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a b s t r a c t 

The standard displacement based inelastic beam element suffers of approximations related 

to the inability of the cubic polynomial interpolation functions to properly describe the 

displacement response of the beam when exhibiting inelastic behaviour. The increase of 

the number of finite elements, or the use of higher order functions with additional inter- 

nal degrees of freedom, are common remedies suggested to improve the approximation 

leading to an unavoidable reduction of the computational efficiency. Alternatively, it has 

been shown that the development of force based finite elements, based on the adoption of 

exact force shape functions, lead to more accurate results, although requiring different and 

more complicated iterative solution strategies. Within this scenario, this paper proposes 

a new inelastic beam element, within the context of the displacement based approach, 

based on variable displacement shape functions, whose analytic expressions are related 

to the plastic deformation evolution in the beam element. The adaptive generalised dis- 

placement shape are obtained by identifying, at each step, an equivalent tangent beam, 

characterised by abrupt variations of flexural stiffness, as a suitable representation of the 

current inelastic state of the beam. The presented approach leads to the formulation of a 

Smart Displacement Based (SDB) beam element whose accuracy appears to be comparable 

to those obtained through a force based approach but requiring a reduced implementation 

effort and a more straightforward approach. The term ‘smart’ aims at emphasizing the 

ability of the element to upgrade the displacement field according to the current inelastic 

state. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

The most diffused computational models for the linear and nonlinear, elastic and inelastic, beam bending problems rely

on a discretisation of the one-dimensional continuous beam by means of finite elements. Since the initial proposition of

the finite element basic idea, the specific literature on the subject developed, with particular attention, both to theoretical

and computational aspects also due to the parallel dramatic progression of the hardware computer facilities. The novelties

relevant to this topic are still numerous and testify to the current interest both in the scientific community and in the

professional practice. The latter aspect is particularly supported by the implementation into new commercial codes, as well

as frequent updating of existing codes, by the numerous software houses and academic research groups. 
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Besides being outside of the scope of the present paper, the authors feel in awe to even mention the great amount of

the literature on the subject or else to choose the most representative piece of work. Hence, the introductory choice to

clarify the precise context, framing the new idea presented in this work, is made. 

According to the displacement formulation, a beam finite element is defined by means of polynomial interpolation

functions, suitably chosen to approximate the displacement field along the beam span [1–6] . The latter choice affects the

shape into which the element can be deformed and gives rise to the so-called shape functions able to describe, according

to the compatibility relations, the strain components and, furthermore, leads to the definition of the stiffness matrix of the

discretised structure. 

It is generally recognised that displacement based (DB) finite elements are conceptually simple and easy to implement,

however, they are affected by severe approximation, particularly when inelastic analysis has to be performed. When plastic

deformations are involved, accurate results can be achieved by a discretisation of each structural member into several

finite elements (mesh refinement) or by the introduction of higher order displacement shape functions. In both cases, a

good approximation leads inevitably to an increasing number of degrees of freedom and a consequent reduction of the

computational efficiency. The DB finite element approach is also named “stiffness approach” since the element stiffness

matrix is directly derived by the adopted displacement shape functions. 

Despite the initial popularity of DB finite elements, better accuracy in the inelastic analysis of structures have been

successfully obtained by making use of force based (FB) models where the exclusive adoption of force shape functions is

introduced. In fact, force shape functions, describing the internal force distribution, are prone to account for the along span

distributed load and represent the exact solution of the governing equilibrium equations irrespective of the occurrence of

plastic deformations. On the basis of the adopted force shape functions the flexibility matrix of the discretised structure is

built, so that the method is also addressed to as “flexibility approach”. 

One of the first implementations of the FB approach can be found in [7,8] . However, further advances on the method

are contained in [9,10] . One of the reasons that refrained the popularity of the FB approach was due to rare availability

of sectional constitutive laws in terms of flexibility, rather that stiffness matrix. Furthermore, implementing the FB finite

element into codes based on the stiffness method, required an additional inner iterative procedure to determine the element

resisting forces [11] . The latter disadvantage has been somehow avoided by introducing a vector of residual displacements,

in connection with the usual unbalanced forces, that gives rise to additional residual forces to be accounted for in the

global equilibrium equations [12] . 

