
Progress In Electromagnetics Research, Vol. 130, 563–579, 2012

AN ADAPTIVE METHOD TO FOCUSING IN AN
UNKNOWN SCENARIO

L. Crocco1, *, L. Di Donato2, D. A. M. Iero2, and T. Isernia2

1CNR-IREA, National Research Council of Italy-Institute for
Electromagnetic Sensing of the Environment, via Diocleziano 328,
Naples 80124, Italy
2DIMET — University Mediterranea of Reggio Calabria, via Graziella,
loc. Feo di Vito, Reggio Calabria 89060, Italy

Abstract—The problem of field focusing onto a target location in an
unknown scenario is considered. In particular, we devise an adaptive
procedure in which first an image of the unknown region where the
target point is located is formed via the linear sampling method (LSM).
Then, the LSM result is used also to define the excitations coefficients
for the array elements needed to focus the field. This novel approach
to focusing is described and tested with numerical examples.

1. INTRODUCTION

The problem of focusing a time-harmonic wave in an unknown medium
is an open problem in wave physics [1, 2], and its solution is relevant
from both a theoretical and practical point of view. In fact, it is an
extension of the classic electromagnetic focusing problem in which one
wants to determine the features of a source capable of radiating a field
focused in a given target direction in free space. Moreover, the problem
has also a practical relevance, as it is of interest in those applications
in which it is necessary to concentrate the energy of a wave into a
given region, while taking into account the effects of the unknown (or
partially unknown) scenario. In particular, this is indeed the case in
several medical treatments, (such as hyperthermia and selective drug
delivery) where the “target” point is well known, whereas the scenario
is (at most) only approximately known [3–5].
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Typically, the wave to be focused is radiated by an array of probes,
and a proper arrangement of their excitations makes it possible to
produce the desired field. Hence, the problem can be formulated as a
synthesis problem aimed at determining the excitations coefficients of
the array elements.

The “standard” focusing problem in free space has been broadly
addressed in literature. In particular, an effective way to solve the
problem is to cast it as a convex programming (CP) problem [6],
as this allows to achieve an optimal solution without the need of
computationally intensive global optimization procedures. As long as
the scenario is known, CP approaches can be successfully applied also
to non-homogeneous scenarios [7, 8]. Conversely, they are not viable
when the scenario is unknown, as they require the exact knowledge of
the field in the target region due to each antenna.

Accordingly, the problem we are considering here is usually tackled
in an adaptive way, that is splitting the focusing task into two parts:
a sensing stage meant at gaining some information on the unknown
environment and the actual focusing of the field, which consists in
determining the excitation coefficients taking into account the acquired
knowledge. For instance, the method proposed by Haddadin and
Ebbini to focus acoustic waves [9] moves in this direction, as it aims
to tackle an inverse scattering problem [10] to achieve information on
the medium at hand by processing the field it backscatters during the
sensing stage. The estimated scenario is then used to cast a “standard”
focusing problem. However, inverse scattering problems are non-linear
and ill-posed, so that significant errors or uncertainties may result from
the sensing stage processing. In addition, inverse scattering procedures
are computational expensive, thus affecting the overall efficiency of
such an approach.

A more effective and widely adopted procedure is the time reversal
mirror introduced by Fink [11], which has been applied to a variety
of focusing problems involving acoustic or electromagnetic waves. In
particular, the method consists in exploiting the measured data (after
a phase conjugation) to supply the excitations that concentrate the
energy on the “strongest” scatterer. Iterating the measure-reverse
process allows to improve the energy localization. However, the
method does not allow to select the target point at will, unless the
scenario in known, which is obviously not the case at hand.

In this paper, we propose a novel adaptive focusing strategy based
on the linear sampling method (LSM) [12, 13].

