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In this paper we study the problem of learning Sat-k-DNF

formulas from membership queries. We show that Sat-k-
DNF are PAC’ learnable with membership queries by proving
that k-ambiguous automata are PAC learnable with mem-
bership queries and by establishing a PAC reduction that
preserves membership queries between these two classes of
concepts. We also give a positive answer in the direction of

learning two way finite automata. We show that k-reversal
bounded two-way automata (i.e. two-way automata that

change head direction at most k times) are PAC learrtable
with membership queries. As a corollary of Sat-1-DNF learn-
ability y one easily derives that decision trees are PAC learn-

able with membership queries. All these resuks are valid for
every distribution of probability.

1 Introduction

Several techniques have been used in literature for PAC
learning (or exactly learning) decision trees. Kushilevitz and
Mansour [10] devised a technique for learning decision trees

under the uniform distribution via the Fourier Spectrum.

Schapire and Sellie gave in [14] a lattice based algorithm for

learning mukivariate polynomials under an arbitrary distri-
bution. By this result, decision trees became PAC learnable

in terms of multivariate polynomials. Bshout y and Ma.n-
sour [5] developed a new approach: learning decision trees

and multivariat e polynomials via multivariat e interpolation.
This algebraic technique yields learning algorithms for de-
cision trees and multivariate polynomials over fields under
any constant bounded product distribution.

The problem, in the distribution-free model, was solved by
Bshout y in [4], where the following was proved:

1. any boolean function is learnable with membership

queries in time polynomial in its minimal DNF size,
its minimal CNF size and the number of variables n,
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2. decision trees are learnable with membership queries.

In this DaDer. we five a Dositive anewer to the oDen
..!” .

problem of learning Sat-k-DNF with membemhip que~es,

i.e. DNF formulas where, for every assignment, at most
k terms are satisfied. The learnability of decision trees
with membership queries is obtained as a corollary. The
results are obtained with techniques derived from previ-

ous work of Bergadano and Varricchio [2] on learning mul-
tiplicity automata. In this paper, we generalize the re-

sults of [2] on learning of unamblguoua automata, proving
that k-ambiguous automata are PAC-learnable from mem-

bership queries. Related results for two-way automata are
also given. We then show that learning Sat-k-DNF is eas-

ily PAC-reducible to learning k-ambiguous automata. Our
results are distribution-free. Under the uniform distribu-
tion, the whole class of DNF formulae was proved to be
PAC-learnable [9]. Sat-k-DNF formulae were shown to be
PAC-leamable for any constant bounded product distribu-
tion [5].

2 Preliminaries

The problem of learning automata from queries and exam-
ples has been extensively studied in the past. Bergadano and

Varricchio [2] proved that the behavior of an unknown au-

tomaton with multiplicity y in a field K (K-automaton) is ex-

actly identifiable when multiplicity y and equivalence queries
are allowed. Therefore, K-automat a are PAC-learnable from
multiplicity y queries under any distribution. A corollary of
this result is that regular languages are PAC learnable us-
ing membership queries with respect to the representation of
unambiguous non-deterministic automata. They introduce

the notion of multiplicity query. In the case of a non deter-

ministic automaton a multiplicity y query returns the number

of accepting paths for a given string. In the case of tm-

ambiguous non deterministic automat a, mr.dtiplicit y queries

return either O or 1, and then reduce to membership queries.
The general case is when the automaton is a multipl:cit y

automaton. Automata with multiplicity (also called mul-
tiplicit y automata) are the most important generalization
of the automata theory. Let A4 be a non deterministic fi-
nite automaton. We can consider the so called behavior
of M which is the map that associates to each string the
number of its ditTerent accepting paths. More generally we

can assign a number (multiplicity) to each initial state, to
each final state and to each edge of the automaton. In this
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cent ext one can construct a very general theory in which

classical and probabilistic automata are considered as par-

ticular cases. Now we recall some definitions and notations

about the multiplicity automata theory. More details are in

[3, 7, 13].
Let K be a field and A* be the free monoid over the finite

alphabet A, we consider the set K((A)) of all the applica-
tions

S: A*+K.

An element S of K{(A)) is called a K-subset of A* or also a
K-set. For any S c K((A)) and u c A* we will denote S(u)

as (S, u). Let Knx” be the set of all square n x n matrices
with entries in K. Suppose that K“ x n is equipped with the

row by column product. A map

p : A* + Z<nxn

is called a morphism if

p(e) = id

(where Id is the identity matrix), and for any w = al . . . an,
a, E A,

p(w) = p(al).. .p(an).