The FB approach has been also implemented to define a fibre beam element where the sectional constitutive law is

avoided and, rather, the nonlinear constitutive behaviour is remitted to uniaxial fibres into which the section is discretised

[13,14] . The fibre beam element is particularly suitable for reinforced concrete sections [15,16] . Subdivision of the cross

section into fibres, or layers, although with significant increment of the computational effort with regard to the cross

section analysis, it delivers accurate results. Differently from the DB approach, it has to be pointed out that in the FB

finite elements no interpolation for displacements is needed hence the knowledge of the displacement field within the

element is not straightforward. Since in the FB approach deformations are monitored at integration points, to recon-

struct the displacement field a methodology has been developed to interpolate the displacements in terms of curvature

at the integration points, relying on a double integration, named Curvature-Based Displacement Interpolation (CBDI)

[17] . 

Approaches based on independent interpolation of forces and displacements have been addressed to as “mixed methods”

so as to capture the advantages of both stiffness and flexibility formulations [18–20] . In most cases the mixed approach is

adopted for applications with displacement dependent equilibrium equations. Differently from other proposed approaches

[21,22] a full variationally consistent mixed method, based on the Hu–Washizu principle, has been proposed in [23] both

for elastic and inelastic analysis of beam-like and frame structures. Precisely, internal forces approximations, satisfying equi-

librium, are introduced together with discontinuous strain approximations, while, for static applications, no displacement

interpolation is needed, being the latter expressed in terms of nodal values. 

Within the framework of the mixed approaches, the procedure of Taylor et al. [23] is appealing since with a reduced

computational effort delivers accurate results, comparable to FB methods, by avoiding cumbersome mesh refinement. 

Bearing in mind the differences highlighted between the mentioned approaches, it can generally be stated that, towards

acquisition of more accurate results, DB models require a mesh refinement while FB may act on increasing the number

of Gauss points to improve the integration of the inelastic constitutive behaviour while leaving unaltered the structural

discretisation (i.e. one finite element each structural member). 

For the latter reason the classical DB approach requires huge computational effort and modelling demands that makes

it unsuitable for the nonlinear analysis of real structures. With this regard the application of nonlinear adaptive analysis

techniques (i.e. automatic mesh refinement) have been proposed in the literature for the analysis of steel frames [24,25] and

reinforced concrete frames [26,27] . The latter approach makes use of a powerful quartic formulation in the elastic range

capable of representing a single entire beam member with one element. Successively, during analysis, all the structural

members are checked for the development of material inelasticity and automatic refined subdivision of quartic elements,

in the inelastic zones into elasto-plastic cubic elements, is performed to account for the diffusion of plasticity across

the section depth and along the element length. The accuracy and efficiency of the adaptive analysis is verified through

applications using the nonlinear analysis program ADAPTIC [28] providing comparisons with results of existing analysis

methods for reinforced concrete frames to illustrate the advantages of the adaptive mesh refinement DB approach. 
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The need of a drastic improvement of the classical DB finite element model for the inelastic analysis of beam-like and

frame structures is the main motivation of this work. The intention is to show that an improvement of the accuracy of the

DB approach, for inelastic analysis of structures, can be pursued without finite element mesh refining, however, by leaving

unaltered the simplicity of the standard approach. Precisely, the construction of new displacement shape functions, to be

updated according to the post-yielding stiffness reduction, is proposed. 

Borrowing the terminology proposed by Izzudin and co-workers, “adaptive shape functions” rather than “adaptive mesh”

is used in this work. To the authors’ knowledge, the only precedent can be found in [29] where flexibility dependent shape

functions are updated during the inelastic analysis with a numerical procedure based on inversion of the flexibility matrix

at each iteration. On the contrary, the shape functions to be updated are proposed in this work under explicit closed form

expressions that do not require additional computational work. 