The LSM is one of the most popular and effective approaches
to image the morphology of an object from a simple processing of
the field it scatters. The method requires the solution of a linear
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inverse problem to get an estimate of the target’s shape and does not
involve approximations. As such, it allows to tackle, within a linear
framework, the non-linearity arising from multiple interactions that
characterize the wave scattering phenomenon. On the other hand, a
recently proposed interpretation of the physics underlying LSM [14]
has suggested interesting relationships with the problem of focusing
the electromagnetic field in presence of an obstacle.

Hence, we herein propose an adaptive two-steps procedure in
which the sensing stage consists in imaging the region of interest
via LSM processing, while the focusing stage is a straightforward
exploitation of the LSM solution to determine the excitation
coefficients needed to focus the field in the target point. In the
following, this strategy, which can be exploited within the range of
applicability of the LSM, will be described and tested with respect
to canonical 2D scalar electromagnetic problems. A comparison with
a focusing procedure based on the incident field in the reference
background, i.e., neglecting the presence and the nature of the
anomalies, is also provided.

The paper is organized as follows. In Section 2, the LSM basics
are briefly revised. In Section 3, the proposed focusing procedure is
described. The method’s implementation and a numerical assessment
are then given in Section 4, followed by conclusions. Throughout the
paper the time harmonic factor exp{jωt} is assumed and omitted.

2. THE LINEAR SAMPLING METHOD: A REVIEW

In the following, the basics of the LSM are reviewed with respect to the
canonical 2-D scalar electromagnetic scattering problem. To this end,
let us suppose that an unknown (possibly not connected) scatterer,
whose cross section Σ is invariant along the z-axis, is hosted in a region
under test Ω and it is probed by means of transmitting and receiving
antennas polarized along the target’s axis of invariance, which lie on a
closed curve Γ†.

Let us denote as Ip(θ) the (known) excitations of the array
elements located on Γ in the direction θ and with Einc(r, θ) the
incident wave it radiates in Ω at a fixed frequency when no target is
present. Finally, Es(R, θ) denotes the corresponding scattered far-field
as measured on R ∈ Γ.

To estimate the shape Σ, the LSM requires to sample Ω into an
arbitrary grid of sampling points rp and solve, in each of them, the so

† Without loss of generality we assume that Γ is a circumference.
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called “far field integral equation” (FFIE):

F [x] =
∫

Γ
Es(R, θ)x(θ, rp)dθ = G(R, rp), (1)

wherein x is the unknown function, the right-hand side G expresses the
background Green’s function for the considered sampling point (that is
the field radiated on R ∈ Γ by an elementary source located in rp, when
the targets are not present) and F synthetically denotes the “far-field”
operator defined through the left hand side of the FFIE [12].

The solution of (1) for all the sampling points in Ω allows to
estimate the unknown shape. As a matter of fact, the L2-norm (i.e.,
the “energy”) of the unknown function x(θ, rp), i.e.,

Υ(rp) =

[∫

Γ
|x(θ, rp)|2dθ

]1/2

, (2)

depends on the sampling point as it becomes unbounded when rp /∈ Σ,
and keeps bounded elsewhere. As such, Υ plays the role of a support
indicator, as its plot over the region under test Ω directly provides an
image of the target’s shape [12, 13].

Due to the compactness of F , the problem cast through the FFIE
is ill-posed and has to be solved in regularized fashion. Accordingly,
for each sampling point the unknown function x is determined as:

x = xME : arg min
{‖F [x]−G(R, rp)‖2 + α‖x‖2

}
, (3)

wherein α is the weighting parameter of the adopted Tikhonov
regularization method. The explicit expression of such a minimum
energy solution xME, and therefore of the LSM indicator Υ, can
be actually achieved by evaluating the singular value decomposition
(SVD) of F and by computing the solution in each sampling
point. For further details on the theoretical background and on the
implementation, the reader is referred to [13] and [14, 15], respectively.

