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Abstract An efficient inverse scattering strategy is proposed to achieve dielectric characterization of
buried objects in lossy soils. The approach takes advantage of Virtual Experiments and Compressive Sensing
to obtain quantitative reconstructions of nonweak targets which are nonsparse in the pixel representation
basis, commonly adopted in microwave imaging. In addition, an original strategy is adopted to overcome
the relevant information lack arising when data are gathered under aspect-limited configurations, such
as in ground penetrating radar (GPR) surveys. The proposed strategy significantly outperforms the results
achievable with the “state of the art” standard approaches since it allows to achieve nearly optimal
reconstructions within a linear framework and without increasing the overall computational burden.
Numerical examples with simulated data are given to show the feasibility of the proposed strategy.

1. Introduction and Motivations

Microwave imaging is one of the most promising candidates for accurate inspections and explorations of
the underground [Daniels, 2004; Pastorino, 2010; Persico, 2014], thanks to its capability of quantitatively
characterizing buried targets and scenarios that are not directly accessible with other sensing techniques.

However, some huge drawbacks are in order. First of all, the need to solve the underlying inverse scattering
problem requires to deal with a nonlinear problem. As a result, the task has to be faced via global or local
optimization strategies which entails huge limitations with respect to large computational demand (especially
in case of large investigated areas) and possible lack of convergence, or even occurrence of “false solutions”
[Pastorino, 2010].

A possible chance to avoid this difficulty is offered by linearization via Born (BA) or Rytov (RA) approxima-
tions. Although the inherent advantage to manage a linear problem, in these cases, one is usually unable to
retrieve electromagnetic properties of the targets owing to the impossibility to fulfill the model assumptions.
In particular, BA, so far exploited in GPR tomographic approaches, is valid only in the case of weak scatterers
[Pastorino, 2010]. As a result, linearized inversion strategies can be properly exploited just to perform target
localization [Cui et al., 2001; Habashy et al., 1993; Persico, 2014; Soldovieri et al., 2007]. Furthermore, this limita-
tion is more and more pronounced in the case of GPR surveys where data are collected just in reflection mode,
especially in the case of single-frequency data processing [Di Donato and Crocco, 2015; Leone and Soldovieri,
2003]. Similar considerations hold true for the Rytov approximations [Pastorino, 2010].

The other main drawback in microwave imaging is concerned with the ill posedness of the problem. This latter
prevents to recover high-resolution images to counteract instabilities of the tomographic imaging arising
from the processing of noisy data [Bertero and Boccacci, 1998]. As a result, only an approximated version of the
unknown profile, namely, a smooth low-energy version, can be safely recovered [Bertero and Boccacci, 1998].

The last drawback can be circumvented, in principle, by adopting imaging recovery approaches based on
the emerging framework of compressive sensing (CS) [Baraniuk, 2007; Donoho, 2006]. It offers a powerful
framework to obtain satisfactory reconstructions of “sparse images,” with the possibility to achieve nearly
optimal reconstruction as well as superresolution. However, CS theory has been completely assessed only in
the case of linear recovery problems [Baraniuk, 2007; Donoho, 2006] so that in subsurface microwave imaging,

RESEARCH ARTICLE
10.1002/2015RS005904

Special Section:
URSI AT-RASC (Atlantic Radio
Science Conference)

Key Points:
• In subsurface microwave imaging

Born approximation is suitable only
for weak scatterers

• Compressive Sensing provides
a powerful tool to achieve nearly
optimal reconstructions and
superresolution

• “Virtual Experiments” allow to
achieve quantitative reconstructions
of nonweak scatterers for
aspect-limited data

Correspondence to:
L. Di Donato,
loreto.didonato@dieei.unict.it

Citation:
Bevacqua, M., L. Crocco, L. Di Donato,
T. Isernia, and R. Palmeri (2016),
Exploiting sparsity and field
conditioning in subsurface microwave
imaging of nonweak buried tar-
gets, Radio Sci., 51, 301–310,
doi:10.1002/2015RS005904.

Received 1 DEC 2015

Accepted 10 MAR 2016

Accepted article online 22 MAR 2016

Published online 15 APR 2016

©2016. American Geophysical Union.
All Rights Reserved.