The above displacement shape function updating is built in the iterative procedure of the Newton–Raphson type and

leads to enriched forms of the structural stiffness matrix and internal as well as external nodal forces. In the proposed

displacement shape functions the stiffness degradation due to the occurrence of inelastic deformations is accounted for, ac-

cording to a stepwise distribution, for the description of the displacement field. Namely the closed form solution, expressed

in terms of generalised functions, of a multi-stepped beam element is adopted for the description of the displacement field

of the beam, as a function of its current inelastic behaviour. The resulting adaptive beam element will be addressed to as

Smart Displacement Based (SDB) element, where the term ‘smart’ is related to the ability of the element to upgrade the

displacement field consistent with its inelastic state. 

The proposed SDB element is able to follow closely the diffusion of plasticity by also including the effect of the

distributed external load providing the final displacement field with no additional iterations and is straightforwardly

implementable into existing displacement based finite element codes. 

The results of the proposed procedure have been tested for beam structures for which exact closed form solutions,

describing diffusion of plastic deformations along the axis, are available in the literature [30] . In latter case a cross sectional

moment curvature constitutive law, inferred by progressive yielding of the cross sections fibres, is considered. Furthermore,

a comparison for a case of an inelastic beam with hardening with the appealing mixed approach proposed in [23] is also

presented. 

2. The multi-stepped linear beam element 

The standard displacement based inelastic beam element suffers of approximations related to the inability of the stan-

dard cubic polynomial interpolation function to properly describe the displacement response of the beam when exhibiting

inelastic behaviour. The occurrence of diffused plastic deformations, along a beam element, is source of abrupt variation of

curvature in those portions of the beam when the plastic deformations occur. As a consequence the assumption of a invari-

able polynomial interpolation function, during the inelastic analysis, is source of approximations that is generally solved by

increasing the number of element and/or by considering higher order functions with additional degrees of freedom. From

a theoretical point of view, the availability of an accurate solution of the displacement function of the beam undergoing

inelastic deformation could allow to maintain the advantages offered by the displacement based approach without the

need to increase the number of element and, as a result, the computational demand. To obtain such a result, the exact

explicit solution of a beam model undergoing abrupt changes of flexural stiffness in a linear context is here proposed as

the starting point for the formulation of a beam finite element able to account for the occurrence of diffused plasticity. For

the latter reason, first, in this section we lay the bases for the formulation of an inelastic one dimensional finite element

by briefly recalling a model of the elastic Euler-Bernoulli beam characterised by multiple abrupt changes of the flexural

stiffness [31,32] . Besides the mentioned plastic deformations, abrupt changes of the flexural stiffness might also be caused

by change of material or of the cross-section or else by the occurrence of damage. The presence of a certain number of

steps in such beams has led to the denomination of “stepped beams”. The latter beams can be studied by means of classical

approaches based on enforcement of transition conditions at the discontinuous cross sections (requiring the introduction

of four additional integration constants for each discontinuity). Alternatively, a more convenient approach based on the so

called transfer matrix approach has been proposed [33,34] . The linear problems of beams in presence of singularities has

been treated successfully by means of the use of distributions, both in static [35–38] and dynamic context [39–41] . The

latter distributional approach led to the formulation of a linear beam finite element able to account for different types of

singularities also by adopting the classical Timoshenko theory to account for the shear deformations [42–45] . 

In this section we will consider the distributional approach based on the integration of the governing equation over a

single integration domain (beam span) by making use of the theory of generalised functions (distributions) to embed the

cross section discontinuities. 