3. ADAPTIVE FOCUSING VIA LSM

The physical interpretation given in [14] suggests that the inverse
problem cast through the FFIE (1) can be regarded as an attempt to
focus in a neighborhood of the sampling point at hand the volumetric
current induced by the interaction between a suitable probing wave
and the target [14, 16].

To recall this concept, and to show its usefulness in the framework
we are considering, let us start observing that the left hand side of (1)
expresses a scattered field, say ELSM

s , as it results from the linear
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combination, according to x(θ, rp), of the scattered fields actually
measured when probing the unknown scenario with the incident waves
radiated by the array antennas, Einc. Owing to the linear relationship
which holds between incident fields and scattered ones, it follows that,
as long as Equation (3) is fulfilled, the expression:

ELSM
inc (r, rp) =

∫

Γ
x(θ, rp)Einc(r, θ)dθ, (4)

defines an incident wave that, interacting with the target, gives raise
to the scattered field ELSM

s on Γ.
Similarly, recalling that incident fields and antennas excitations

are linearly related, the source

ILSM
p (θ, rp) = x(θ, rp)Ip(θ), (5)

identifies the probes excitations distribution required to radiate the
field ELSM

inc by means of the array antennas at hand. Hence, the solution
of the FFIE provides a direct information on the array excitations
required to enforce on Γ the scattered field ELSM

s .
According to the LSM formulation, the scattered field arising from

the FFIE for a sampling point rp belonging to the target matches
in the L2 norm the field G(R, rp) radiated by an elementary source
embedded in the reference scenario and located in the target point
rp. Hence, as long as rp ∈ Σ, the FFIE’s solution in rp provides the
array excitations required to enforce the scattered field G(R, rp) on Γ.
It is worth to remark that, as the LSM solution is achieved through
a regularized inversion, such a coefficients distribution is a minimum
energy one, which therefore excludes super-directive sources [17] and
obeys to physical realizability constraints.

Let us now note that:

(i) the incident wave ELSM
inc , as well as the excitation distribution

ILSM
p , implicitly depend on the unknown scenario at hand

(through the LSM solution);
(ii) the scattered field G resulting from the achieved excitation

distribution ILSM
p is instead independent of the scenario, and only

depends on the position of the sampling point with respect to Γ;
(iii) such an “invariant” scattered field is actually radiated on Γ by the

volumetric current JLSM, which arises from the interaction among
the incident field ELSM

inc and the (unknown) scenario. Again due
to the linearity, this volumetric current is given by:

JLSM(r, rp) =
∫

Γ
x(θ, rp)Jind(r, θ)dθ, (6)
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wherein Jind(r, θ) denotes the current induced in the target when
the incident field Einc(r, θ) impinges on it.

From the above observations, it follows that when considering
the FFIE as applied to two different scenarios with respect to the
same target point, two different volumetric sources (say JA

LSM and
JB

LSM) will be induced to supply the same field‡. As well known, any
source (induced or impressed) can be split into a radiating term which
supports the field (in our case G) and a non-radiating (NR) component
that instead produces a field which identically vanishes outside of the
support [18]. Since in the case at hand the two sources JA

LSM and JB
LSM

radiate the same field G, it then follows that they have to differ only
for the NR component.

As far as the radiating component is concerned, the discussion and
the examples in [14] show that, since the field G(R, rp) is circularly
symmetric around the sampling point rp, it has to be radiated by an
induced current whose radiating term is circularly symmetric around
rp
§. In particular, unless peculiar symmetries occur in the scenario [14],

this induced current would correspond to an elementary source located
in the target point. More precisely, the “invariant” radiating part of
JLSM will be a smoothed version of the impulsive current that ideally
supports the expected field on Γ, i.e., the field G(R, rp). Since such a
current will be mostly concentrated in the neighborhood of the target
sampling point, it will exhibit the features we would expect when
aiming at focusing the wave energy in some target point located in the
region under test. As such, this induced current provides a solution
for our source synthesis problem.