BEVACQUA ET AL. EXPLOITING SPARSITY AND FIELD 301

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-799X
http://dx.doi.org/10.1002/2015RS005904
http://psi.agu.org/specialSection/URSI15


Radio Science 10.1002/2015RS005904

Figure 1. The geometry of the 2-D problem and the adopted measurement configuration in the paper. The black circles
and white triangles represent transmitting and receiving antennas.

it has been used only in the case of weak and/or point-like scatterers [Ambrosanio and Pascazio, 2015]. As a
matter of fact, this entails, that only few coefficients are different from zero.

In this paper we introduce, discuss, and validate a linear inversion strategy which takes advantage from the
virtual experiments (VE) and a field approximation able to provide a full characterization of nonweak buried
objects [Bevacqua et al., 2015; Crocco et al., 2012; Di Donato et al., 2015] with piecewise constant electromag-
netic properties. As a matter of fact, such a class of targets can be considered to be sparse when represented
in terms of step functions. In a simpler fashion, one can say that their gradient is sparse in the pixel basis
[Bevacqua et al., 2015]. Although piecewise constant profiles do not represent the most general case, in several
circumstances the targets can be assumed like stepwise homogeneous ones (for example, a mine, a stone, or
a pipe). Furthermore, the proposed approach, by its very nature, allows to counteract the additional specific
difficulty of working under “aspect-limited” measurements configuration, since it allows to predict the value
of the field in locations other than the measurement points. As a result, it is possible to exploit a number of
additional equations corresponding to specific “fictitious measurements” [Di Donato and Crocco, 2015].

The proposed method requires data gathered under a multiview-multistatic configuration. Although multi-
channel acquisitions are not the most common configuration in conventional GPR systems, it is worth noting
that several emerging facilities have been developed and exploited in the last years [Bradford, 2008; Francese
et al., 2009; Gerhards et al., 2008]. Moreover, in some cases, such an arrangement can be implemented also
through a pair of antennas (for example, mounted on two unmanned vehicles) which gather the GPR echoes
for multiple positions of the transmitter/receiver pair. On the other hand, since the method works fine with
single-frequency data, the extra time paid for multichannel acquisitions is traded with the convenience of
working at single frequency, avoiding the need of properly modeling the dispersivity of the soil.

The paper is structured as follows. In section 2, the scattering problem is formulated for the subsurface imag-
ing. In section 3, an overview of the overall imaging strategy is briefly outlined with respect to the linear
inversion approach based on the VE, the fictitious measurements inversion strategy, and the adopted CS
recovery procedure. In section 4, a numerical analysis with simulated data for different kind of scattering sys-
tems (and soil properties) is presented to show the performance of the proposed strategy. Conclusions follow.
Throughout the paper, we consider the 2-D scalar problem for nonmagnetic objects where the time harmonic
factor exp{j𝜔t} is assumed and dropped.

2. Statement of the Problem and Mathematical Formulation

As shown in Figure 1, we assume a 2-D geometry with the y axis as invariance direction and the electric field
polarized along it. Let D denote the investigation domain hosting the cross section of one or more penetrable
scatterers (or anomalies) with support Σ and complex permittivity 𝜀s(r, 𝜔) = 𝜀′s(r) − j𝜎s(r)∕(𝜔𝜀0), 𝜔 being the
working frequency and r = (x, z) denoting the generic point in D. The investigation domain is placed at a
given depth (below the air-soil interface) embedded in the soil with complex permittivity 𝜀b(r, 𝜔) = 𝜀′b(r) −
j𝜎b(r)∕(𝜔𝜀0).
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The region D is probed by means of antennas located on the curveΓ along the x axis, placed above the air-soil
interface at given height. The antennas are modeled as filamentary currents oriented along the invariance
axis. We assume that the field is gathered by all the receivers when, in turn, one antenna is transmitting and
all act as receivers, that is a multiview-multistatic, i.e., multichannel, acquisition.