A K-set S is called recognizable (or also representable)

if there exists a positive integer n, and A, p G K“, and a
morphism p : A* + K“x” such that, for any w c A*

(s,w) = Ap(w)y,

where J and p are to be considered a row-vector and a
column-vector respectively. The triplet (A, p, y) is called a
linear representation of S of dimension n. The linear rep-
resentation is also called a K-automaton for S. As a matter
of fact a K-automaton is a 5-tuple

M = (Q, A, E, 1, F),

where A is a finite alphabet, Q is a finite set of states,

E : Q x A x Q + K is a map that associates to each edge a
multiplicity, Z, F : Q + K are maps that associate to each
state the multiplicity as initial and final state respectively.

To such an automaton one can associate a linear represen-
tation. In fact, let Q = {1,... ,n} and let A, y c Kn be the
characteristic vectors of 1 and F, respectively. Let ~ the

morphism

p : A* + K“x”,

defined by P(u),, = E(i, a, j). The behavior of M is the
recognizable K-set SM, defined by

(SM,w) = Ap(w)-(.

Any non-deterministic finite automaton M can be repre-
sented as a K-automaton, since initial states, final states
and edges of the automaton can be represented by their
characteristic functions. In this case one can easily prove

that for any w c A*, (SM, w) is the number of different
successful paths on the input w.

If M is an unambiguous non-deterministic automaton (
i.e. any word has at most one successfid path), then SIW is

the characteristic function of L(M), the language accepted

by M.

3 PAC reducibility

Pitt and Warmuth [12] introduced a notion of PAC reducibil-

ity: let C and C“ be two concept classes, if C is PAC re-

ducible to C’ and if C’ is PAC learnable then also C is I?AC

learnable. Define Xn as the instances of length at most n,

and CL as the concepts having positive examples in X.. In

general , we say that the concept class C over the domain
X reduces to the concept class C’ over X’ if the following

two conditions are met:

1.

2.

(Efficient Instance Transformation) There should exist

a map

G: X-+X’

and a polynomial P(. ) such that for any n G(X. ) ~

x~(n) and G is polynomial time computable.

(Existence of Image Concept) There must exist a poly--,
nomial q(.) such that for every concept c ~ Cn there
should exist a concept c’ E C;(n) such that size(c’) S

q(size(c)), and, for all z c Xn, c(~) = 1 if and only if

c’(G(z)) = 1.

However, this scheme is not generalizable to the case where

C’ is PAC learnable with membership queries. The problem

is that we use the same learning algorithm both for C and

for C’. The reduction map then adapts to C the work done
for C’. In this sense the presence of membership queries is a

heavy impediment, because every time we need a query for
C we first need an answer to the query

g c c’,

and then we must find an x & C such that

G(z) = y,

where G is the reduction map. Such an z could not exists
or it could not be computable in polynomial time. Then,

if we want to extend the notion of PAC reducibility to the
general case with membership queries, we must suppose the

reduction map G to be subjective and always equipped with
a polynomial time computable counterimage.

4 k-ambiguous automata

We recall that k-ambiguous automata (k is a positive inte-

ger) are a generalization of unambiguous automata, in the

sense that, for each word w, there are at most k different
accepting paths. We prove that the class of k ambiguous

automata is PAC learnable with membership queries.

First we recall an important operation over K-sets.

Definition 1 Let S, T c K((A)) (K is a field).

The Hadamard product of S and T is denoted by the K-set
S @T, defined by

(s@T, w) = (S,w) . (T, w).

It is well known that recognizable K-sets are closed under

Hadamard product [3]. We give a constructive proof of this
fact since we need an upper bound to the dimension c~f a

linear representation of the Hadamard product of two given
recognizable K-sets.

We prove that
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Lemma 1 The ctass of recognizable K-sets is closed under
the Hadamard product.

Proof. Let S and T be two recognizable K-sets, and Al, AZ

two K-automata associated to S and T, respectively.

Al = (Q’, A, E’, Z’, F’),

Az = (Q”, A, E“> I“, F“).

Let n and m be the number of states of Al and AQ respec-
tively. We consider the automaton

i14 = (Q, A, E, I, F’),

where

sQ=Q’x Q”

● E((q:, pt), a, (qj, a,p~)) = E’(9tja,93 )~’’(pllatp~)

● I(q,, pj) = I’(q, )I’’(pj)

● F(q~,p~) = F’(q, )F’’(pJ).

