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Total Variation and Compressive Sensing (TV-CS) techniques represent a very attractive approach to inverse scattering problems.
In fact, if the unknown is piecewise constant and so has a sparse gradient, TV-CS approaches allow us to achieve optimal
reconstructions, reducing considerably the number of measurements and enforcing the sparsity on the gradient of the sought
unknowns. In this paper, we introduce two different techniques based on TV-CS that exploit in a different manner the concept of
gradient in order to improve the solution of the inverse scattering problems obtained by TV-CS approach. Numerical examples are
addressed to show the effectiveness of the method.

1. Introduction

The capability of solving in a fast and accurate fashion inverse
scattering problems has an enormous interest in fields as
different as biomedical imaging, nondestructive evaluation,
and subsurface sensing. In all these applications, including
the cases concerned with the use of radar or radar-like sensor
for subsurface imaging and through the wall imaging, it
makes sense to look for methods which allow to reduce as
much as possible the number of measurements/sensors while
still achieving accurate reconstructions. In this respect, the
Compressive Sensing theory (CS) [1, 2] may bring enormous
advantages.

In fact, as long as the sought function is known to
be sparse or compressible in a given basis, namely it is
represented in an exact or anyway accurate fashion through
a limited number of nonzero coefficients, the number of
measurements actually needed for an accurate reconstruction
can be much less than the overall number of unknowns and,
moreover, it is possible to obtain nearly optimal reconstruc-
tions, as well as a kind of “superresolution” [1, 2].

As well known, the inverse scattering problem, which
is a possible framework for quantitative GPR and through
the wall imaging, amounts to recover the geometry and the
electromagnetic properties of unknown scattering objects,

starting from the knowledge of the incident fields and the
measurement of the corresponding scattered fields. Unfortu-
nately, the problem is both ill-posed and nonlinear [3], which
implies that formidable efforts have to be done to pursue
reliable and accurate solutions.

Very many different approaches exist to tackle such a
problem, ranging from qualitativemethods [4], which simply
try to recover information such as presence, location, and
possibly shape of unknown targets, to quantitative inversion,
for instance [5, 6], which aim to recover the electromagnetic
characteristics as well. With respect to the latter, they range
from linear to nonlinear approaches, for instance [7, 8], which
face the mathematical problem in its full complexity.

The Compressive Sensing theory is well developed for
the case of linear problem and, as a result, it is usually
used jointly with simplified models, such as the Born or
Rytov approximations [7]. Both these linear approximations
suffer from several limitations induced by the adopted
approximated model. Recently, a new linear approximation
has been introduced [9] which outperforms the usual Born
approximation and succeeds the latter in imaging nonweak
targets [10], thus allowing to significantly enlarge the range of
applicability of the CS [11] for inverse scattering problems. In
[11], the Compressive Sensing is also used in conjunctionwith
the Total Variation approach [12, 13], which allows to image
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extended targets, which are nonsparse in the commonly used
pixel based representation. In fact, TV is widely used as
regularizer especially when the unknown signal is piecewise
constant; that is, it has a sparse gradient of the contrast
function.

In the following, we consider the joint exploitation of
CS and TV approach and try to generalize this latter to
improve the reconstruction of objects with discontinuities
having different orientation and shape.

The paper is organized as follows. In Section 2, the
approximation exploited to linearize the inverse scattering
problem is introduced. In Section 3, two different TV-CS
based approaches are presented. Finally, in Section 4, a
numerical analysis with simulated data is reported to assess
the performances of the proposed strategies. Conclusions fol-
low.Throughout the paper, the canonical 2D electromagnetic
scalar problem is considered. The exp(𝑗𝜔𝑡) time harmonic
factor is assumed and dropped.

