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Preface

This volume contains the revised versions of selected papers presented during
the 30th Annual Conference of the German Classification Society (Gesellschaft
für Klassifikation – GfKl) on “Advances in Data Analysis”. The conference was
held at the Freie Universität Berlin, Germany, in March 2006. The scientific
program featured 7 parallel tracks with more than 200 contributed talks in 63
sessions. Additionally, thanks to the support of the DFG (German Research
Foundation), 18 plenary and semi-plenary speakers from Europe and overseas
could be invited to talk about their current research in classification and data
analysis. With 325 participants from 24 countries in Europe and overseas this
GfKl Conference, once again, provided an international forum for discussions
and mutual exchange of knowledge with colleagues from different fields of
interest. From altogether 115 full papers that had been submitted for this
volume 77 were finally accepted.

The scientific program included a broad range of topics from classification
and data analysis. Interdisciplinary research and the interaction between the-
ory and practice were particularly emphasized. The following sections (with
chairs in alphabetical order) were established:

I. Theory and Methods
Clustering and Classification (H.-H. Bock and T. Imaizumi); Exploratory
Data Analysis and Data Mining (M. Meyer and M. Schwaiger); Pattern
Recognition and Discrimination (G. Ritter); Visualization and Scaling Meth-
ods (P. Groenen and A. Okada); Bayesian, Neural, and Fuzzy Clustering
(R. Kruse and A. Ultsch); Graphs, Trees, and Hierarchies (E. Godehardt
and J. Hansohm); Evaluation of Clustering Algorithms and Data Structures
(C. Hennig); Data Analysis and Time Series Analysis (S. Lang); Data Cleaning
and Pre-Processing (H.-J. Lenz); Text and Web Mining (A. Nürnberger and
M. Spiliopoulou); Personalization and Intelligent Agents (A. Geyer-Schulz);
Tools for Intelligent Data Analysis (M. Hahsler and K. Hornik).

II. Applications
Subject Indexing and Library Science (H.-J. Hermes and B. Lorenz); Market-
ing, Management Science, and OR (D. Baier and O. Opitz); E-commerce, Rec-



VI Preface

ommender Systems, and Business Intelligence (L. Schmidt-Thieme); Banking
and Finance (K. Jajuga and H. Locarek-Junge); Economics (G. Kauermann
and W. Polasek); Biostatistics and Bioinformatics (B. Lausen and U. Mans-
mann); Genome and DNA Analysis (A. Schliep); Medical and Health Sci-
ences (K.-D. Wernecke and S. Willich); Archaeology (I. Herzog, T. Kerig, and
A. Posluschny); Statistical Musicology (C. Weihs); Image and Signal Pro-
cessing (J. Buhmann); Linguistics (H. Goebl and P. Grzybek); Psychology
(S. Krolak-Schwerdt); Technology and Production (M. Feldmann).

Additionally, the following invited sessions were organized by colleagues
from associated societies: Classification with Complex Data Structures (A. Ce-
rioli); Machine Learning (D.A. Zighed); Classification and Dimensionality Re-
duction (M. Vichi).

The editors would like to emphatically thank the section chairs for doing
such a great job regarding the organization of their sections and the asso-
ciated paper reviews. The same applies to W. Esswein for organizing the
Doctoral Workshop and to H.-H. Hermes and B. Lorenz for organizing the
Librarians Workshop. Cordial thanks also go to the members of the scientific
program committee for their conceptual and practical support (in alphabeti-
cal order): D. Baier (Cottbus), H.-H. Bock (Aachen), H.W. Brachinger (Fri-
bourg), R. Decker (Bielefeld, Chair), D. Dubois (Toulouse), A. Gammerman
(London), W. Gaul (Karlsruhe), A. Geyer-Schulz (Karlsruhe), B. Goldfarb
(Paris), P. Groenen (Rotterdam), D. Hand (London), T. Imaizumi (Tokyo),
K. Jajuga (Wroclaw), G. Kauermann (Bielefeld), R. Kruse (Magdeburg),
S. Lang (Innsbruck), B. Lausen (Erlangen-Nürnberg), H.-J. Lenz (Berlin),
F. Murtagh (London), A. Okada (Tokyo), L. Schmidt-Thieme (Hildesheim)
M. Spiliopoulou (Magdeburg), W. Stützle (Washington), and C. Weihs (Dort-
mund). The review process was additionally supported by the following col-
leagues: A. Cerioli, E. Gatnar, T. Kneib, V. Köppen, M. Meißner, I. Michalar-
ias, F. Mörchen, W. Steiner, and M. Walesiak.