Under the above assumptions, the equations governing the scattering phenomenon are

Es(rr , rt) = k2
b ∫D

g12(r′, rr)Et(r′, rt)𝜒(r
′)dr′ rt, rr ∈ Γ, (1)

Et(r, rt) − Ei(r, rt) = k2
b ∫D

g22(r′, r)Et(r′, rt)𝜒(r
′)dr′ r ∈ D, rt ∈ Γ, (2)

wherein

a. rr and rt denote the receiver and transmitter positions, respectively;
b. Es is the scattered field at the receiver position in the upper space;
c. Ei and Et denote the incident and the total field in D, respectively;
d. 𝜒(r) = 𝜀s(r)∕𝜀b(r) − 1 is the unknown contrast function;
e. g12(r′, rr) is the external Green’s function for the half-space case, i.e., the field radiated in the medium

1 (the air) by an elementary source placed in the medium 2 (the soil);
f. g22(r′, r) is the internal Green’s function for the considered scenario, which is the field radiated in the

medium 2 (the soil) by an elementary source placed in the same medium;
g. kb = 𝜔

√
𝜇0𝜖0𝜀b is the complex wave number of the soil, 𝜇0 and 𝜖0 being the magnetic permeability and

electric permittivity in the vacuum, respectively.

Accordingly, the inverse scattering problem amounts to retrieve the unknown contrast function, which
encodes the geometrical and electromagnetic properties of the targets, by solving the couple of equations (1)
and (2) for given incident fields and measured scattered fields. Note that both the contrast function and the
total fields of the different experiments are unknowns of the problem.

Finally, let us note that the half-space Green’s functions can be easily computed solving the relevant
Green-Sommerfeld integrals by means of a 1-D fast Fourier transform [Chew, 1995].

3. The Tomographic Imaging Problem
3.1. A Linear Approach for Nonweak Targets
In order to avoid nonlinear optimizations for quantitative imaging, we adopt the linear model proposed in
Crocco et al. [2012]. The approach is based on a proper linear combination of the original incident (in D) and
corresponding scattered fields (on Γ), in order to introduce new (virtual) experiments. Then, a novel total field
approximation to effectively linearize the scattering problem, even in the case of nonweak scattering regime,
is introduced.

In the following we show the basic idea of the method and extend it to the case of subsurface imaging, while
addressing the reader to Crocco et al. [2012] for a detailed understanding of the approach.

Let us consider the scattering data equation (1). Thanks to the linearity of Maxwell equations, it can be
rewritten for an arbitrary linear combination of the data problem, i.e.,

Ψs(rr) = k2
b ∫D

g12(rr , r′)[Ψi(r′) + Ψs(r′)]𝜒(r′)dr′, (3)

wherein the quantities denoted by Ψ are given by proper rearrangements (ruled by the same weight func-
tions) of the corresponding fields in equation (1). Moreover, note we have explicated the total field inside the
object as the sum of the incident (which is known) and the scattered (which is unknown) fields. As well known,
being both 𝜒 and Ψs (in D) unknowns of the problem, the latter is still nonlinear.

The idea underlying the virtual experiments amounts to infer given expected properties on the internal field
Ψt = Ψi + Ψs. As a result, the key question is how to find effective linear combinations of data to solve the
problem more easily.
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In this respect, a possible chance is to pursue a linear combination of the primary sources in such a way that
the resulting scattered field resembles the field radiated by a point source located in a given position in D.
Obviously, since all the information gathered in a scattering experiment lies in the measured anomalous field,
such a rearrangement can be evaluated only via a smart preprocessing of this latter.

According to the above, this possibility can be actually brought by means of a “design equation” arising from
looking (with a different perspective) at the far-field equation, a well-known equation for the solution of the
inverse obstacle problem [Cakoni and Colton, 2006]. The latter reads the following:

∫Γ
Es(rr , rt)𝜉(rt, rs)drt = g12(rr , rs), (4)

where a different sampling point rs (belonging to an arbitrary grid covering the investigation domain) is cho-
sen for each different virtual experiment, so that 𝜉 is a function of rs as well. With such a choice, the function 𝜉

will recombine the measured scattered field at a given receiver arising for the different transmitter’s positions
in such a way to match the field radiated by an elementary source located in the sampling point.