This automaton has mm states. Let (A, p, ~) be the linear
represent ation corresponding to AZ. Clearly the dimension
of (A, p, ~) is nm. Let (A’, ~’, ~’) and (A”, p“, y“) be the
linear representations corresponding to Al and AQ. Then
by construction one has

A(,,j) = A: A;, l~i~nandl~j~m.

We use (i, j) as an index for A, but A is still an unidimen-
sional vector. We use this notation only for convenience.
Similarly one has

7(1,3) =y~-f~, l~i~naradl~j~m

and, Va E A, the (rim) x (rim) matrix p is such that

P(a)(w), (h)k) = P ‘(~)t,h/4’’(C4)j,k 1< i,h < n 1< j,k ~ m.

By an easy computation one proves that

Ap(w)y = (A’p’(w)7’)(x’’p’’( w)7”) =

= (S, w) . (T, w) = (S @ T, w).

Then S o ‘T is a recognizable K-set and has a linear repre-
sentation of dimension nm. ❑

Let M be a k-ambiguous automaton and let S be the
behavior of M. We have that S c 2((A)) and

Vw ~ A* O<(s, w) <k.

Let L be the regular language accepted by M. It is clear
that

Vw E A* w(SL*l<(s, w) <k.

Also note that S is recognizable. Let (A, p, ~) be the linear
represent ation of S, corresponding to M, and n its dimen-
sion. We observe that

A,7E2°

‘da c A* M(a) ● Z“xn.

and

Let p be a prime number strictly greater than k. One can
consider the set 2P = 2/ SP and the canonical epimorphism

~ : Z + 2P, defied by ~(n) = [n]=,. Defm~ ~, p and ~ as

the projections under ~ of A, p and y. Let S be the Z7P-set

defined by
(s, w)= @J((s,w)).

We observe that S is recognizable, since a linear representa-
tion is given by (A, Z, ?). Note that Zn is a field with res~ect. . . . . ..
to the sum and the product. Moreover,

theorem, we have

Va E ZP, a # O, ap-l =

We can consider the 2P-set T defined by

(T, w)=(~, w)@... @(~, w)

p-1 t~mcs

From the little Fermat theorem we have

by Fermat’s ~ttle

1.

VW EA*.

T(w) =o~S(w)=O~S(uJ)=O

T(w) = 1e S(W) # O ~ S(w) ~ 1.

By Lemma 1, T is a recognizable ZP-set and haa a linear
represent ation of dimension d’– 1, if n is the dimension of the

linear representation of S. By the result of Bergadano and
Varricchio we know that a 2?p-set like T is PAC learnable
with multiplicity queries, in polynomial time with respect
to the dimension of its linear representation.

However, since T(w) is either O or 1 for every w E A*,
every multiplicity query simply reduces to a membership

query for L(M). In fact

T(w) = 1 ~ W 6 L(M)

T(w) = o e w @ L(M).

Then T is PAC learnable with membership queries for L(M).
We have established a characterization of L by T that allows

us to learn L in terms of T. Hence we proved the following:

Theorem 1 The class of k-ambiguous automata is PA C
iearnable with membership queries.

5 Two way finite automata

An interesting extension of classical automata is to allow the
tape head the ability to move left as well as right. Such a fi-
nite automaton is called a two way finite automaton (2DFA).
We prove that k-reversal-bounded 2DFA are PAC learnable

with membership queries We recall that a two-way automa-
ton is k-reversal-bounded if its tape head can change direc-

tion at most k times: this implies that the tape head cannot
visit each tape square more than k + 1 times

An useful picture of a computation of a 2DFA consists
of the input, the path of the tape head and the state in

which the automaton is each time the boundary between

two adjacent tape square is crossed. The list of states below
each boundary between two consecutive squares is called a

crossing sequence.
If the 2DFA accepts its input no crossing sequence can

have a repeated state with the head moving in the same
direction. Otherwise the 2DFA, being deterministic, could
not reach the right end of the tape. Similarly, if the input

is accepted no crossing sequence can have even length. A

128



crossing sequence is said to be valid if it has odd length

and no two odd nor two even numbered states are identical.

A 2DFA with n states can have valid crossing sequences of

length at most 2n. Two way finite automata are no more

powerful than classical tide automata. One can prove [8]
the following

Theorem 2 If L is accepted by a .2DFA then L 1s a regular

set.

The general strategy of the proof is to construct a NFA

equivalent to the 2DFA whose states are the valid crossing
sequences of the 2DFA. Intuitively the NFA puts together

parts of the computation of the 2DFA. This is done by guess-

ing successive crossing sequences.