The great success of this conference would not have been possible without
the support of many people mainly working in the backstage. Representative
for the whole team we would like to particularly thank M. Darkow (Bielefeld)
and A. Wnuk (Berlin) for their exceptional efforts and great commitment
with respect to the preparation, organization and post-processing of the con-
ference. We thank very much our web masters I. Michalarias (Berlin) and
A. Omelchenko (Berlin). Furthermore, we would cordially thank V. Köppen
(Berlin) and M. Meißner (Bielefeld) for providing an excellent support re-
garding the management of the reviewing process and the final editing of the
papers printed in this volume.

The GfKl Conference 2006 would not have been possible in the way
it took place without the financial and/or material support of the follow-
ing institutions and companies (in alphabetical order): Deutsche Forschungs-
gemeinschaft, Freie Universität Berlin, Gesellschaft für Klassifikation e.V.,
Land Software-Entwicklung, Microsoft München, SAS Deutschland, Springer-
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Verlag, SPSS München, Universität Bielefeld, and Westfälisch-Lippische Uni-
versitätsgesellschaft. We express our gratitude to all of them.

Finally, we would like to thank Dr. Martina Bihn of Springer-Verlag, Hei-
delberg, for her support and dedication to the production of this volume.

Berlin and Bielefeld, January 2007 Hans-J. Lenz
Reinhold Decker
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Martin Hoffmann, Dörte Radke, Ulrich Möller . . . . . . . . . . . . . . . . . . . . . . . 75



X Contents

Finding Cliques in Directed Weighted Graphs Using Complex
Hermitian Adjacency Matrices
Bettina Hoser, Thomas Bierhance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Text Clustering with String Kernels in R
Alexandros Karatzoglou, Ingo Feinerer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Automatic Classification of Functional Data with Extremal
Information
Fabrizio Laurini, Andrea Cerioli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Typicality Degrees and Fuzzy Prototypes for Clustering
Marie-Jeanne Lesot, Rudolf Kruse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

On Validation of Hierarchical Clustering
Hans-Joachim Mucha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Part II Classification

Rearranging Classified Items in Hierarchies Using
Categorization Uncertainty
Korinna Bade, Andreas Nürnberger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Localized Linear Discriminant Analysis
Irina Czogiel, Karsten Luebke, Marc Zentgraf, Claus Weihs . . . . . . . . . . . 133

Calibrating Classifier Scores into Probabilities
Martin Gebel, Claus Weihs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Nonlinear Support Vector Machines Through Iterative
Majorization and I-Splines
Patrick J.F. Groenen, Georgi Nalbantov, J. Cor Bioch . . . . . . . . . . . . . . . . 149

Deriving Consensus Rankings from Benchmarking
Experiments
Kurt Hornik, David Meyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Classification of Contradiction Patterns
Heiko Müller, Ulf Leser, Johann-Christoph Freytag . . . . . . . . . . . . . . . . . . . 171

Selecting SVM Kernels and Input Variable Subsets in Credit
Scoring Models
Klaus B. Schebesch, Ralf Stecking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



Contents XI

Part III Data and Time Series Analysis

Simultaneous Selection of Variables and Smoothing
Parameters in Geoadditive Regression Models
Christiane Belitz, Stefan Lang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Modelling and Analysing Interval Data
Paula Brito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Testing for Genuine Multimodality in Finite Mixture Models:
Application to Linear Regression Models
Bettina Grün, Friedrich Leisch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Happy Birthday to You, Mr. Wilcoxon!
Invariance, Semiparametric Efficiency, and Ranks

Marc Hallin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Equivalent Number of Degrees of Freedom for Neural
Networks
Salvatore Ingrassia, Isabella Morlini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Model Choice for Panel Spatial Models: Crime Modeling in
Japan
Kazuhiko Kakamu, Wolfgang Polasek, Hajime Wago . . . . . . . . . . . . . . . . . . 237