According to Crocco et al. [2012], when the sampling point is inside the scatterer’s support, say it a “pivot point”
rp, the total field can be conveniently approximated by means of the following expression:

Ψt(r) ≈ Ψi(r) + LP
[

g22(r, rp)
]
, (5)

wherein at the right-hand side, the first addendum is the incident field arising in the virtual experiment and
the second addendum is a low-pass version of the internal Green’s function. Note that this operation avoids
field singularity in the pivot point for the scattered field. It is worth to underline that this approximation takes
implicitly into account the nature of the scatterer through the “weighting” function 𝜉. Since, in this kind of
VE, the targets are forced trough the primary sources (Ψi) to behave like a point scatterer, we refer to it as the
point source field (PSF) approximation.

Finally, by considering the field approximation (5) for a proper set of pivot points rp belonging to the scatterer’s
support, we can turn the (original) multiview experiments in (virtual) multipivot ones without any significant
information loss [Crocco et al., 2012].

Obviously, the above linear framework has a limited range of validity, as it is based on an approximation of the
internal field as well as on the validity range of the design equation [Cakoni and Colton, 2006]. This notwith-
standing, exploiting the far-field equation (4) as a preprocessing step, ensures the possibility to cope with a
class of dielectric profiles (in terms of dimension and contrast values) widely exceeding the BA, as shown in Di
Donato et al. [2015]. Such a property is related to the nature of the field approximation (5), which is “scatterer
aware” through the recombination of the data provided by 𝜉.

3.2. A Fictitious Measurements Strategy for Aspect-Limited Data
The virtual experiments’ framework can be exploited not only to introduce the above linearized approach
but also for the subsurface imaging problem at hand, to counteract the aspect limitation of data. Indeed,
aspect-limited data are not sufficient to achieve quantitative characterization of the target even when the
model assumptions are fulfilled, like the use of the BA in the case of weak scatterers or even assuming the exact
knowledge of the internal field (this latter being an ideal case). This is due to the peculiar filtering spectral
properties of the relevant integral operator [Leone and Soldovieri, 2003].

In this respect, the field conditioning enforced in each virtual experiment offers an original way to face such
a drawback. In fact, the introduced approximation (5) provides an analytical expression for the fields in the
whole domain D. Then, since the spatial behavior of the scattered field is known everywhere for each virtual
experiment, one can introduce additional equations (corresponding to fictitious measurements) in order to
get profit from the expected behavior of the scattered fields in locations other than Γ [Di Donato and Crocco,
2015]. In particular, one can enlarge the set of measurement data, by adding a set of fictitious measurements,
say r∗r , located on a fictitious curve Γ∗ (complementary to Γ) in such a way to restore the full aspect config-
uration. The value of the (virtually measured) scattered field at these fictitious locations would be obviously
given by g22(r∗r , rp), as fictitious measurements are placed in the lower half-space.
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Figure 2. The virtual measurements setup. The black and white circles refer to actual and fictitious measurements,
respectively, while the white triangles denote the transmitters.

According to the above, the (virtual) data equation can be suitably rewritten as follows:

∫D
g̃(r′, 𝜌

r
)Ψt(r′, rp)𝜒(r

′)dr′ =

{
Ψs(𝜌r

, rp) if 𝜌
r
= rr ∈ Γ

g22(𝜌r
, rp) if 𝜌

r
= r∗r ∈ Γ∗,

(6)

where rr and r∗r denote the actual and the fictitious measurement points, respectively.

To take into account the dependence of the kernel of (6) from the different kind of measurement (the actual
ones on surface and the fictitious one in the underground), the Green’s function is defined as

g̃(r, 𝜌
r
) =

{
g12(r, 𝜌r

) if 𝜌
r
= rr ∈ Γ

g22(r, 𝜌r
) if 𝜌

r
= r∗r ∈ Γ∗

that stands for the external or the internal Green’s function depending on the measurement at hand. In
Figure 2, a sketch of this circumstance is depicted with measurements placed over two vertical and one
horizontal fictitious arrays, denoted with Γ∗.

Exploiting the achieved field conditioning, it could seem that one can place fictitious measurements as close
as possible to the targets, i.e., inside D or even inside the scatterers. However, analytical prolongation (which
allows for fictitious measurements) works fine outside the scatterers, while it becomes more critical when
going inside the scatterers, wherein it may more easily fail. Hence, a convenient and more reliable choice
amounts to place the fictitious probes approximately at the same distance of that between the investigated
domain and the actual probes.

