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Abstract. By introducing a quantum entropy functional of the reduced density matrix, we
construct a rigorous scheme to develop quantum hydrodynamic models. The principle of
quantum maximum entropy permits to solve the closure problem for a quantum hydrodynamic
set of balance equations corresponding to an arbitrary number of moments in the framework of
extended thermodynamics. Quantum contributions are expressed in powers of ℎ̄2.

1. Introduction
Hydrodynamical (HD) models are essential for a physical-mathematical description of the space-
time evolution of any kind of fluids. For a rigorous derivation of an HD model the main difficulty
is identified in the closure problem associated with the constraint that to solve a finite set
of moment equations it is necessary the knowledge of higher order moments [1]. In classical
mechanics, the introduction of a maximum entropy principle (MEP) has proven to be very
fruitful in solving the closure problem to any degree of approximation [2]. In the quantum MEP
(QMEP), the main issue is to define a proper quantum entropy for the explicit incorporation
of statistics into problems involving a system of identical particles. The aim of this work is to
address this issue and construct a complete set of quantum balance equations (QHD) which are
rigorously closed within a global QMEP. Four main results are pointed out in the present paper.

2. The generalized Wigner equation, the QHD models and the QMEP approach
We consider a fixed number ! of identical particles introducing the general Hamiltonian

" =
∫
#3$Ψ†(r)

[
− ℎ̄2

2"∇2 + % (r)
]

Ψ(r) +
∑#

$=2 1/'!
∫
#3$1 ⋅ ⋅ ⋅

∫
#3$$Ψ†(r1) ⋅ ⋅ ⋅Ψ†(rk) % (r1, . . . , rk)

Ψ(rk) ⋅ ⋅ ⋅Ψ(r1) in the Fock space, with many-body interactions and, the statistical density matrix
*, being +$(*) = 1 and Ψ the particle field operator [3]. Analogously, in the coordinate
space representation we can define the reduced density matrix [4] of single particle, ⟨r∣,̂∣r′⟩ =
⟨Ψ†(r′)Ψ(r)⟩ = +$(*Ψ†(r′)Ψ(r)) that in an arbitrary representation will take the form ⟨-∣,̂∣-′⟩ =
⟨.†%′.%⟩ = +$(* .†%′.%) being -, - ′ single particle states, .! , .†!′ the annihilation and creation
operators for these states, ⟨⋅ ⋅ ⋅⟩ the statistical mean value with +$(,̂) = !. Thus, we can define
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[4] the reduced Wigner function

ℱ# = (2/ℎ̄)−3

∫
#312−

!
ℎ̄ & ⋅p⟨Ψ†(r− 1/2)Ψ(r+ 1/2)⟩ (1)

Accordingly, we look for a function ℳ̃(r,p) in phase space that corresponds unambiguously to
a single particle operator ℳ̂(r̂, p̂), introducing the Weyl-Wigner transform )(ℳ̂) = ℳ̃ and the
inverse Weyl-Wigner transform )−1(ℳ̃) = ⟨r∣ℳ̂∣r′⟩. Following an usual script [4, 5], we obtain
the equation of motion for the reduced Wigner function

3ℎ̄
∂

∂5
ℱ#(r,p) =

∫
67

[
ℋ̃ (r′ + 1/2, p′ + 8/2)− ℋ̃ (r′ − 1/2, p′ − 8/2)

]
ℱ#(r′,p′) (2)

where 67 = #3$′#39′#31#38 2
!
ℎ̄ [& ⋅(p′−p)+'⋅(r−r′)] and ℋ̃ the phase function of the single particle

operator ℋ̂ = ⟨ℋ⟩, being ℋ = −ℎ̄2/2:∇2 + % (r) +
∑#−1

$=1 (1/'!)
∫
#3$1 ⋅ ⋅ ⋅

∫
#3$$ Ψ†(r1) ⋅ ⋅ ⋅Ψ†(rk)

% (r, r1, . . . , rk)Ψ(rk) ⋅ ⋅ ⋅Ψ(r1). Then, by expanding the integrand of (2) around 1 = 0 and using
the Fourier integral theorem, we obtain the formal full expansion, to all orders in ℎ̄, of the
equation of motion for the reduced Wigner function in the generalized Hartree approximation
[6]

∂ℱ#
∂5

+
9$
:

∂ℱ#
∂;$

=
∞∑

(=0

(3 ℎ̄/2)2(

(2< + 1)!

[
∂2(+1%)**

∂;$1 ⋅ ⋅ ⋅ ∂;$2#+1

] [
∂2(+1ℱ#

∂9$1 ⋅ ⋅ ⋅ ∂9$2#+1

]
(3)

where Einstein convention is used on the saturated indices, and the effects of interactions are
entirely contained in the effective potential %"## (r). We remark that, if we do not describe in
explicit way the many body interactions, then the expansion (3) will take only a formal value. As
relevant application of this approach we consider a Bose gas with many-body contact interactions
[7] and set % (r1, r2, . . . , rk) = =$−1

∏$−1
+=1 >(ri − ri+1) for ∀ ' ≥ 2. In this case we have

%)** (r) = % (r) +
#−1∑

$=1

=$
'!