2. Inverse Scattering Problem and the Adopted
Linear Approximation

For the sake of simplicity, let us assume that the investigated
domain 𝐷 is embedded in a background medium of known
complex permittivity 𝜀𝑏 and contains one or more unknown
dielectric scatterers with support Σ and complex permittivity
𝜀. According to [14], only a limited number of scattering
experiments carry all the essential information available for
profile inversion. As a consequence,𝑉 plane waves impinging
on𝐷 from several incident directions evenly spaced in angle
are considered and𝑀 different receivers in the far-field of 𝐷
are located in order to observe the corresponding scattered
fields. By assuming the TM polarization, the scalar equations
for the generic V-illumination are expressed in vector-matrix
form as

E(V)
𝑠
= A
𝑒
E(V)
𝑡
𝜒, (1)

E(V)
𝑡
= E(V)
𝑖
+ A
𝑖
E(V)
𝑡
𝜒, (2)

wherein 𝜒 is the unknown contrast function and E(V)
𝑠
, E(V)
𝑡
,

and E(V)
𝑖

are, respectively, the vectors which contain the
𝑀 measurements of the scattered field and the values of
the total and incident electric field in 𝐷, respectively. The
matricesA

𝑒
andA

𝑖
are the discretized version of the radiation

operators relating the product E(V)
𝑡
𝜒 to the scattered field

in the observation domain and in the investigation domain,
respectively.

As can be seen in (1) and (2), the problem is nonlinear,
because of the presence of the term E(V)

𝑡
𝜒. In order to apply

the CS to the inverse scattering problem, a new recently
introduced linear approximation is considered [9]. The basic
idea, which gives rise to this powerful tool, whose range of
validity goes beyond the usual Born approximations [10], is
the following.

For a fixed contrast function, the scattered field is linearly
related to the incident fields. Hence, a linear superposition
of the 𝑉 incident fields, adopted to probe 𝐷, gives rise

to a scattered field which is nothing but the same linear
superposition of the correspondingmeasured scattered fields.
Such simple reasoning suggests that new “virtual” scattering
experiments [9, 11, 15, 16] can be possibly devised (without any
need of additional measurements) by simply combining the
results of the originally performed scattering experiments.
A possible way to design these new experiments, which do
not carry any additional information, is to consider the far-
field equation, that is, the basic equation of the well-known
linear sampling method [4], which allows enforcing, at least
approximately, a peculiar spatial distribution of the total field
inside𝐷.

In particular, one is able, for different “pivot points”
located inside the scatterer, to realize virtual scattering exper-
iments wherein the internal fields are focused around the
pivot points (see [9, 15, 16]) and hence are foreseeable in an
accurate fashion. Such a circumstance allows then (replacing
the original experiments with the virtual ones) to deal with
a linearization of the scattering equations. In fact (1) can be
recast into a linear one, which reads

E
(V)
𝑠
= A
𝑒
E
(V)
𝑡
𝜒, (3)

whereE(V)
𝑠

andE(V)
𝑡

represent the scattered field data recom-
bined by means of the “design equation,” that is, the LSM
equation, and the approximated total field in 𝐷 which arise
in the virtual scattering experiments, respectively [9].

3. Improved TV-CS Based
Inversion Approaches

Let us consider a reference system 𝑂𝑥𝑦 with the origin
in the center of 𝐷 and let us suppose that the inverse
scattering problem has been linearized by means of (3). It is
known that Compressive Sensing theory provides the tools
for reconstructing sparse signals from (highly) incomplete
sets ofmeasurements through a constrained ℓ1minimization.
In a number of cases including nondestructive testing, sub-
surface sensing, geophysical and biomedical scenarios, it is
reasonably to assume that the unknown contrast function has
sparse or nearly sparse gradients. As a result, it makes sense
to pursue a reconstruction bymeans of a total variationmini-
mization [12, 13]. Accordingly, the inverse scattering problem
can be solved by means of a total variation minimization:

min
𝜒
{
󵄩󵄩󵄩󵄩D𝑥𝜒
󵄩󵄩󵄩󵄩ℓ
1

+
󵄩󵄩󵄩󵄩󵄩
D𝑦𝜒
󵄩󵄩󵄩󵄩󵄩ℓ
1

}

subject to 󵄩󵄩󵄩󵄩A𝜒 − b
󵄩󵄩󵄩󵄩ℓ
2

≤ 𝛿,

(4)

where 𝜒 is the 𝑁-dimensional unknown function of the
problem with 𝑁 the number of the pixels discretizing 𝐷, b
is the 𝑇 × 1 data vector, 𝑇 = 𝑀 × 𝑃, which contains the𝑀
measured scattered fields arising in the 𝑃 virtual scattering
experiments, and A = A