3.3. A Compressive Sensing-Based Approach
Compressive sensing [Baraniuk, 2007; Donoho, 2006] theory provides several tools for reconstructing sparse
signals from highly incomplete sets of measurements by means of constrained l1 minimizations. In addition,
it is, in principle, capable to provide nearly optimal reconstruction of the unknown provided that the latter
can be represented through a sparse basis [Baraniuk, 2007; Donoho, 2006]. As a matter of fact, in many cases
dealing with real life application, the unknown contrast profile can be assumed to be piecewise constant,
which entails a sparse representation in terms of step functions, or, which is the same, that it has a sparse
gradient in the usual pixel representation. Under the above, it makes sense to pursue the reconstruction by
means of CS tools [Bevacqua et al., 2015; Candes et al., 2008]. Accordingly, the inverse scattering problem can
be solved by means of the following minimization scheme:

min
𝝌

{‖𝛁x𝜒‖l1
+ ‖𝛁z𝜒‖l1

} subject to ‖A𝝌 − b‖l2
< 𝛿 (7)

where

a. 𝝌 is the N-dimensional unknown function of the problem;
b. N is the number of the pixels discretizing the region of interest;
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c. b is the K × 1 data vector, with K = (M + F) × P, which contains the M measured scattered fields and the F
fictitious ones arising in the P virtual scattering experiments;

d. A is the K × N matrix which relates the unknown to data vector, obtained by considering the PSF approxi-
mation (5) and the fictitious measurements (6);

e. 𝛁x and 𝛁z are the discretized version of the gradient along the two coordinate directions x and z. In other
words, 𝛁x𝝌 and 𝛁z𝝌 are the N × 1 vectors containing the forward finite differences [Bevacqua et al., 2015;
Candes et al., 2008] of the unknown function 𝝌 .

Note that in (7), the minimization of the sum of the two norms promotes the search of solutions with sparse
gradient, while the constraint enforces the data consistency below a given threshold value. Finally, let us note
that the parameter 𝛿 depends on the level of required accuracy as well as on the modeling and measurements
errors.

4. Numerical Analysis

To give a proof of the performances achievable by means of the proposed method, we present three numerical
examples concerned with GPR surveys. In particular, our goal is to show how field conditioning achieved
by properly designed virtual experiments (including fictitious measurements) and CS regularized inversion
(exploiting sparseness of the gradient of the unknown) allow to achieve quantitative imaging results.

The first example consists of a wet soil whose e.m. properties exhibit a 5% random variation around the
average values 𝜖′b = 9 and 𝜎b = 50mS∕m. It embeds two targets, the first one, having circular cross section, is
a stone (𝜖′s = 6) while the second one is a plank (𝜖′s = 3) with a square cross section. The rectangular imaging
domain is 0.9 × 0.3 m2 wide (which corresponds to 3.6𝜆b × 1.2𝜆b) and has been discretized into 78 × 26 cells.
The antennas (N = M = 12), located at the air-soil interface, are evenly spaced of about 𝜆b∕2, and the working
frequency is 400 MHz.

In the second example, two rectangular lossy targets with permittivity values representative of glass (𝜖′s = 8,
𝜎s = 0) and porcelain (𝜖′s = 6.5, 𝜎s = 0, respectively) are considered. The two objects are embedded in a dry
soil whose e.m. properties exhibit a 5% random variation around the average values 𝜖′s = 3 and𝜎b = 20 mS/m.
Even in this case, the working frequency is 400 MHz. The rectangular imaging domain is 0.9 × 0.3 m2 wide
(which corresponds to 2.1𝜆b × 0.7𝜆b), and it has been discretized into 44× 22 cells. The probing array is made
of N = M = 8 evenly spaced antennas.

The third example consists of three rectangular targets having the same size and different e.m. characteris-
tics, buried in a dry soil with relative permittivity 𝜖′s = 4 and conductivity 𝜎b =1 mS/m. The first target is a void
(𝜖′s = 1), the second target is representative of a plastic mine (𝜖′s = 2.5, 𝜎s = 0), and the third target has the
dielectric properties of a stone (𝜖′s = 6, 𝜎s = 1 mS/m). The working frequency is 400 MHz. The imaging domain
is a square region of side 1 m (about 2.7𝜆), discretized into 64 × 64 cells. The probing array is made of
N = M = 8 evenly spaced antennas.