Let us briefly examine the relationship existing between

adjacent crossing sequences. Suppose we are given an iso-

lated tape square holding the symbol a and let ql,... , qk and

pi, . . . ,PI the valid crossing sequences at the left and at the
right boundary of the square. This scheme could not cor-
respond to any concrete scenario, but we can test the local
compatibility of two sequences as follows. If the tape head
moves left from the square holding a in state q,, restart the
automaton on the square hoMing a in state q,+ 1. Similarly,

if the tape head moves right from the square containing a
in state p~, restart the automaton on the square holding a
in state pj + ~. In this way we can test the local consistency

of the two crossing sequences. More precisely let us de-

fine right matching and left matching for pairs of crossing
sequences as follows: we say that ql, . . . . qk right matches

PI, ..., pl on a if these sequences are consistent assuming we
initially reach a moving right in state ql. similarly ql, . . . . qk

left matches PI, . . . . pl on a if these sequences are consistent
assuming we initially reach a in state PI moving left. More
details about the construction of the NFA can be found in
[8].

Then by Theorem 2 we have that each 2DFA M is re-
ducible to a NFA A4’ whose states are the valid crossing se-

quences of M. It can be easily seen that the reduction map

is the identity function. Also note that AZ’ is unambigu-

ous. Otherwise we will have in M’ two different accepting
paths for a string w. Let ~ and # such paths. These paths

corresponds to different computations for w in M. This is
absurd, because A4 is deterministic.

Let Q be the set of states of A4 and let Q’ the set of states
of M’. It is clear that if IQ[ = n,

IQ’I< lQI’n.

Then the number of states of &f’ is exponential in n. Nev-

ertheless. for k-reversal-bounded 2DFA. this bound is too

large because we know that the tape head can visit every

tape square at most k + 1 times. Then the tape head can
cross every boundary bet ween adjacent squares at most k-t-1

times. Then we have that

IQ’IS IQlk+l,

and IQ’ I becomes polynomial in n. By the result of Bergadano

and Varricchio we know that an automaton like M’ is PAC
learnable with membership queries. Then we can conclude
that

Theorem 3 The class of k-reversal-bounded two way finite
automata is PAC learnable with membership queries,

o 0 0 0,1 “cl

Figore 1: NFA associated to the DNF ~zfiafil + ~zxsxq +
Z2ZIX–4 + X2X-1.

6 Sat-k-DNF

Sat-k-DNF are particular DNF where, for any assignment,

at most k terms are satisfied. In this paper we prove that
the class of Sat-k-DNF is PAC learnable with membership
queries. We show this by reducing the class of Sat-k-D’NF
to the class of k-ambiguous automata.

Let S= {xl,..., z~ } a set of variables, we can associate
to each term of a Sat-k-DNF, defined over S, a deterministic
automaton. We want that a string w c {O, 1}” is accepted
by the automaton if and only if the corresponding term is

satisfied by w.
For example consider the set S = {xl,..., x4} and the

DNF
x-zx-3x-l + x-zxsxA + Xzxlx-d + X22-1.

To this formula we can associate the automata in figure 1.

All the automata are deterministic, but they can be seen,
altogether, as a unique non deterministic automaton. Since,
for any string of assignments over S, at most k terms of
the formula can be satisfied, we have that this automaton is
also k-ambiguous. Then we have established a reduction be-
tween the class of Sat-k-DNF and the class of k-amb]gucms

automata. Note that the reduction map is the identity func-
tion.

Then, by the results of previous sections we can conclude
that

Theorem 4 The class of Sat-k-DNF is PA C learnable with
membership queries.

7 Decision trees

As a corollary of the result shown in the previous section we
can give another proof of the PAC learnability y of decision

trees. We reach this goal by showing a reduction between
the class of decision trees and the class of Sat- 1-DNF. One

can associate to every accepting path of the tree a term

constituted by all the literals met in each node with the

correct sign.
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Afi

x3 x-l

1
xl x4 x-4

100101

Figure 2: Example of decision tree

For example, to the tree in figure 2 we associate the DNF

x–zx-3x-l + x-zxsxa + xZxlx-4 + xZx–l .

Since every string w can determine at most one accepting

path in the tree, we have that the formula is Sat-1-DNF. We
have found a reduction between the class of decision trees
and the class of Sat-1-DNF, where the reduction map is the

identity function. We can conclude that

Theorem 5 The class of decision trees is PAC learnable
with membership queries.
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