However, for a given scenario, the actual induced current
distribution will also have a NR part which may in principle lead
to a completely different spatial distribution with respect to the
aforementioned focused one. Hence, it is necessary to gain a better
insight on the (scenario dependent) NR part of JLSM.

To this end, let us first recall that in synthesis problems the
minimization of the NR part of the synthesized source is an usual
aim to pursue, in order to achieve an optimal (or at least sub-optimal)
solution. In practice, this is done by enforcing a minimum energy
constraint on the problem’s solution, which is then cast as a regularized
inverse source problem [10, 19].

More formally, by denoting with A the linear and compact
radiation operator that relates the unknown source‖ to the field, the
‡ In the least square sense.
§ This is due to the relationship holding amongst the field and the source, which, being
linear, preserves distances and henceforth (circular) symmetry.
‖ Impressed or, as in our case, induced.
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problem to be solved in our case should be cast as

AJ = G, (7)

whose minimum energy solution is obtained through the minimization
of the cost functional:

‖AJ −G‖2 + µ‖J‖2, (8)

that provides a current distribution J which radiates a field that
matches (in the least square sense) the desired field G on Γ, while
also satisfying the minimum energy constraint expressed through the
second term in (8).

With respect to such a problem it is readily noticed that a
“solution” built as in (6) will certainly satisfy the first term of the
functional (8), thus providing a generalized solution of the problem cast
through Equation (7) [19]. In fact, JLSM has been indeed constructed
in such a way to radiate a field on Γ that matches in the least square
sense the field of a point-like source located in the target point.

In addition, among all solutions to (7) that are built as a linear
combination of the volumetric sources induced in the unknown target
by the incident fields, JLSM also has an interesting energetic property.

In fact, from the Schwartz inequality, it follows that:

‖JLSM(r, rp)‖2 =
∥∥∥∥
∫

Γ
x(θ, rp)Jind(r, θ)dθ

∥∥∥∥
2

≤ ‖Jind‖2‖x‖2, (9)

where
‖Jind‖2 =

∫

Ω

∫

Γ
|Jind(r, θ)|2dθdr (10)

is a constant which does not depend on the sampling point. Then,
as x(·, θ) is the minimum energy function fulfilling Equation (1), the
right hand side member is the minimum possible upper bound to the
energy of currents of kind (6) obeying (7). Therefore, looking for a
minimum energy x(·, θ) function also means to look for a minimum
energy induced current JLSM. More precisely, JLSM(r) is a minimax
solution, i.e., the solution which minimizes the maximum possible value
of the energy of the induced currents.

According to the above, we can conclude that the induced current
arising in the region under test when illuminated with the incident
field radiated by the LSM established source distribution ILSM

p , i.e.,
(5), will be dominated by its radiating part and hence will be focused
in the target point. As such, it provides an answer to the problem we
are tackling.
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4. METHOD’S IMPLEMENTATION AND NUMERICAL
EXAMPLES

By relying on the reasonings given in Section 3, we propose an adaptive
focusing procedure articulated into two steps.

(i) Sensing stage: LSM processing of the measured multiview-
multistatic scattered fields to characterize the whole domain under
test. This provides a map of the energy required to focus any point
located in the region under test, and accordingly a map of those
locations which belong to the target.

(ii) Focusing stage: selection of the LSM solution pertaining to target
point to define the array excitation coefficients. As previously
recalled these excitation coefficients are such that super-directivity
(i.e., physically unstable behavior) is avoided.

It is worth to note that because of the above interpretation in
terms of volumetric currents, the procedure only makes sense when
the target point belongs to Σ. Therefore observing the LSM indicator
map achieved in the sensing stage allows to appraise for which points
the focusing is actually viable or not, thus proceeding with the second
stage of the procedure.