The generalised function approach leads to convenient closed form solutions formulated in terms of ‘four’ integration

constants only depending solely on the end boundary conditions and independent of the along axis discontinuities. Further-

more, the abrupt changes of elastic flexural stiffness considered in this section will be treated, in the following sections,

as representative of the flexural stiffness reduction due to the occurrence of plastic deformations over a specified beam

segment. 
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Fig. 1. A multi-stepped beam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The distributional model for the flexural stiffness EI ( x ) of a multi-stepped beam, as depicted in Fig. 1 , slightly rearranged

with respect to that proposed in [32] , therein used for a linear analysis, is as follows: 

EI(x ) = E I o 

[ 

1 −
n ∑ 

i =1 

( βi − βi −1 ) U(x − x i ) 

] 

(1)

characterised by n abrupt changes of intensity βi − βi −1 at abscissas x i , applied to an initial reference value EI o , where U ( x

− x i ) is the Heaviside (unit step) generalised function. The multi-stepped beam model introduced in Eq. (1) implies that

the beam is composed of n segments with flexural stiffness EI i , i = 1, …, n , by assuming βi = 

E I o −E I i 
E I o 

. 

In particular, the summation term containing the Heaviside function may account for cross-section or material variations

or else, alterations of the flexural stiffness accounting for non linear inelastic behaviour caused by the occurrence of

irreversible plastic deformations in a specified beam segment. In the latter case the parameters βi have to be considered as

variables to be updated according to a chosen plastic constitutive law. Precisely, the values of the parameters βi are inferred,

later in this work, according to the proposed iterative procedure in such a way that the differences βi − βi −1 are associated

to the flexural stiffness change due to the adopted bending moment-curvature cross-section plastic constitutive law. 

The fourth order static governing equation of the multi-stepped Euler-Bernoulli beam subjected to a transversal load

p̄ (x ) distribution, accounting for the spatial variable flexural stiffness EI ( x ) as defined in Eq. (1) , is written as follows: 

E I o 
d 2 

d x 2 

{ [ 

1 −
n ∑ 

i =1 

( βi − βi −1 ) U(x − x i ) 

] 

d 2 

d x 2 
v (x ) 

} 

= p̄ (x ) (2)

where v ( x ) is the transversal deflection function. 

The governing Eq. (2) can be conveniently given a non dimensional form, by considering the dimensionless coordinate ξ
= x / L (being L the beam length), as follows: [ [ 

1 −
n ∑ 

i =1 

( βi − βi −1 ) U(ξ − ξi ) 

] 

u 

II (ξ ) 

] II 

= p(ξ ) (3)

where the apex indicates the differentiation with respect to ξ . 

Eq. (3) is expressed in term of the normalised deflection function u (ξ ) = 

v (ξ ) 
L and the normalised transversal load

parameter p(ξ ) = 

p̄ (ξ ) 
E I o 

L 3 . 

The procedure to derive the closed form expression of the normalised governing Eq. (3) can be initiated by a straight

double integration as follows: 

u 

II (ξ ) = 

1 

1 −∑ n 
j=1 ( βi − βi −1 ) U(ξ − ξi ) 

[
p [2] (ξ ) + b 1 ξ + b 2 

]
(4)

where b 1 , b 2 are integration constants and p [ k ] ( ξ ) indicates the k th primitive function of the external load p ( ξ ), namely

p [1] (ξ ) = 

∫ ξ
0 

p( s 1 ) d s 1 , p [2] (ξ ) = 

∫ ξ
0 

∫ s 1 
0 

p( s 2 ) d s 2 d s 1 , and so on. 

In view of the well known properties of the Heaviside generalised function, Eq. (4) can also be written as follows: 

u 

II (ξ ) = 

[ 

1 + 

n ∑ 

i =1 

βi 
∗
U(ξ − ξi ) 

] [
p [ 2 ] (ξ ) + b 1 ξ + b 2 

]
(5)

where the following new parameters β i 
∗ have been defined: 

βi 
∗ = 

βi 

1 − βi 

− βi −1 

1 − βi −1 

(6)
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Integration of Eq. (5) , in view of the integration rules of the distributions and after simple algebra, leads to the following

explicit expressions for the transversal deflection function u ( ξ ): 

u (ξ ) = c 1 + c 2 ξ + c 3 

[ 

ξ 2 + 

n ∑ 

j=1 

βi 
∗
(ξ − ξi ) 

