ne(on) =-(h7) =-()

and the eigenvalues of the covariance matrices X1, ¥ and X3 are respec-
tively: A1 = (1,2), Ay = (0.382,2.618)" and A3 = (1,3)’. We generated 200
samples from this mixture. For each sample, we run the constrained EM algo-
rithms following approaches C' and D, starting from a set of points randomly
chosen; the computation stopped when the difference between two consec-
utive log-likelihood values resulted less than 0.0001. The results, displayed
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in table 1, have been summarized by considering the mean of the sum of
squared differences between the true parameters and the corresponding esti-
mates (SSE), and the average number of iterations (# iter). On the same

Table 1. Mean values of the sum of squared errors of estimation and mean values
for the number of iterations for constrained EM algorithms C and D

Strategy C Strategy D

a,b  SSE # iter c SSE # iter
0.38,3 1.50 75 0.38/3 2.08 111
0.20,4 2.02 79 0.20/4 4.42 129
0.10, 8 3.67 95 0.10/8 6.05 103
0.01,80 6.11 99 0.01/80 6.11 100
1.14,9 3.89 161

datasets we run also the unconstrained algorithm obtaining an average num-
ber of iterations equal to 99 and an average SSE equal to 6.11.

We can not, draw general conclusions from this limited simulation study. How-
ever, we note that the two constrained algorithms outperforms always the un-
constrained one. They are equivalent only when (a, b) = (0.01, 80) because in
this case the constraints are not active. We note also that the performances of
the algorithms decreases when the constraints are less tight. The same consid-
eration applies if we compare the two constrained algorithms when a/b = ¢:
approach C'is always better than D because it is the most constrained. Only
in the last setting, D is better than C (note that 1.14/9 = 0.38/3). This is due
to the fact that the constraints are wrong for C. In conclusion, it seems that
the choice between the two approaches depends on the information available
on the eigenvalues: use C if the location is known, use D if only the ratio
between the highest and the lowest is known.
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