The numerical analysis deals with examples wherein a square
region Ω with permittivity εb embeds the unknown target having
arbitrary geometrical and dielectric properties. The investigated region
is surrounded by a circular array of antennas adopted both to probe Ω
during the sensing stage and to simultaneously radiate the fields during
the focusing stage. The array operates at a fixed working frequency,
that is 2 GHz, and it is assumed as embedded into a host medium with
permittivity εb = 10. For all the examples, the radius of the circular
array of antennas is chosen equal to 4.2λb, λb being the wavelength
in the host medium. Moreover, in order to measure the scattered
field in a non-redundant way, as well as to provide non super-directive
arrays [20], the number of antennas of the array is set to N ≈ 2kba,
kb being the wavenumber in the host medium and a the radius of the
minimum circle enclosing the investigated scenario [20, 21].

We have considered the following test beds:

· Scenario 1 : a square object (εobj = 12, 0.5λb × 0.5λb), Fig. 1(a).
· Scenario 2 : three identical square objects (εobj = 25, 0.5λb ×

0.5λb), Fig. 1(b).
· Scenario 3 : the same geometry as Scenario 2, but for targets

having a larger permittivity (εobj = 35), Fig. 1(c).



Progress In Electromagnetics Research, Vol. 130, 2012 571

· Scenario 4 : a square object (εobj = 25, 0.5λb × 0.5λb), partially
surrounded by an high permittivity thin layer (thickness δ = 0.1λb,
εl = 50), Fig. 1(d).

· Scenario 5 : the domain Ω is partially filled by a medium having
randomly varying permittivity (±9%, εavg = 11) which embeds
three square objects (εobj = 28, 0.5λb × 0.5λb), Fig. 1(e).

· Scenario 6 : a square object (εobj = 20, 0.375λb × 0.375λb),
partially surrounded by a thin layer (thickness δ = 0.1λb, εl = 30),
enclosed within an high permittivity boundary (εbound = 70,
2.25λb × 2.25λb), Fig. 1(f).

For all the scenarios N = 34 (but for the last one where N = 24).
First, we have solved the FFIE and computed the LSM indicator

Υ in order to appraise where the focusing strategy driven by LSM
is actually viable or not (see Fig. 2). In fact, where the indicator Υ
assumes low values (with respect to its overall dynamic range), the
FFIE admits a solution and thus the method at hand is applicable.

As our original motivation was to compensate for the lack of
knowledge (or partial unknowledge) of the scenario, performances of
the proposed strategy are also compared with those one can achieve by
means of back-propagation technique [22]. In particular, as the initial
scenario is supposed to be free space, backpropagation corresponds
herein to an (unconstrained) focusing of the incident fields.

A direct comparison of the results achieved by the LSM approach
and those based on the focusing of the incident field is obtained by
observing the plot of the normalized amplitude of the total electric
fields over the scatterer support Σ, (see Figs. 3 and 4). From these
plots, one can observe the good performances of the proposed focusing
procedure with respect to focusing of the incident field, especially in
terms of spatial selectivity. As a matter of fact, the LSM allows to
obtain a well focused field while keeping under control the amplitude
of the undesired side lobes, which may arise within the scatterer’s
support. This is in agreement with the underlying physical meaning.

To get a quantitative comparison between the two methods at
hand, we introduce the following parameters:
· the target point deviation (TPD) — the distance between the

target point (marked with a cross in the figures) and the actual
location of the field’s maximum amplitude;

· the main lobe size (MLS) — the size of the field main lobe as
calculated at one half of the maximum amplitude;

· the main lobe eccentricity (MLE) — main lobe’s circularly
symmetry expressed as e =

√
1− a2/b2, where a and b represent

the main lobe axes;
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Figure 1. The adopted test beds: (a) Scenario 1; (b) Scenario 2;
(c) Scenario 3; (d) Scenario 4; (e) Scenario 5; (f) Scenario 6.
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Figure 2. LSM imaging of the considered scenarios: Logarithmic plot
of the indicator Υ. Contour plots show actual borders of the targets,
while the cross marks the selected focusing target point.