2 
U(ξ − ξi ) 

] 

+ c 4 

[ 

ξ 3 + 

n ∑ 

j=1 

βi 
∗
( ξ 3 − 3 ξ 2 

i ξ + 2 ξ 3 
i ) U(ξ − ξi ) 

] 

+ p [4] (ξ ) + 

n ∑ 

i =1 

βi 
∗[

p [4] (ξ ) − p [4] ( ξi ) 
]
U(ξ − ξi ) −

n ∑ 

i =1 

βi 
∗
p [ 3 ] ( ξi )(ξ − ξi ) U(ξ − ξi ) (7) 

where the integration constants have been re-defined as c 3 = −b 2 /2, c 4 = −b 1 /6, and the additional constant c 1 , c 2 has

been introduced. 

Eq. (7) can be written is the following form useful for the subsequent algebraic manipulations. 

u (ξ ) = c 1 + c 2 ξ + c 3 f 3 (ξ ) + c 4 f 4 (ξ ) + f 5 (ξ ) (8) 

in which, by comparison with Eq. (7) , the definition of the functions f j ( ξ ), j = 3, …, 5 is straightforward . 

The closed form expression of the rotation function is straightforwardly related to the displacement first derivative: φ( ξ )

= −u I ( ξ ). 

It has to be noted that the transversal displacement and the rotation functions, provided by Eq. (7) and its first deriva-

tive, respectively, are continuous functions despite the presence of the Heaviside generalised function appearing in Eq. (7) .

However, the curvature function, obtained as χ ( ξ ) = −u II ( ξ ) by the second derivative of Eq. (7) presents discontinuities at

cross sections ξ i due to the flexural stiffness changes. 

Eq. (7) , where the integration constants c 1 , c 2 , c 3 , c 4 are to be determined by imposing the relevant boundary conditions,

represents the explicit solution of the multi-stepped Euler-Bernoulli beam subjected to any external transversal load. It is

worth noting that continuous, discontinuous and singular (concentrated load) distribution laws can be considered in Eq.

(7) by the terms related to the external load. 

The exact solution of the stepped beam, expressed Eq. (7) , is exploited in the next section for the definition of a non

linear inelastic beam element whose shape function are related to the current beam state by considering a stepped beam

whose stiffness distribution, for each step, is related to the corresponding inelastic deformation. 

3. A novel inelastic beam finite element with distributed plasticity 

In this section, by exploiting the closed form solution presented in Eq. (7) , a novel displacement based beam element

with distributed plasticity is formulated. Such an element is characterised by the capability of adapting its stiffness matrix

by means of displacement shape functions enriched by generalised functions (distributions) including the effect of plastic

deformation occurrences on transversal displacements. Accordingly, the proposed element will be addressed to as “Smart

Displacement Based” (SDB) beam element to be distinguished by classical displacement based elements characterised by 

constant displacement shape functions independently on the plastic burden. 

Within the non linear Newton–Raphson type iterative integration procedure, the displacement shape function updating

is governed by the element state determined on the basis of integration of the cross-section plastic constitutive laws at the

chosen Gauss points. 

The adopted procedure represents the counterpart, in a displacement based approach, of those forced based procedures

based on exact internal forces shape functions that are not affected by plastic occurrences [7–12] . Yet, the proposed

procedure does not require additional inner iterations when it is adopted in a standard finite element (FE) displacement

based (stiffness) code. Furthermore, the great advantage derived by operating in the displacement approach is that the

deformed shape of each beam element is naturally derived by the displacement shape function without requiring any

additional integration procedure as required by FB approaches [17] . 

Without lack of generality, with the aim of focussing on the capability of the generalised functions to capture the

influence of plastic deformations on the in-plane bending behaviour only, the axial behaviour is not included in the model.

However, some theoretical details regarding the out-of-plane bending are reported in the Appendix. 