𝑒
E(V)
𝑡

is the 𝑇 × 𝑁 matrix which
relates the unknown vector to the data vector and, assuming
the usual CS terminology, represents the sensing matrix.
Finally, D𝑥 and D𝑦 are the discretized version of the partial
derivatives evaluated with respect to the spatial variables 𝑥
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and 𝑦, respectively, that is, the discretized version of the
gradient along the coordinate directions. In other words,
D𝑥𝜒 and D𝑦𝜒 are the 𝑁 × 1 vectors containing the forward
differences [13] of the unknown function 𝜒.

In (4), the minimization of the sum of the two norms
promotes the search of solutions with sparse gradient, while
the constraint enforces the data consistency. In other words,
among all solutions, which are consistent with the acquired
data, we search the one whose gradient has the minimum
ℓ1-norm. Note that the parameter 𝛿 depends on the level of
required accuracy, on the level of noise on the data and on
the introduced model error. Notably, the number 𝑇 of data
can be (much) less than the overall number of unknowns𝑁,
but it has to be sufficiently larger than the number of nonzero
elements ofD𝑥𝜒 andD𝑦𝜒.

3.1. AnOrientation Invariant TV-CSApproach. Theapproach
described in (4) is able to identify in a simple fashion
the target discontinuities along directions parallel to the
coordinate axes. On the other side, since it has two pref-
erential directions, discontinuities having a different ori-
entation are not correctly identified, and the approach
provides a kind of “squared” reconstruction of the target
(see Figures 1(d) and 1(e)). In order to counteract, at least in a
partial fashion, the dependence of the approach with respect
to the orientation of the target discontinuities, we propose
herein a modified approach.

In particular, we introduce a new objective function
which allows to identify additional discontinuities located at
+ or −45∘ with respect to the coordinate axes. In such a way,
one will have more accurate reconstruction of discontinuities
having a generic or even circular shape.

In practice, we consider an additional term defined as the
discretized version of the directional derivativeDd evaluated
along the directions parallel to 𝑥 = ±𝑦. In other words, Dd𝜒
is the vector, which contains the forward differences along
directions parallel to the principal and secondary diagonals
of the matrix of pixels representing the unknown function 𝜒.
Accordingly, (4) is recast as

min
𝜒
{
󵄩󵄩󵄩󵄩D𝑥𝜒
󵄩󵄩󵄩󵄩ℓ
1

+
󵄩󵄩󵄩󵄩󵄩
D𝑦𝜒
󵄩󵄩󵄩󵄩󵄩ℓ
1

+
󵄩󵄩󵄩󵄩D𝑑𝜒
󵄩󵄩󵄩󵄩ℓ
1

}

subject to 󵄩󵄩󵄩󵄩A𝜒 − b
󵄩󵄩󵄩󵄩ℓ
2

≤ 𝛿.

(5)

Roughly speaking, the optimization problemnow amounts to
looking for a solution whose gradient, evaluated also in the
“oblique” directions, has the minimum ℓ1 norm among all
the contrast functions fulfilling (within a given error) the data
equation.

3.2. A Corner Identifier TV-CS Approach. As a second con-
tribution, we asked ourselves if we can have a still better
procedure for profiles where the discontinuities are actually
parallel to the 𝑥 or 𝑦 axis.

A simple yet original solution to such a problem is to
exploit sparsity in terms of the second order mixed partial
derivative. In fact, D𝑥𝑦𝜒, that is, the vector which contains
the discrete value of second mixed partial derivative, has

far fewer coefficients different from zero than the gradient.
For example, independently from the dimensions of the
object, a rectangular scatterer will have only four elements
different from zero when considering its second order mixed
derivative. Then, an approach based on such a derivative can
identify more easily scatterers constituted by a superposition
of squares and rectangles. When such a kind of qualitative
information is available, an accurate quantitative reconstruc-
tion can be obtained by solving

min
𝜒
{
󵄩󵄩󵄩󵄩󵄩
D𝑥𝑦𝜒
󵄩󵄩󵄩󵄩󵄩ℓ
1

}

subject to 󵄩󵄩󵄩󵄩A𝜒 − b
󵄩󵄩󵄩󵄩ℓ
2

≤ 𝛿.