A Boosting Approach to Generalized Monotonic Regression
Florian Leitenstorfer, Gerhard Tutz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

From Eigenspots to Fisherspots – Latent Spaces in the
Nonlinear Detection of Spot Patterns in a Highly Varying
Background
Bjoern H. Menze, B. Michael Kelm, Fred A. Hamprecht . . . . . . . . . . . . . . 255

Identifying and Exploiting Ultrametricity
Fionn Murtagh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Factor Analysis for Extraction of Structural Components and
Prediction in Time Series
Carsten Schneider, Gerhard Arminger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Classification of the U.S. Business Cycle by Dynamic Linear
Discriminant Analysis
Roland Schuhr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281



XII Contents

Examination of Several Results of Different Cluster Analyses
with a Separate View to Balancing the Economic and
Ecological Performance Potential of Towns and Cities
Nguyen Xuan Thinh, Martin Behnisch, Alfred Ultsch . . . . . . . . . . . . . . . . . 289

Part IV Visualization and Scaling Methods

VOS: A New Method for Visualizing Similarities Between
Objects
Nees Jan van Eck, Ludo Waltman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Multidimensional Scaling of Asymmetric Proximities with a
Dominance Point
Akinori Okada, Tadashi Imaizumi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Single Cluster Visualization to Optimize Air Traffic
Management
Frank Rehm, Frank Klawonn, Rudolf Kruse . . . . . . . . . . . . . . . . . . . . . . . . . 319

Rescaling Proximity Matrix Using Entropy Analyzed by
INDSCAL
Satoru Yokoyama, Akinori Okada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Part V Information Retrieval, Data and Web Mining

Canonical Forms for Frequent Graph Mining
Christian Borgelt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Applying Clickstream Data Mining to Real-Time Web
Crawler Detection and Containment Using ClickTips
Platform
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Veit Köppen, Marina Allgeier, Hans-J. Lenz . . . . . . . . . . . . . . . . . . . . . . . . . 457

Integration of Customer Value into Revenue Management
Tobias von Martens, Andreas Hilbert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

Women’s Occupational Mobility and Segregation in the
Labour Market: Asymmetric Multidimensional Scaling
Miki Nakai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

Multilevel Dimensions of Consumer Relationships in the
Healthcare Service Market M-L IRT vs. M-L SEM Approach
Iga Rudawska, Adam Sagan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481



XIV Contents

Data Mining in Higher Education
Karoline Schönbrunn, Andreas Hilbert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

Attribute Aware Anonymous Recommender Systems
Manuel Stritt, Karen H.L. Tso, Lars Schmidt-Thieme . . . . . . . . . . . . . . . . 497

Part VII Banking and Finance

On the Notions and Properties of Risk and Risk Aversion in
the Time Optimal Approach to Decision Making
Martin Bouzaima, Thomas Burkhardt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

A Model of Rational Choice Among Distributions of Goal
Reaching Times
Thomas Burkhardt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

On Goal Reaching Time Distributions Estimated from DAX
Stock Index Investments
Thomas Burkhardt, Michael Haasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

Credit Risk of Collaterals: Examining the Systematic Linkage
between Insolvencies and Physical Assets in Germany
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Abstract. The notion of equivalent number of degrees of freedom (e.d.f.) to be used
in neural network modeling from small datasets has been introduced in Ingrassia
and Morlini (2005). It is much smaller than the total number of parameters and
it does not depend on the number of input variables. We generalize our previous
results and discuss the use of the e.d.f. in the general framework of multivariate
nonparametric model selection. Through numerical simulations, we also investigate
the behavior of model selection criteria like AIC, GCV and BIC/SBC, when the
e.d.f. is used instead of the total number of the adaptive parameters in the model.