?($)(r) [@(r)]$ with ?($)(r) =
⟨[Ψ†(r)]$[Ψ(r)]$⟩

[@(r)]$
(4)

where ?($)(r) is the k-order correlation function [8]. We stress that, by considering explicitly
the relation (4), then the kinetic equation (3) loses its formal value and, consequently, all non-
linear phenomena imputable to weak interactions between bosons can be expressed in terms of
increasing powers of density. The advantage of this approach will be evident in the corresponding
QHD system. In this sense, a theory based on Eq. (3) supplemented by Eq. (4) is a first
major result of the work, because all closure relations imputable to the contact interactions,
are explicitly determined as known polynomial functions of the macroscopic field variable @(r)
[9]. We remark that these results can be generalized by including explicitly the spin degrees
of freedom. Equations (2),(3) can be supplemented by others interaction terms to describe a
variety of physical systems, including Fermi liquids [5], non-ideal gases and plasma [10].

Below we develop the extended three-dimensional QHD model associated with (3). By
considering the operator ℳ̂(r̂, p̂) and the corresponding phase function ℳ̃(r,p) we define the
macroscopic local moment A(r, 5) =

∫
#39 ℳ̃(r,p) ℱ#(r,p, 5) of ℳ̂. As in classic extended

thermodynamics [1], by introducing the group velocity B+ = 9+/:, we define the mean velocity
C+ = @−1

∫
#39 B$ ℱ# , the peculiar velocity B̃+ = B+ − C+, and the quantity D̃ = :B̃2/2. Thus,

we consider the set of traceless kinetic fields [11] ℳ̃, = {D̃-, D̃-B̃+1 , . . . , D̃-B̃⟨+1 B̃+2 ⋅ ⋅ ⋅ B̃+$⟩} and
the corresponding set of central moments A,(r, 5) = {A(-), A(-)∣+1 , . . . , A(-)∣⟨+1⋅⋅⋅+$⟩} where, by
construction, it is A(0)∣+1 = 0, and A(-)∣⟨+1+2⋅⋅⋅+$⟩ =

∫
#39 D̃- B̃⟨+1 B̃+2 ⋅ ⋅ ⋅ B̃+$⟩ ℱ# with E = 0, 1, . . ./

and $ = 1, 2, . . .M. In particular, by using a finite but arbitrary number of scalar and vectorial
kinetic fields ℳ̃, = {D̃-, D̃-B̃+} we obtain in correspondence the set of scalar and vectorial central
moments A, = {A(-),A(-)∣+} with E = 0, ⋅ ⋅ ⋅ / . Accordingly, for / = 0, as set of macroscopic
variables we get the numerical density @ = A(0) and the velocity C$. For / = 1 we get in
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addition A(1) and A(1)∣$, which admit a direct physical interpretation being A(1) = 3/2F
and A(1)∣$ = G$ respectively, the internal energy density (with F the pressure) and the heat
flux density. By contrast, for / > 1, as macroscopic variables, we consider also some scalar
and vectorial moments of higher order. Multiplying (3) by ℳ̃%, integrating over p we exactly
determine a theory that is consistent up to terms of order ℎ̄2. Thus, the moments {C$,A%} must
satisfy the following extended QHD2 system

@̇+ @
∂C$
∂;$

= 0 , Ċ+ +
1

@

∂A(0)∣+$

∂;$
+

1

:

∂%)**

∂;+
= 0, (5)

Ȧ(-) +A(-)
∂C$
∂;$

+
∂A(-)∣$

∂;$
+ E:A(-−1)∣+$

∂C+
∂;$

− E
:

@
A(-−1)∣+

∂A(0)∣+$

∂;$
=

ℎ̄2

24
E(E− 1)

{
(E− 2)

∂3%)**

∂;⟨+∂;.∂;$⟩
A(-−3)∣⟨+.$⟩ +

3

5

(1 + 2E)

:

∂3%)**

∂;/∂;/∂;$
A(-−2)∣$

}
, (6)

Ȧ(-)∣+ +A(-)∣+
∂C$
∂;$

+
∂A(-)∣+$

∂;$
+ E:A(-−1)∣+.$

∂C.
∂;$

+A(-)∣$
∂C+
∂;$

−
A(-)

@

∂A(0)∣+$

∂;$
−

E:
A(-−1)∣+.