574 Crocco et al.

 1 0 1

 1.5

 1

 0.5

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1

(a)

 1 0 1

 1.5

 1

 0.5

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1

(b)

 1 0 1

 1.5

 1

 0.5

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1

(c)

 1 0 1

 1.5

 1

 0.5

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1

(d)

 1 0 1

 1.5

 1

 0.5

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1

(e)

 1 0 1

 1.5

 1

 0.5

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1

(f)

x/

y
/

λ

λ

x/λ

y
/ λ

y
/ λ

_

_

_

x/λ x/λ

x/λ x/λ

y
/ λ

y
/ λ

y
/ λ

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_ _

_ _

_ _

Figure 3. Normalized total field amplitudes over the scatterer support
using the synthesized excitations. Left: LSM driven focusing. Right:
backpropagation driven focusing. (a), (b) Scenario 1; (c), (d) Scenario
2; (e), (f) Scenario 3.
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Table 1. LSM focusing metric parameters.

TPD [mm] MLS [mm] MLE SLL

Scenario 1 0 10 0.087 -
Scenario 2 3 7.5 0.5 50%
Scenario 3 14.6 10.8 0.92 83%
Scenario 4 0 17.8 0.82 40%
Scenario 5 4.3 13 0 70%
Scenario 6 3 15.5 0.35 60%

Table 2. Backpropagation focusing metric parameters.

TPD [mm] MLS [mm] MLE SLL

Scenario 1 0 10 0.1 -
Scenario 2 4.2 8.4 0.58 81%
Scenario 3 4.1 13.8 0.82 83%
Scenario 4 8.3 18 0.79 97%
Scenario 5 4.4 31.2 0.91 90%
Scenario 6 3.1 16.6 0.47 85%

· the side lobes level (SLL) — amplitude of undesired side lobes
surrounding the main one.
The values assumed by these parameters in the different scenarios

are summarized in Table 1 and Table 2 for LSM and backpropagation,
respectively. As it can be seen, for all cases the proposed LSM
based strategy provides results which outperform those obtained by
simply focusing the incident fields. This is of course expected, as our
method takes multiple interactions into account whereas the incident
field neglects them. Such a circumstance also explains why the two
approaches have comparable performances in the first test case, where
multiple interactions play indeed a minor role. It has also to be
noted that performances become worse in case of very strong multiple
interactions, see Figs. 3(e) and (f), where the LSM also has lower
performances in terms of shape estimation (Fig. 2(c)).

5. CONCLUSION

In this paper, we have presented an approach to the problem of focusing
the field radiated by an array of antennas into a target point located
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in a bounded region having unknown electromagnetic and morphologic
characteristics. This kind of problem is relevant to the case in which
the target location is hosted in an unaccessible or unknown region and
it has been tackled with an adaptive approach, in which the array
probes are first used to image, although qualitatively, the unknown
region and then to provide the resulting focused field, and assessed in
the case of a 2D scalar configuration.

The approach relies on the physical meaning of the LSM, an
effective method to tackle the solution of the inverse obstacle problem,
that is concerned with the imaging of only the shape of unknown
scatterers. The method proves to be suitable to our purposes owing to
its tight relationship with the problem of focusing a wave in presence
of an obstacle. The main features of the approach are related to its
effectiveness (only a linear problem has to be solved), as well as to the
inherent non approximated nature of the method adopted to sense the
region under test.

As obvious, limitations of the technique are related to limitations
of the LSM, as shown above and in [14]. On the other side, the LSM
can be extended in a rather straightforward fashion to the case of
Green’s functions other than that free space, see for instance [15].
Therefore the proposed focusing approach can be extended to other
more cumbersome scenarios as well. In fact an application of the
proposed strategy to hyperthermia by exploiting the Green’s function
of a nominal reference scenario, implying an approximated a priori
knowledge of the scenario of interest, is currently being pursued.
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