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1 Introduction

Generalization of classification rules is a fundamental issue in automatic pattern
recognition. Overfitting a classifier on the training data is a well known problem
and it has been the focus of a lot of research in the recent decade. Fuzzy tech-
niques naturally provide soft representation of functions that could be adapted
to address some of the overfitting/generalization dilemma.
In the literature there are a lot of papers concerning fuzzy theory as a mean for
classifying and extracting information from a huge amount of data in a human-
like fashion. Many authors have studied how to obtain a membership function
of a fuzzy set by ad hoc heuristics, histograms, nearest-neighbor, etc. In [1] a
definition of fuzzy likelihood measure was proposed in the similarity estimation
context, while [2] puts the basis of adaptive fuzzy likelihood algorithms in the
context of system theory and fuzzy logic.
In this paper we propose a new approach to supervised classification based on a
novel proposal for a fuzzy likelihood function. This new function leads to a fuzzy
version of Bayes Rules for Maximum a Posteriori classification(MAP). The per-
formances of the proposed new method are close to the performances of classical
methods and the new technique provides several advantages. Classification can
be done using a confidence threshold set by the user; moreover an automatic
criterion to signal cases when classification cannot be safely done is intrinsecally
provided by our approach.
Starting from the histograms of the observed data, we provide a simple way
to obtain the membership function of a fuzzy set approximating the data dis-
tribution. This is obtained combining together the raw data histograms with
their successively smoothed versions. A posterior probability is, in turn, ob-
tained through a suitable fuzzy version of the Bayesian formula. It is important
to note that, since our likelihoods are fuzzy numbers, a careful translation in
terms of restricted fuzzy arithmetic has to be done for the classical Bayes rule in
order to obtain meaningful probabilities.
To classify a member in a set we adopt the overtaking relation between fuzzy
numbers introduced in [3]. The overtaking mimics an ordering relation between
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fuzzy numbers that depends on an assigned threshold value. The ordering im-
posed by the overtaking relation translates immediately into a dominance of the
posterior probability of a class over another for a given observed value. In this
way a crisp classification is eventually obtained. The proposed method has been
tested on some standard data sets and the results are reported below.
The authors have implemented the proposed ideas in Matlab and performed
classification over some standard benchmarks. In all cases the results have been
close to the theoretical optimal error rate.
The rest of this paper is organized as follows: Section 2 describes our fuzzyfica-
tion procedure to obtain a fuzzy version for likelyhood distribution from a given
training set; Section 3 introduces a fuzzy version of Bayes rule and explains how
to wisely use the arithmetic of fuzzy number to keep the results of computation
within reasonable bounds; Section 4 recalls the concept of overtaking, a possible
pseudo-ordering for fuzzy numbers; Section 5 reports of some of the experimental
test that have been performed on some benchmark data sets.
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Fig. 1. Histograms of Fisher’s irises data set for the four features.

2 Histogram fuzzification

In this section we show how to construct fuzzy likelihoods directly from the data
by using a membership construction algorithm. Our technique applies to one
dimensional labelled data set. The data are a set of pairs (x, l) where x is the
measure of an observed feature, i.e. it is a crisp number, and l is the indicator
of a class and ranges over a finite set L of labels.
Let [xmin, xmax] the range of the observed data. We choose to partition it into h
suitable number of equally spaced discrete bins (i.e. uniform quantization). The
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Fig. 2. Histograms of the three species of flowers for the first feature.
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Fig. 3. Iterated convolution of the histograms of figure 2



relative frequencies of the data in the bins form the standard crisp histogram
approximating the training data. In practice, if fi is the relative frequence of
data falling in the i-th bin, the histogram is a vector (f1, ..., fh). In figure 1 we
show the histograms of the whole population of the classical Fisher’s irises data
set for the four registered features of the flowers. In figure 2 we show the separate
histograms of the three species of flowers for the first feature. We are interested
into assigning a fuzzy membership function m to the bins i.e. to assign a fuzzy
number m(i) to each bin. This function is indeed our proposed fuzzy likelihood.
In this paper we choose a computational representation of a fuzzy number as a
finite sequence of nested intervals (a, b)[α]. According to fuzzy arithmetic jargon
each interval corresponds to successive α values

1 ≥ α1 ≥ · · · ≥ αl ≥ 0.

In our proposal α1 = 1 and the first α-cut of m(i) is the singleton {fi}i=1,...,h.
To obtain the successive α-cut we perform the convolution of (f1, ..., fh) with a
suitable smoothing unitary kernel K = ( 1

4 ,
1
2 ,

1
4 ).

Let (f1
0, ..., fh

0) = (f1, ..., fh). We define :

(f1
(i), ..., fh

(i)) = (f1
(i−1), ..., fh

(i−1)) ∗K

In figure 3 we show the results obtained with the iterated convolution of the orig-
inal histogram of figure 2 for iris data. The i-th α-cut for the j-th bin (aj

(i), bj
(i))

is obtained as follows:
aj

(i) = min(fj
(0), ..., fj

(i)), bj
(i) = max(fj

(0), ..., fj
(i)).