1 Introduction

This article presents the results of some empirical studies comparing different
model selection criteria, like AIC, GCV and BIC (see, among others, Kadane
and Lazar (2004), for nonlinear projection models, based on the equivalent
number of degrees of freedoms (e.d.f) introduced in Ingrassia and Morlini
(2005). Given a response variable Y and predictor variables x ∈ X ⊆ Rm,
throughout this paper we assume that the input-output relation can be written
as Y = φ(x) + ε, where Y assumes values in Y ⊆ R and ε is a random
variable with zero mean and finite variance. We then assume that the unknown
functional dependency φ(x) = E[Y |x] is of the form:

fp(x) =
p∑

i=1

ciτ(a′
ix + bi) + cp+1 (1)

where a1, . . . ,ap ∈ Rm, b1, . . . , bp, cp+1, c1, . . . , cp ∈ R and τ is a sigmoidal
function. In the following, without loss of generality, we will assume cp+1 = 0.
Indeed, the expression (1) may be written in the form: fp(x) =

∑p+1
i=1 ciτ(a′

ix+
bi) where the constant term cp+1 has been included in the summation and
τ(a′

p+1xi + bp+1) ≡ 1. Therefore, results presented in this article may be
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extended to the case cp+1 �= 0 by simply replacing p with p + 1. We denote
by A the p × m matrix having rows a′

1, . . . ,a
′
p, and we set b = (b1, . . . , bp)

and c = (c1, . . . , cp). The function fp(x) is realized by a multilayer perceptron
(MLP) having m inputs, p neurons in the hidden layer and one neuron in
the output. Such quantities are called weights and they will be denoted by
w, so that w ∈ Rp(m+2). It is well known that most functions, including any
continuous function with a bounded support, can be approximated by models
of the form (1).

2 Preliminaries and basic results

Let F be the set of all functions of kind (1) for a fixed p with 1 ≤ p ≤ N . The
problem is to find the function f (0) = f(w(0)) in the set F which minimizes
the generalization error :

E(f) =
∫

[y − f(x)]2 p(x, y) dx dy , (2)

where the integral is over X × Y. In practice, the distribution p(x, y) is un-
known, but we have a sample L = {(x1, y1), . . . , (xN , yN )}, called learning
set, of N i.i.d. realizations of (X, Y ) so that we compute the empirical error :

Ê(f,L) =
∑

(xn,yn)∈L
(yn − f(xn))2 (3)

and estimate the least squares parameters by minimizing (3). A theoretical
problem concerns the unidentifiability of the parameters, see Hwang and Ding
(1997). That is, there exist different functions of the form (1) with a different
number of parameters that can approximate exactly the same relationship
function f(x). Results due to Bartlett (1998) show that this is due to the
dependency of the generalization performance of an MLP on the size of the
weights rather than on the size of the model (i.e. on the number of adaptive pa-
rameters). Here an important role is played by the quantity ‖c‖1 =

∑p
i=1 |ci|,

that is by the sum of the values of the absolute weights between the hidden
layer and the output. This is justified as follows. Let X1 and X2 be two pop-
ulations in Rm and set X = X1 ∪ X2; for each x ∈ X and y ∈ {−1, +1}, let
y = +1 if x comes from X1 and y = −1 if x comes from X2. Moreover let
f : X → R be a discriminant function of type (1) such that x is assigned to
X1 if f(x) > 0 and to X2 if f(x) < 0; in other words the function f classifies
correctly the point x if and only if y ·f(x) > 0; more generally, the function f
classifies correctly the point x with margin γ > 0 if and only if y ·f(x) ≥ γ. For
a given learning set L = {(x1, y1), . . . , (xN , yN )}, where yn = 1 if xn comes
from X1 and yn = −1 if xn comes from X2, with n = 1, . . . , N , let us consider
misclassification error with margin γ Êγ(f,L) = #{n : ynf(xn) < γ }/N,
where #{·} denotes the number of elements in the set {·}, which is the pro-
portion of the number of cases which are not correctly classified with margin
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γ by f . For a given constant C ≥ 1 consider only those c for which ‖c‖1 ≤ C,
then we have the following result:

Theorem 1 (Bartlett (1998)) Let P be a probability distribution on X ×
{−1, +1}, 0 < γ ≤ 1 and 0 < η ≤ 1/2. Let F be the set of functions f(x) of
kind (1) such that

∑
i |ci| ≤ C, with C ≥ 1. If the learning set L is a sample of

size N and has {−1, +1}-valued targets, then with probability at least 1− η,
for each f ∈ F :

E(f) ≤ Êγ(f,L) + ε(γ, N, η)

where for a universal constant α, the quantity

ε(γ, N, η) =

√
α

N

(
C2m

γ2
ln
(

C

γ

)
ln2 N − ln η

)
.

is called confidence interval. �

Thus the error is bounded by the sum of the empirical error with margin γ
and by a quantity depending on ‖c‖1 through C but not on the number of
weights. Two other important results for our scope are given below.