The scattered field data have been simulated with a full-wave forward solver based on the method of moments
and then corrupted with white Gaussian noise. Two signal-to-noise ratio (SNR) levels have been considered,
SNR = 30 dB and SNR = 10 dB.

To appraise the accuracy of the results, we use two error reconstruction metrics. The first one is the usual mean
square error:

MSE =
‖𝜒 − 𝜒‖2‖𝜒‖2

, (8)

where𝜒 is the actual contrast profile and𝜒 the estimated one. As this metrics is a global and synthetic param-
eter, it is not always suitable to evaluate the fidelity of the reconstruction of the electromagnetic properties
of a single object. Such an aspect can be evaluated using the following error, i.e.,

Errmax =
‖𝜒‖∞ − ‖𝜒‖∞‖𝜒‖∞ , (9)

where the ‖ ⋅ ‖∞ is the uniform norm.
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Figure 3. Example 1. (a) Logarithmic map of the LSM indicator with superimposed the pivot points and the contour of
the reference profile, (b) virtual measurements setup. (c) Permittivity and (d) conductivity of the retrieved profile
by means of VE-CS (𝛿 = 0.18) for SNR = 30 dB (MSE = 0.45, Errmax = 0.29).

The inversion procedure consists of three steps.

The first step’s goal is to reach the linearization of the scattering equation (5). In particular, we first exploit the
linear sampling method (LSM) solution in order to image the support indicator and choose P evenly spaced
pivot points with respect to build the multipivot experiments. The LSM indicator is given by [Cakoni and
Colton, 2006]:

Υ = log10‖𝜉‖ − log10‖𝜉‖max, (10)

where ‖𝜉‖max represents the maximum value of the norm of 𝜉. Note that the indicator (10) assumes lower
values in points belonging to the scatterers and higher values elsewhere (with respect to the overall dynamic
of the energy indicator). In the case of SNR = 30 dB, the LSM indicator is shown in Figures 3a, 4a, and 5a
for the three scenarios, respectively. Then, for each virtual experiment, the data equation is recast and the
approximated total field is computed according to equation (5). Note that this step is computationally very
efficient, as it requires only the singular value decomposition of the data matrix (whose dimensions are related
to the number of transmitters and receivers).

The second step takes advantage of the achieved field conditioning by means of fictitious measurements.
In practice, we add three dummy arrays with F receivers on the curve Γ∗. For the first one, both its length
Lx and number of antennas are set equal to the actual array and it is placed at depth zd from the interface.

Figure 4. Example 2. (a) Logarithmic map of the LSM indicator with superimposed the pivot points and the contour of the actual profile, (b) virtual
measurements setup. Permittivity and conductivity of the retrieved profile for SNR = 30 dB by means of (c and d) BA-CS (𝛿 = 0.3) and (e and f) VE-CS (𝛿 = 0.15).
(g–j) The same as Figures 4c–4f for SNR = 10 dB with 𝛿 = 0.4 (BA-CS) and 𝛿 = 0.17 (VE-CS).
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Figure 5. Example 3. (a) Logarithmic map of the LSM indicator with superimposed the pivot points and the contour of the reference profile, (b) virtual
measurements setup. Permittivity of the retrieved profile by means of the CS with (c) BA (𝛿 = 0.04), (d) VE (𝛿 = 0.32), (e and f) VE with RF = 4 (𝛿 = 0.28) and
RF = 10 (𝛿 = 0.15), respectively, for SNR = 30 dB. (g–j) The same as Figures 5c–5f for SNR = 10 dB with 𝛿 = 0.26 (BA-CS), 𝛿 = 0.33 (VE-CS), 𝛿 = 0.28 (RF = 4),
and 𝛿 = 0.24 (RF = 10).

The second and the third virtual arrays with length zd are placed perpendicular to the actual array. For the three
scenarios at hand, the resulting configurations are shown in Figures 3b, 4b, and 5b, respectively. In particular,
for the first scenario zd = −0.5 m, Lx = 1.5 m, and F = 20, for the second scenario zd = −0.6 m, Lx = 1.5 m,
and F = 12, while for the third one zd = −1.5 m, Lx = 1.5 m, and F = 20.