For sake of simplicity we write: (a, b)[αi] ≡ (aj
(i), bj

(i)).
In figure 4 we show the calculated membership function obtained with the

kernel: K = ( 1
4 ,

1
2 ,

1
4 ) over the first feature of the three species of the iris data

set.

3 Fuzzy Bayes rule

Following [4], in this section we illustrate the use of the restricted arithmetics
which is necessary to adopt when using Bayes rule in order to obtain values
within the range [0, 1] so that they can be soundly considered as posterior prob-
abilities.
Suppose we have a finite set Xn = {x1, . . . , xn} and let P the probability func-
tion of each xi such that:

P ({xi}) = pi, i = 1, . . . , n, 0 < pi < 1,

n∑
i=1

pi = 1

Then P is a discrete probability function on Xn.
If one or more pi are uncertain, we can substitute pi with p̄i, a fuzzy number
such that each α-cut of p̄i is contained within [0, 1]. With abuse of notation we
write:

P̄ ({xi}) = p̄i, 0 < p̄i < 1, i = 1, . . . , n



Let’s indicate the α-cut of the fuzzy number p̄i with p̄i[α]. We can choose pi ∈
p̄i[α] if and only if we satisfy the condition:

∑n
i=1 pi = 1 for every α ∈ [0, 1].

With this hypothesis, we can define now the fuzzy conditional probability. Let
Xk = {x1, . . . , xk} ⊆ Xn with 1 ≤ k < n. Then:

P̄ (Xk)[α] =

{
k∑
i=1

pi | S

}
where S means the statement:

S = pi ∈ p̄i[α], i = 1, . . . , n,

n∑
i=1

pi = 1

In [4] it is proven that P̄ (Xk)[α] is the α-cut of the fuzzy probability P̄ (Xk).
Let X1k = {x1, . . . , xk}, Xlm = {xl, . . . , xm}, 1 ≤ l ≤ k ≤ m ≤ n be two not
disjoint subsets of Xn. As in [4], we define the fuzzy conditional probability of
X1k given Xlm as

P̄ (X1k \Xlm) =

{∑k
i=l pi∑m
j=l pj

| S

}
where S is the same above statement.
To better illustrate the ideas reported above, let’s turn to the iris data set. Let
P̄ (Cj \ Sq) be the fuzzy likelihood of the species Sq, q = 1, 2, 3 with the charac-
teristic Cj , j = 1, . . . , h and let P̄ (Sq \Cj) be the fuzzy posteriori probability of
the species Sq with the characteristic Cj . We apply the Bayes rule, using the
restricted arithmetics, in order to obtain values for the probability within the
range [0, 1] for the posterior probability:

P̄ (Sq \ Cj) =
P̄ (Cj \ Sq)∑3
k=1 P̄ (Cj \ Sk)

(1)

To apply restricted arithmetics it is useful to investigate the functional behaviour
of the terms in (1).
We put, for simplicity:

pqj = P̄ (Cj \ Sq), q = 1, 2, 3 j = 1, . . . , h

Let us study the behaviour of the functions:

fq(p1j , p2j , p3j) =
pqj

p1j + p2j + p3j
, q = 1, 2, 3 j = 1, . . . , h.

For sake of simplicity let fix q = 1.
Observe that:

∂f1
∂p1j

> 0,
∂f1
∂p2j

< 0,
∂f1
∂p3j

< 0.

We then obtain:

min f1 = f1(min p1j ,max p2j ,max p3j)



maxf1 = f1(maxp1j ,min p2j ,min p3j)

then: P̄ (S1 \ Cj)[α] = [min f1,max f1].
The same derivation can be carried on for q = 2, 3.

4 Overtaking

There are many ways to compare fuzzy numbers [5]. In [3], an overtaking oper-
ator is introduced first on intervals and then it is generalized to fuzzy numbers.
For sake of self-containment the construction introduced in [3] is here reported.
First let us define a function σ(A,B) for pairs of intervals A and B. Let us
first assume that neither A or B are reduced to a crisp number. Observe that if
Al, Au, Bl, Bu are, respectively, the lower and upper bounds of intervals A and
B, only the cases reported in the following table are possible.