Finally, the shear deformability is also neglected since the so called “flexural-shear interaction” during the occurrence of

the plastic deformations is still an open non trivial issue deserving an ad hoc study as also summarised in [46,47] and the

references therein reported. 

A great computational advantage of the proposed beam element is that no sub-element discretisation is required when

abrupt changes of curvature occur between successive plastic beam segments. The number of degrees of freedom required

during the non linear analysis remains unaltered with respect to the initial discretisation. The displacement field along the

span of the beam element is that consistent with the model adopted for the plastic deformation distribution and is also

able to account for the presence of any external load distribution. 

3.1. Definition of the beam element 

Since only the in-plane bending behaviour is considered, the new beam element is here defined in the x, z plane

as shown in Fig. 2 . The beam element connects joints i and j and the nodal displacements given by the transversal
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a b

Fig. 2. The plane beam element: (a) nodal displacements, (b) nodal forces. 

Fig. 3. The beam element subdivision into segment with reduced bending stiffness. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

displacements and rotations at nodes i and j , as in Fig. 2 a are collected in the vector q e = { q 1 , q 2 , q 3 , q 4 } 
T . Furthermore,

nodal forces provided by shear forces and bending moments at nodes i and j , as in Fig. 2 b, are collected in the vector Q e =
{ Q 1 , Q 2 , Q 3 , Q 4 } 

T . 

3.2. The adopted displacement shape functions 

The shape functions, adopted by classical formulations for the discretisation of the beam element displacement field, are

based on the adoption of Hermite polynomials which, however, are not able to capture the curvature variations due to along

axis plastic deformation occurrences. The latter circumstance results in the inadequacy of such shape functions to properly

represent the displacement field in presence of flexural stiffness variations implied by plastic constitutive behaviour. On the

contrary, the displacement based inelastic beam element proposed in this work, starting from the state of the homogeneous

beam, aims at updating the displacement shape functions, according to the element state determination, depending on the

local stiffness variations in the current element state. 

To this aim the closed form solutions, enriched by the use of generalised functions, presented in the previous section for

the multi-stepped beam, as in Eq. (7) , are exploited to define suitable displacement shape functions for the beam element.

The latter shape functions embed multiple stiffness variations with the great advantage of being dependent solely on the

nodal degrees of freedom as for the homogeneous beam. 

The numerical integration methods usually adopted to perform the element state determination are based on the Gauss

procedure. The Gauss integration procedure provides approximations of integrals of regular functions over continuous

domains by means of the values of the integrand at pre-established Gauss integration points, endowed with suitable

weights. The chosen Gauss points represent control sections where the plastic constitutive laws are usually integrated

according to a discrete incremental approach. 

The present formulation regards the integration of functions containing distributions (generalised functions); the weight

associated by the integration procedure to each Gauss point, assumed to be representative of the length of the beam

segment with the reduced stiffness due to the plastic deformations, indicates the position of the generalised function steps

occurring in Eq. (7) as specified in what follows. 

In Fig. 3 an initially homogeneous beam with n Gauss points ( control sections ) is depicted. Precisely, in the current study,

the Gauss–Lobatto integration scheme is used since the first and last integration points are always chosen coincident with

the end sections. The weights and positions of the Gauss points are indicated as w i and ξG 
i 

, i = 1, …, n , respectively. 

According to the classical Newton–Raphson approach to solve non linear incremental problems in the context of

holonomic plasticity in each time step, an incremental iterative solution procedure is followed in this work. 

In the generic step of the incremental integration procedure in presence of plastic occurrences, the beam can be

considered as subdivided into n segments of length w i (length of the integration point) each characterised by a reduced

bending stiffness E I i = EI(ξG 
i 
) evaluated at the relevant Gauss point. 

The position ξG 
i 

of the integration points and the length of the reduces stiffness segment w i , according to the Gauss–

Lobatto integration procedure, imply abrupt changes of flexural stiffness with discontinuities in the curvature functions at

abscissas ξi = 

∑ i −1 
j=1 w j , i = 1 , 2 , . . . , n . 