Theorem 2 (Ingrassia (1999)) Let x1, . . . ,xp be p distinct points in
(−r, r)m with xi �= 0 (i = 1, . . . , p) and A = (aij) ∈ [−u, u]mp be a p × m
matrix, with u = 1/m. Let τ be a sigmoidal analytic function on (−r, r), with
r > 0. Then the points τ(Ax1), . . . , τ(Axp) ∈ Rp are linearly independent for
almost all matrices A = (aij) ∈ [−u, u]mp. �

This result proves that, given N > m points x1, . . . ,xN ∈ Rm, the
transformed points τ(Ax1), . . . , τ(AxN ) generate an over-space of dimension
p > m if the matrix A satisfies suitable conditions. In particular, the largest
over-space is attained when p = N , that is when the hidden layer has as
many units as the number of points in the learning set. This result has been
generalized as follows.

Theorem 3 (Ingrassia and Morlini (2005)) Let L be a given learning
set and f =

∑p
i=1 ciτ(a′

ix). If p = N , then the error Ê(f,L) is zero for almost
all matrices A ∈ [−1/m, 1/m]mp. �

3 Equivalent number of degrees of freedom

For a given p×m matrix A, let T be the N×p matrix having rows τ(Ax1)′, . . . ,
τ(AxN )′, with p ≤ N . According to Theorems 2 and 3 the matrix T has rank
p (and then it is non-singular) for almost all matrices A ∈ [−1/m, 1/m]mp.
The empirical error Êγ(f,L) can be written as:
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Êγ(f,L) =
∑

(xn,yn)∈L
(yn − f(xn))2 =

∑
(xn,yn)∈L

(yn − c′τ(Axn))

= (y −Tc)′(y −Tc) = y′y − 2c′T′y + c′T′Tc

and for any fixed matrix A, the error Êγ(f,L) attains its minimum when
c = (T′T)−1T′y. Thus the matrix H = T(T′T)−1T′ is a projection matrix
since ŷ = Hy and H is symmetric, positive semidefinite, idempotent and it
results:

rank(H) = trace(H) = trace{T(T′T)−1T′} = trace{(T′T)−1T′T} = p

so that ŷ lies in the space Rp and thus to the model f(x) =
∑p

i=1 ciτ(a′
ix)

should be assigned p equivalent number of degrees of freedom (e.d.f). When
the error is given by the following weight decay cost function:

Ê∗(f ;L) = Ê(f ;L) + λ
∑

w2
i

= y′y − 2c′T′y + c′T′Tc + λtr(AA′) + λc′c

the equivalent degrees of freedom are:

k = tr(Hλ) = tr{T(T′T + λIp)−1T′} = p−
p∑

i=1

λ

li + λ

which shows that p is decreased by the quantity λtr{(T′T + λIp)−1}. Since
T′T is positive semidefinite, the p eigenvalues of T′T, say l1, . . . , lp, are non-
negative. Thus (T′T+λIp) has eigenvalues (l1 +λ), . . . , (lp +λ) and then the
eigenvalues of (T′T + λIp)−1 are (l1 + λ)−1, . . . , (lp + λ)−1.

4 Model selection criteria

In the general framework of model selection, we suppose there are fp1 , . . . , fpK

models of the form (1). Since the estimation in statistical models may be
thought of as the choice of a single value of the parameter chosen to represent
the distribution (according to some criterion), model selection may be thought
of in this framework as the estimation applied to the model fph

, with h =
1, . . . , K. The only special issue is that the set of models is discrete and has
a finite range. There may be occasions when one model clearly dominates
the others and the choice is unobjectionable, and other occasions when there
are several competing models that are supported in some sense by the data.
Due to the unidentifiability of the parameters, there may be no particular
reasons for choosing a single best model over the others according to some
criterion. On the contrary, it makes more sense to ”deselect” models that are
obviously poor, maintaining a subset for further considerations regarding, for
example, the computational costs. The following indexes are generally used
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for model selection since they be carried out easily and yield results that can
be interpreted by most users; they are also general enough to handle with a
wide variety of problems:

AIC := log(Ê(f)) +
2k

N
BIC := log(Ê(f)) +

k log(N)
N

GCV := Ê(f)
(

1 − k

N

)−2

where k denotes the number of degrees of freedom of the model f . The AIC
and BIC present different forms in literature, here we follow Raftery (1995).
Some of these criteria obey the likelihood principle, that is they have some
frequentist asymptotic justification; some others correspond to a Bayesian
decision problem. It is not the goal of this paper to face the outgoing discussion
about their relative importance or to bring coherence to the two different
perspectives of asymptotic and Bayesian-theoretic justification. In this work,
via Monte Carlo simulations, we first aim at describing the different behavior
of these indexes; then, we wish to determine whether such values and the
model choice are affected by how the degrees of freedoms are computed and
by how the empirical error minimization is performed. In Ingrassia and Morlini
(2005) a Monte Carlo study has been drawn with small data sets. For these
data, BIC has been shown to select models with a smaller k = p than those
selected by the other criteria, in agreements with previous results (see e.g.
Katz (1981), Koehler and Murphree (1988), Kadane and Lazar (2004)). A
comparison with the criteria computed using the e.d.f. and k = W , where
W is the number of all parameters in the model, has also be drawn and
this shows that, when k = W , some indexes may assume negative values
becoming useless. Values across simulations also reveal a higher variability
and the presence of anomalous peaks. Another analysis concerning simulated
data has shown the ability of the UEV to estimate σ2 when k = p. In this work
we present further results, carried out in Matlab, based on large datasets: the
Abalone and the Boston Housing (www.ics.uci.edu/∼mlearn/).

5 Numerical studies

The Abalone Data consists of 4177 instances with 7 input variables and one
discrete output variable and the Boston Housing data consists of 506 instances
concerning 13 input variables and one continuous target variable. Observations
are split into a training set of dimension 3133 for the Abalone Data and 400
for the Boston Housing and a validation set of dimension 1044 for the first
data set and and 106 for the second one. In order to avoid overfitting, we
estimate the parameters both by minimizing the sum-of-squares error func-
tion with the stopped training strategy and by minimizing the weight decay
cost function. To interpret the following numerical results, it is worth noting
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Fig. 1. Mean values of model selection criteria for the Abalone data set obtained
with weight decay and a) λ =0.005, b) λ =0.05, c) λ chosen by cross validation and
d) stopped training.

that when the weight decay function is used, the error on the validation set
(EV) may be considered as an estimate of the generalization error since the
observations are independent from those used for estimating the parameters.
On the contrary, the error on the validation set is indirectly used for estimat-
ing the parameters if the stopped training stragegy is applied and cannot be
considered as a generalization error estimate. For the Abalone data, the mean
values obtained by repeating the estimates 100 times, with different splits of
the data in the training and validation sets, are reported in Fig. 1; moreover
main results referred to the Boston Housing data are reported in Table 1. The
first conclusion we draw, especially evident from Table 1, is that, for different
values of λ (ranging from 0.005 to 0.01) model selection criteria computed
using the e.d.f., that is with k = p and k = p −

∑p
i=1 λ/(li + λ) are nearly

identical and lead to the same model choice. Since k = p −
∑p

i=1 λ/(li + λ)
is not readily available in software packages, the choice k = p is shown to
provide a concise, simple and reliable approximation of this value. The second
conclusion we draw is that BIC selects smaller models, with respect to those
selected by the other criteria, when k = W . Indeed, it leads to the choice
of the same model selected by the other indexes, when k =e.d.f. If the true
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Table 1. Comparison among mean values of model selection criteria obtained with
the Boston Housing data, with k = p −�p

i=1 λ/(li + λ), k = p, k = W and with
λ = 0.005 and λ = 0.01. Bold values refer to the model selection.