@

∂A(0)∣.$

∂;$
=

ℎ̄2

24
E

{
(E− 1)(E− 2)

∂3%)**

∂;/∂;.∂;$
A(-−3)∣⟨/.$+⟩+

3(E− 1)

:

(3 + 2E)

7

(
∂3%)**

∂;/∂;/∂;$
A(-−2)∣⟨$+⟩+

∂3%)**

∂;⟨$∂;/⟩∂;+
A(-−2)∣⟨$/⟩

)
+

(4E2 + 8E+ 3)

5:2

∂3%)**

∂;/∂;/∂;+
A(-−1)

}
with E = 1, ⋅ ⋅ ⋅ / . (7)

The set (5) - (7) is a second major result of the work: in particular, for ℎ̄ → 0,
it recovers the classic form of extended thermodynamics [1]. The set contains unknown
constitutive functions that are represented by the central moments of higher order ", =
{A0+1, A(()∣⟨+.⟩, A(/)∣⟨+.$⟩, A(-)∣⟨+.1$⟩} with < = 0, ⋅ ⋅ ⋅ / ; $ = 0, ⋅ ⋅ ⋅/ − 1; and E = 0, ⋅ ⋅ ⋅ / − 3.

In general, the closure problem of a set of balance equations is tackled using the QMEP
formalism. Accordingly, to take into account ab initio the Bose and Fermi statistics, we follow
the Landau strategy [12]. Thus, for a non-interacting system in non-equilibrium conditions, the
quantum entropy can be determined in terms of the reduced density matrix ,̂ [13]. Then, by
generalizing existing definitions [14], as quantum entropy we take the global quantity

I(,̂) = −'2+$(Φ̂(,̂)) with Φ̂(,̂) = ,̂

{
ln

(
,̂

J

)
± J ,̂−1

(
K̂ ∓ ,̂

J

)
ln

(
K̂ ∓ ,̂

J

)}
(8)

where '& is the Boltzmann constant, K̂ is the identity operator, J = (2Ẽ + 1) is the spin
degeneration and, the ± signs refer to fermions and bosons, respectively. By using the QMEP,
we search the extremal value of entropy subject to the constraint that the information on the
physical system is described by the A%(r, 5). To this purpose, we consider the new global
functional [15]

Ĩ = I −
∫

#3$

{
N∑

,=1

L̃,

[∫
#39ℳ̃, ℱ# −A,

]}
(9)

being L̃,(r, 5) the local Lagrange multipliers to be determined. One can show that >Ĩ = 0 implies

,̂ = J

{
exp

[
)−1

(
N∑

,=1

L,(r, 5)ℳ̃,

)]
± K̂

}−1

(10)

with L% = L̃%/'&. The (10) is a third major result of the work. We remark that, by using the
(8), Bose or Fermi statistics are implicitly taken into account and, from relation (10), we obtain

ℱ# = (2/ℎ̄)−3 )
(
,̂[L,(r, 5),ℳ̃,]

)
. (11)
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From the functional form (10)-(11) of the reduced Wigner function, we use the (3) to obtain a
set of equations for the constraints. This set completely represents the closed QHD2 model (5)-
(7) in which all the constitutive functions are determined starting from their kinetic expressions.
Thus, for a given number of moments A%, we can consider a consistent expansion around ℎ̄
of the Wigner function. In this way we separate classical from quantum dynamics, and obtain
order by order corrections terms. In particular, by using the Moyal formalism, one can prove [16]
that the Wigner function, and hence the central moments, can be expanded in even power of ℎ̄
being ℱ# =

∑∞
$=0 ℎ̄2$ ℱ (2$)

# and A, =
∑∞

$=0 ℎ̄2$ A (2$)
, . With this approach, the dynamics of the

system is described by resolving, order by order, a closed QHD set of balance equations for the
moments {A%(r, 5)}. To this end, the Lagrange multipliers L% are determined by inverting, order

by order, the constraints A, = (2/ℎ̄)−3
∫
#39 ℳ̃, )

(
,̂[L2(r, 5),ℳ̃2 ]

)
and the inversion problem

can be solved only by assuming that also the Lagrange multipliers admit for an expansion in
even powers of ℎ̄, i.e. L, = L(0)

, +
∑∞

$=1 ℎ̄2$ L(2$)
, . With these assumptions, and using (10) and

(11), we succeed in determining the following expression for ℱ$

ℱ# =
J̃

2Π ± 1

{
1 +

∞∑

/=1

ℎ̄2/F±
2/

}
, (12)

where J̃ = J/(2/ℎ̄)3, Π =
∑

L% ℳ̃% and the terms F±
2' are expressed by recursive formulas.

The (12) is a fourth major result of the work. By considering terms up to first order
in the quantum correction, the Lagrange multipliers are obtained as solutions of constraints
A, +3(ℎ̄4) =

∫
#39 ℳ̃, ℱ# . In this case, A% must satisfy the QHD2 system (5)-(7). From the

knowledge of the Lagrange multipliers, both the Wigner function and the constitutive functions
"% can be determined explicitly. We remark that: (i) Using the general definition (8) we
incorporate the indistinguishability principle of a system of identical particles, by developing
a nonlocal theory that contains implicitly the Fermi and Bose statistics, a result which was
left open since the Wigner seminal papers [16]. (ii) When ℎ̄ → 0 we recover the expressions
L(0)
, = L(0)

, (A (0)
2 ) and ℱ (0)

# obtained in the framework of classic MEP approach [1] for a Fermions
or Bosons system.
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