The abscissas of the flexural stiffness discontinuity occurrences are collected in the vector ξEI = { ξ 1 , ξ 2 , …, ξ i , …, ξ n } 
T =

{0, w 1 , ( w 1 + w 2 ), …, ( w 1 + w 2 + … + w n − 1 )} 
T . On the other hand, the discontinuity parameters β i and β∗

i 
are collected

in the vectors β = { β
1 
, β

2 
, . . . , βn } T and β∗ = { β∗

1 
, β∗

2 
, . . . , β∗

n } T , respectively. 

The proposed SDB beam element is characterised by the parameters collected in the vectors ξEI (positions of the flexural

stiffness changes) and β∗ (intensity of the flexural stiffness changes) required by Eqs. (7) and (8) for the beam with n

flexural stiffness changes. 
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The shape functions of the transversal displacement u ( ξ ) for the proposed beam element are determined by imposing

the following nodal displacements and rotations: 

u (0) = q 1 ; ϕ(0) = −u 

I (0) = −q 2 ; u (1) = q 3 ; ϕ(1) = −u 

I (1) = −q 4 (9) 

Imposition of the boundary conditions in Eq. (9) onto the closed form expression proposed in Eq. (7) , and its first derivative,

leads to the expressions of the beam axis transversal deflection in terms of nodal displacements and the external load

function as follows: 

u (ξ ; ξEI 
, β

∗
) = 

[
N 1 (ξ ; ξEI 

, β
∗
) N 2 (ξ ; ξEI 

, β
∗
) N 3 (ξ ; ξEI 

, β
∗
) N 4 (ξ ; ξEI 

, β
∗
) 
]⎡ 

⎢ ⎣ 

q 1 
q 2 
q 3 
q 4 

⎤ 

⎥ ⎦ 

+ u p 

(
ξ ; ξEI 

, β
∗
)

= N (ξ ; ξEI 
, β

∗
) · q e + u p ( ξ ; ξEI 

, β
∗
) (10) 

where N j ( ξ ; ξEI , β∗), j = 1, …, 4, are the first four displacement shape functions, collected in the row vector N ( ξ ; ξEI ,

β∗), dependent on the abscissas and intensity of the flexural stiffness discontinuities in the vectors ξEI , β∗, respectively,

and the nodal displacements are collected in the vector q e = [ q 1 q 2 q 3 q 4 ] 
T . It is worth to notice that the last term in

Eq. (10) u p ( ξ ; ξEI 
, β∗

) , dependent on the vectors ξEI , β∗, provides the contribution of the external load p ( ξ ) to the

transversal displacement in addition to the displacement shape functions. 

It has to be noted that the functions N j ( ξ ; ξEI , β∗), j = 1, …, 4 and u p ( ξ ; ξEI 
, β∗

) allow the reconstruction of the

element deformed configuration once the nodal displacements are evaluated. 

The explicit expressions of the shape functions N j ( ξ ; ξEI , β∗), j = 1, …, 4 of the transversal displacement u ( ξ ) of the

beam axis in view of the compact Eq. (8) can be written as follows: 

N j (ξ ; ξEI 
, β

∗
) = 

j C 1 + 

j C 2 ξ + 

j C 3 f 3 (ξ ) + 

j C 4 f 4 (ξ ) , j = 1 , . . . , 4 (11) 

where 

1 C 1 = 1 ; 1 C 2 = 0 ; 1 C 3 = − f 4 
I 
(1) 

w 

; 1 C 4 = 

f 3 
I 
(1) 

w 

;

2 C 1 = 0 ; 2 C 2 = 1 ; 2 C 3 = 

− f 4 
I 
(1) + f 4 (1) f 2 

I 
(1) 

w 

; 2 C 4 = 

− f 3 (1) + f 3 
I 
(1) 

w 

;
3 C 1 = 0 ; 3 C 2 = 0 ; C 3 3 = 

f ′ 4 (1) 

w 

; 3 C 4 = − f ′ 3 (1) 

w 

;
4 C 1 = 0 ; 4 C 2 = 0 ; 4 C 3 = − f 4 (1) 

w 

; 4 C 4 = 

f 3 (1) 

w 

; (12) 

while the term related to the contribution of the external load is given as follows: 

u p 

(
ξ ; ξEI 

, β
∗
)