The last step is the optimization task via CS by means of equation (7), in which, as discussed in Bevacqua et al.
[2015]; the tolerance parameter is set as a tradeoff between the reconstruction accuracy and the feasibility of
the optimization task. To avoid the trivial solution, that is the null vector, the parameter is selected lower than‖b‖l2

, i.e., 𝛿 = 𝛿‖b‖l2
, with 𝛿 << 1.

To analyze the achievable performances of the method, we have compared the obtained results with the stan-
dard BA (Born approximation), usually adopted in tomographic GPR imaging. In particular, to carry out this
comparison, possibly in conjunction with sparsity promotion tools, we have processed the simulated data
also using a BA-CS approach. It is implemented using equation (7), but building the matrix A using the original

Table 1. Error Metrics for the Second Scenario

SNR = 30 dB SNR = 10 dB

MSE Errmax MSE Errmax

BA-CS 1.42 0.62 1.39 0.65

VE-CS 0.64 0.02 0.65 0.04

BEVACQUA ET AL. EXPLOITING SPARSITY AND FIELD 308



Radio Science 10.1002/2015RS005904

Table 2. Error Metrics for the Third Scenario

SNR = 30 dB SNR = 10 dB

MSE Errmax MSE Errmax

BA-CS 0.82 0.7 0.83 0.55

VE-CS 0.70 0.24 0.82 0.25

VE-CS (RF = 4) 0.69 0.35 0.84 0.38

VE-CS (RF = 10) 0.71 0.40 0.85 0.48

incident fields and noisy scattered ones instead of the proposed approach based on virtual experiments.
Finally, a performance analysis lowering the numbers of processed data has been also carried out in the case
of VE-CS.

Such an analysis has been carried out only for the second and the third scenarios, as the first example is
reported to assess the proposed method. Results have confirmed the extended validity range of the proposed
linearization based on field conditioning, as well as the remarkable advantage of using this latter in conjunc-
tion with CS, especially in the presence of a large amount of noise in the processed data, see Figures 4, 5c, 5d,
5g, and 5h. As a matter of fact, this allows obtaining reliable quantitative results both for permittivity and con-
ductivity values (see Tables 1 and 2), outperforming the BA not only in terms of quantitative reconstruction
(which is not possible at all with BA-CS) but also qualitatively.

In the third example, we have also focused our analysis on the robustness of the method against reduction of
the overall number K = 644 of data processed. In particular, the data reduction is achieved with a routine that
extract uniformly random a given number of measurements from the initial data set. Figure 5 summarizes the
results obtained in this case, confirming the robustness of the CS-based procedures. Of course, for the larger
noise level (SNR = 10 dB) and undersampling rate (RF = 10 and K = 64) the results are slightly worse as far as
the estimate of the deepest target is concerned.

5. Conclusion

In this paper we have proposed a new general strategy to recover the dielectric properties of buried targets. It
properly combines three different strategies, which are (i) virtual scattering experiments, which allow to intro-
duce a field approximation which is valid for a class of scatterers wider than the weak scatterers; (ii) fictitious
measurements (enabled by the enforced field conditioning), which allow to overcome information loss asso-
ciated to aspect-limited data; and (iii) a recovery algorithm based on compressive sensing, in order to obtain
nearly optimal reconstruction of nonpoint-like and nonweak targets.

The approach is based on a cascade of two linear steps. The first step is concerned with the solution of the
design equation, which requires a low computational burden, and the computation of the virtual experi-
ments and fictitious measurements, which in practice do not require any significant computational burden.
The second step is the solution of the linearized inverse scattering problem tackled by means of a CS-based
optimization routine. As a result, the overall computational burden keeps very low and is fully comparable
with the commonly adopted linearized BA.

The numerical analysis has shown that the method is able to perform satisfactory characterization of buried
targets having different dielectric properties in lossy soils. These preliminary results, meant to address the
feasibility of the overall strategy in the subsurface imaging, encourage future work toward 3-D tomographic
imaging and for testing the reconstruction capability against experimental data set.
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