(6)

It is worth noting that the qualitative information on the
morphology of the targets, which enables and suggests the use
of (6), can be eventually achieved by a preliminary estimation
based, for instance, on themethods in Section 3.1. Saying it in
other words, procedures in Section 3.2 can be eventually seen
as a possible “postprocessing” technique.

4. Numerical Assessment

In order to show the validity and to investigate the per-
formances of the two proposed techniques, which aim at
improving the TV-CS approach, some numerical examples
with simulated data are addressed, each one dealing with a
different type of scatterer.

In each example, we have first linearized the scattering
equation, following the procedure described in Section 2
and in [9]. More in detail, the LSM equation is solved and
its solution is used to build the set of virtual experiments
considering a subset of pivot points inside the estimated
support (see Figures 1(c), 2(b), 3(b), and 4(b)). Then, (1)
is recast and linearized by using (3). At a later stage, once
the problem has been linearized, the solution is looked for
by means of the new introduced approaches. According to
[11], in performing the numerical analysis, we set 𝛿 such
that 𝛿 < ‖b‖ℓ

2

, as a trade-off between the feasibility of the
optimization task (with “feasibility” we mean the possibility
to find a solution that satisfies the constraint on the data
consistency) and the reconstruction accuracy. Note that if
𝛿 is too small, the problem could be unfeasible, as the set
identified by the data constrain could be an empty set and
no solution could exist at all.

Moreover, in performing the numerical analysis, the
presence of the convex function ℓ1-norm in approaches (4)–
(6) gives the opportunity of using the vast theory of convex
optimization. In particular, the numerical examples reported
in the paper have been carried out by exploiting the toolbox
CVX [17, 18], a general software for convex programming.

In the following examples, the region of interest is a
square of side 𝐿𝐷, and the scatterer is hosted in free space.
Moreover, a multiview-multistatic (MV-MS) illumination
setup is assumed with filamentary currents acting as primary
sources. In order to properly sample the scattered field, we
consider a number 𝑀 of measurements points equal to the
minimum nonredundant number of independent scattering
experiments according to [14].
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Figure 1: Continued.
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Figure 1: The two-cylinder example. (a) Real and (b) imaginary part of the contrast reference profile. (c) Normalized logarithmic LSM
indicator with the selected pivot points superimposed as dots. The retrieved profile by means of the approach (4) (𝛿 = 0.2‖b‖

ℓ2
and err =

10%): (d) real and (e) imaginary part.The retrieved profile bymeans of the approach (5) (𝛿 = 0.2‖b‖
ℓ2
and err = 6%): (f) real and (g) imaginary

part.

The receivers and transmitters are spaced on a circumfer-
ence of radius 𝑅. The scattered field data have been obtained
by means of a full-wave forward solver based on CG-FFT
procedure and corrupted with a randomGaussian noise with
SNR equal to 20 dB.

For all these numerical examples, we have considered, as
indicator of accuracy, the reconstruction error defined as

err =
∑
𝑁

𝑘=1

󵄨󵄨󵄨󵄨𝜒𝑘 − 𝜒̃𝑘
󵄨󵄨󵄨󵄨
2

∑
𝑁

𝑘=1

󵄨󵄨󵄨󵄨𝜒𝑘
󵄨󵄨󵄨󵄨
2
, (7)

where 𝜒 is the true contrast profile and 𝜒̃ is the reconstructed
one.

In order to show performances of the first proposed
approach, (equation (5)), in the first example we have con-
sidered a scatterer constituted by two homogeneous circular
cylinders; as in the Figures 1(a) and 1(b). The dielectric
permittivity of these objects is 𝜀 = 1.8−0.1798𝑖. Furthermore,
𝑁 = 48 × 48, 𝑀 = 21, 𝑅 = 4𝜆, and 𝐿𝐷 = 1.33𝜆,
where 𝜆 is the wavelength in the host medium. As it can be
observed in Figures 1(d) and 1(e), the reconstruction obtained
by using the original TV-CS approach (equation (4)) is not
able to correctly identify the shape of the objects, which are
reconstruced as squares rather than circles. A much more
accurate solution is instead found by means of the proposed
approach (see Figures 1(f) and 1(g)). In fact, the (octagonal)
shape resembles more accurately the (circular) ground truth,
and the reconstruction error is equal to 6%.