Au ≤ Bu Au ≤ Bl Al ≤ Bu Al ≤ Bl σ(A,B)

T T T T 0

T F T T Au−Bl

w(A)

T F T F 1

F F T T Bu−Bl

w(A)

F F T F Bu−Al

w(A)

F F F F 1
Table 1. σ values for different positions of intervals A and B

where w(A) is the width of the interval A.
Now let us consider some special cases to be treated separately. They are:
(i) Al = Au = a, i.e. interval A is degenerate in a single point a, but Bl < Bu;
(ii) Al < Au but Bl = Bu = b, i.e. interval B is degenerate in a single point b;
(iii) both A and B are degenerate intervals.
In case (i)

σ(A,B) =

{
0 if a ≤ Bl
1 if a > Bl

(2)

In case (ii)

σ(A,B) =

{
1 if b ≤ Au
0 if b > Au

(3)

In case (iii)

σ(A,B) =

0 if a < b
1 if a = b
1 if a > b

(4)

The δ-overtaking operator is defined as follows. Given two intervals A, B and a
real number δ ∈ [0, 1], A overtakes B if σ(A,B) ≥ δ or:

A ≥δ B ⇐⇒ σ(A,B) ≥ δ



The overtaking depends then on the choosen δ value.
The extension of the δ-overtaking relation to pairs of fuzzy numbers, once these
are defined using α-cuts, is as follows. Let us assume that fuzzy numbers A and
B are defined as two finite and equal sized collections of α-cuts

A = {A[αi]}, B = {B[αi]}

0 ≤ αk ≤ αk−1 ≤ · · · ≤ α1 ≤ 1.

The degree of overtaking of A and B is

overtaking(A,B) =

k∑
i=1

wi · σ(A[αi], B[αi])

where w1, w2, . . . wk ∈ [0, 1] and
∑k
i=1 wi = 1.

We say that A δ-overtakes B if

overtaking(A,B) > δ.

5 Experiments

To verify the performance of the proposed classification technique we made sev-
eral experiments on public data sets commonly used by the Pattern Recognition
community as benchmarks. In this section we report the experiment protocol
and the results obtained, drawing some conclusive remarks about the proposed
technique.
The data sets used in the experiments are:

1. Fisher’s irises data set (150 records, 4 features, 3 classes);
2. Diabetes Pima Indians data set (768 records, 8 features, 2 classes);
3. Italian wines quality data set (178 records, 13 features, 3 classes).

All three data sets may be retrieved from the public data repository at the URL
[6].
Observe that the data sets taken as benchmarks are intrinsically multidimen-
sional: it is well known that, achieving good classification results for them re-
quires to jointly consider all of their features. On the other hand at this stage of
our investigation the proposed fuzzy Bayesian classification algorithm has been
developed only to process single featured data. Research to generalize it to the
multi-featured case is ongoing.
Only one feature at the time has been hence considered, performing 25 exper-
iments in total. The results have not be evaluated in absolute terms but in
comparison between the performance of classical Bayes MAP classifier and the
proposed fuzzy generalization. We investigated mainly the discriminative power
of the proposed algorithm.



The experimental scheme that has been carried out is as follows. The experi-
ments are focused to estimate the training error that can be achieved with the
fuzzy Bayes rule in comparison with the crisp one. In particular, we checked if
the percentage of hits, i.e. correctly classified records of the training set obtained
with fuzzy method, is greater than the percentage obtained with the crisp case.
Similarly we are interested in checking if the percentage of misses, i.e. uncor-
rectly classified records, decreases in comparison with the percentage obtained
with the crisp case.
It turns out that the fuzzy approach reduces the misses but at the price of la-
belling some records as unclassified. This is indeed a point of our approach: the
proposed algorithm automatically weights the evidence leading to classification.
When evidence is not sufficiently strong, instead of risking a wrong labelling,
it declares the record as unclassified. In real applications this problematic da-
tum could be hence passed to a more sophisticated and typically more costly
classifier. A summary of this comparison is presented in table 2.

Hits rate Misses rate Unclassified rate δ = 0.25 δ = 0.50 δ = 0.75

less more many 0.00 0.00 0.00

less more few 0.04 0.08 0.07

less less many 0.13 0.03 0.21

less less few 0.29 0.17 0.29

more more many 0.00 0.00 0.00

more more few 0.00 0.00 0.00

more less many 0.00 0.00 0.04

more less few 0.54 0.72 0.39
Table 2. Test percentage of hits, miss and unclassified for feature 1, training error

Table 2 shows that the best performances are obtained choosing δ = 0.5 for
the overtaking relation, although good results are evident with a lower δ value.
About a three fourth of our classification experiments resulted into an increased
hits rate, a decreased misses rate and a moderate number of unclassified records
(see last line of table 2). In about another fourth of experiments the misses rate
is reduced, but the somehow prudential policy of our algorithm keeps in the low
the percentage of hits (see the fourth line of table 2).

6 Conclusions

This paper has introduced a possible generalization into a fuzzy framework of
the classical MAP classifier. The new algorithm is based on histogram smoothing
and on fuzzy version of Bayes rule. Experimental results have shown that the
algorithm could be useful in practical pattern recognition providing both a good
classifier and an automatic sieve for ambiguous data to be treated with more
complex techniques.



Although only one feature case has been reported here, research is ongoing to
apply the same ideas to the multidimensional case.
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