λ = 0.005
k = p k = p−

∑p
i=1

λ
li+λ k = W

p EV AIC BIC GCV AIC BIC GCV AIC BIC GCV
2 17.89 8.56 8.59 13.08 8.55 8.59 13.06 8.76 9.18 16.08
3 17.92 8.42 8.46 11.29 8.40 8.45 11.26 8.68 9.23 14.96
4 17.59 8.32 8.37 10.31 8.31 8.36 10.25 8.65 9.35 14.77
5 18.36 8.32 8.38 10.29 8.31 8.36 10.21 8.71 9.55 16.00
6 19.20 8.39 8.46 11.02 8.37 8.43 10.90 8.85 9.82 18.66
7 20.10 8.32 8.40 10.31 8.30 8.36 10.17 8.84 9.96 19.10
8 20.68 8.38 8.47 10.96 8.36 8.43 10.78 8.97 10.23 22.31

λ = 0.01
k = p k = p−

∑p
i=1

λ
li+λ k = W

p EV AIC BIC GCV AIC BIC GCV AIC BIC GCV
2 17.90 8.54 8.57 12.84 8.54 8.57 12.83 8.74 9.16 15.79
3 17.27 8.45 8.49 11.64 8.44 8.48 11.60 8.71 9.26 15.42
4 17.00 8.30 8.35 10.07 8.29 8.34 10.02 8.63 9.32 14.43
5 17.95 8.31 8.37 10.17 8.29 8.35 10.09 8.70 9.54 15.80
6 19.20 8.39 8.46 11.02 8.37 8.43 10.90 8.85 9.82 18.66
7 20.10 8.32 8.40 10.31 8.30 8.36 10.17 8.84 9.96 19.10
8 20.68 8.38 8.47 10.96 8.36 8.43 10.78 8.97 10.23 22.31

underlying model is chosen to be as the one with the smallest validation error,
using k =e.d.f. instead of k = W , leads to choices with are never consider-
ably different and sometimes are considerably better (for example, when λ is
small and BIC is used). Another conclusion we draw from Table 1 and Fig. 1
is that the GCV is always larger than the other criteria and have a smaller
spread with the validation error, which is a reliable estimate of the general-
ization error when the weight decay approach is used. Moreover, GCV has
a less smoother pattern with respect to the dimension p of the model and a
scree test based on the plot of their values against p may be used to choose
the optimal dimension p of the model. If the graph drops sharply, followed
by a straight line with a much smaller slope, we may choose p equal to the
value before the straight line begins. Fig. 1 a), b) and c) clearly indicate to
choose p=3 while Fig. 1 d) suggest p=6. In the scree plots obtained from Ta-
ble 1 (not reported for economy of space) there is clearly a discernible bend
in slope at p = 4 for λ=0.005 and 0.01. In another case, with λ = 0.05 the
bend in slope is at p = 5. In both data sets, when k =e.d.f., these criteria are
nearly identical and lead to stable estimates of the generalization error and
stable model choices, for different p. By comparing the results obtained with
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different values of λ, it is apparent that increasing the value of λ does increase
the numbers of possible better models over the others and, in general, leads
to less parsimonious models. In this case model choice should be based on the
scree plot instead of on the basis of the absolute minimum value. The e.d.f.
are still shown to work well, even if they are based on the achievement of the
absolute minimum of the error function (3) which has a wider spread between
the minimum of weight decay cost function, as long as λ increases.

6 Concluding remarks

Based on this computational study, we can draw conclusions about the com-
parisons of different degrees of freedoms given to nonlinear projection models
of the form (1) and about the reliability of the model selection criteria rou-
tinely implemented by software developers. In particular, our study has shown
that BIC tends to select more parsimonious models than GCV and AIC when
k = W . The GCV criterion gives a larger value of the generalization error,
which is in agreement with the empirical error computed on new independent
patterns. The choice k = p gives a good approximation of the trace of the
projection matrix for projection models of the form (1); it leads to values
of selection criteria nearly identical to those obtained with the trace. Using
k = p instead of k = W leads to model choices which are never worst and
sometimes are better (for example, when BIC is used). Using a scree test plot
to select a single best model is increasingly important as long as the value of
λ increases. Further simulation studies on the e.d.f. are in progress and the
obtained results will be summarized in a future work.
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