The second example deals with two lossless L-shape
targets with different dielectric permittivity (𝜀1 = 1.8 and
𝜀2 = 1.5). Furthermore, 𝑁 = 50 × 50,𝑀 = 26, 𝑅 = 4𝜆, and
𝐿𝐷 = 3𝜆. As discontinuities are indeed parallel to the 𝑥 and

𝑦 axes, the original approach performs better than the new
one (see Figure 2). However, the presence of the new termD𝑑
which appears in the approach (5) still allows a satisfactory
reconstruction.

In the third example, we consider an inhomogeneous
square scatterer with 𝜀max = 0.6. Furthermore,𝑁 = 32 × 32,
𝑀 = 21, 𝑅 = 4𝜆, and 𝐿𝐷 = 2𝜆. In this case, we explore
performances of both approaches (4) and (6). Moreover, by
taking advantage of the fact that we are dealing with convex
problems by virtue of the introduced approximations, we also
add physical constraints on the contrast we are looking for.
In particular, we enforce a positive real part and a negative
imaginary part of the complex unknown 𝜒. By observing
Figures 3(c)–3(f), it is obvious that the new approach is able
to retrieve the profile with more accuracy, as also witnessed
by the reconstruction errors equal to 10% and 7% for the two
cases, respectively.

In the last example, a square ring scatterer with 𝜀 = 1.3
is considered (see Figure 4), and we consider again both the
proposed procedures (4) and (6). In particular,𝑁𝑐 = 32 × 32,
𝑀 = 21, 𝑅 = 4𝜆, and 𝐿𝐷 = 1.33𝜆. As in the previous case,
the reconstruction using the first approach already gives an
accurate result and suggests that the scatterer at hand is in
the class suitable for the approach described in Section 3.2.
Then, application of the formulation (6) allows a still better
reconstruction, achieving an error as low as 1.5%.

5. Conclusions

In this paper, we have introduced two newCS-TV approaches
which, together with a recently introduced linear scattering
model for quantitative profile inversion, allow us to achieve
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Figure 2: The double L scattering system. (a) Real part of the contrast reference profile. (b) Normalized logarithmic LSM indicator with the
selected pivot points superimposed as dots. The retrieved profile by means of the approach (4) (𝛿 = 0.2‖b‖

ℓ2
and err = 9%): (c) real and (d)

imaginary part. The retrieved profile by means of the approach (5) (𝛿 = 0.2‖b‖
ℓ2
and err = 11%): (e) real and (f) imaginary part.
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Figure 3:The inhomogeneous square example. (a) Real part of the contrast reference profile. (b) Normalized logarithmic LSM indicator with
the selected pivot points superimposed as dots. The retrieved profile by means of the approach (4) (𝛿 = 0.32‖b‖

ℓ2
and err = 10%): (c) real and

(d) imaginary part. The retrieved profile by means of the approach (6) (𝛿 = 0.32‖b‖
ℓ2
and err = 7%): (e) real and (f) imaginary part.
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Figure 4:The ring square example. (a) Real part of the contrast reference profile. (b) Normalized logarithmic LSM indicator with the selected
pivot points superimposed as dots.The retrieved profile bymeans of the approach (4) (𝛿 = 0.072‖b‖

ℓ2
and err = 8%): (c) real and (d) imaginary

part. The retrieved profile by means of the approach (6) (𝛿 = 0.072‖b‖
ℓ2
and err = 1,5%): (e) real and (f) imaginary part.
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nearly optimal reconstructions of arbitrarily shaped and
piecewise nonweak targets. In this respect, it has been
shown that it is possible to improve performances of TV-
CS approaches by introducing new cost functions based on
directional derivatives to pursue accurate reconstructions of
nonsquared objects as well as on second order derivatives
to further enhance sparsity of the unknown in the case of
scatterers constituted by a superposition of squares and
rectangles. Joint exploitation of these concepts and their
extensions to the 3D case is currently under investigation.
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