= 

f 4 (1) f 5 
I 
(1) − f 5 (1) f 4 

I 
(1) 

w 

f 3 (ξ ) + 

f 5 (1) f 3 
I 
(1) − f 3 (1) f 5 

I 
(1) 

w 

f 4 (ξ ) + f 5 (ξ ) (13) 

and 

w = f 3 (1) f 4 
I 
(1) − f 4 (1) f 3 

I 
(1) (14) 

3.3. The element curvature and bending moment distribution 

The curvature χ ( ξ ; ξEI , β∗) of the proposed plane beam element can be expressed in terms of nodal displacements and

distributed external forces as follows: 

χ(ξ ; ξEI 
, β

∗
) = B (ξ ; ξEI 

, β
∗
) · q e − u 

II 
p 

(
ξ ; ξEI 

, β
∗
)

(15) 

where B ( ξ ; ξEI , β∗), are defined as follows: 

B (ξ ; ξEI 
, β

∗
) = 

[ 
−N 

II 
1 (ξ ; ξEI 

, β
∗
) − N 

II 
2 (ξ ; ξEI 

, β
∗
) − N 

II 
3 (ξ ; ξEI 

, β
∗
) − N 

II 
4 (ξ ; ξEI 

, β
∗
) 
] 

(16) 

is a row vector the matrix collecting the curvature shape functions obtained as second derivatives of the transversal
displacement shape functions containing the effect of the discontinuities. The function u II p ( ξ ; ξEI 

, β∗
) appearing in Eq. (15) ,

also dependent on the state of the beam element, contains the contribution to the curvature function of the external

distributed load p ( ξ ). 

In the presented plane beam element the normalised bending moment M z ( ξ ) is related to the curvature by means of

the following relationship: 

M(ξ ; ξEI 
, β

∗
) = k (ξ ; ξEI 

, β) χ(ξ ; ξEI 
, β

∗
) (17) 

where k (ξ ; ξEI 
, β) = 1 −∑ n 

i =1 ( βi − βi −1 ) U(ξ − ξi ) , according to Eq. (3) , is the normalised cross-section flexural stiffness

dependent on the β i discontinuity parameters collected in the vector β and the position ξ i of their occurrences. 
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In Eq. (17) the dependence of the flexural stiffness on the extension and intensity of the plastic zones through the non

dimensional parameters ξ i , β i , according to the model proposed in Eq. (3) , is indicated explicitly. The non linear variation of

the flexural stiffness, as plastic deformations occur, will be explicit formulated by updating the vector β, in the relevant beam

segments identified by the vector ξEI , according to the sectional incremental constitutive law formulated in the next section.

3.4. The element stiffness matrix 

The relationship between the normalised force and displacement element nodal vectors Q e and q e , respectively, can be

inferred by the application of the principle of virtual work involving the curvature function χ ( ξ ) and the bending moment

M ( ξ ) as follows: 

Q 

T 
e · δq e = 

∫ 1 

0 

M(ξ ; ξEI 
, β

∗
) δχ(ξ ; ξEI 

, β
∗
) dξ ∀ δq e , δχ(ξ ; ξEI 

, β
∗
) (18)

where δ indicates virtual quantities. Substitution of the relation expressed by Eq. (17) into Eq. ( 18 ) leads to: 

Q 

T 
e · δq e = 

∫ 1 

0 

χ(ξ ; ξEI 
, β

∗
) k (ξ ; ξEI 

, β) δχ(ξ ; ξEI 
, β

∗
) dξ (19)

Further substitution of Eq. (15) , purged of the external load contribution u II p ( ξ ; ξEI 
, β∗

) , accounting for the proposed

deformation shape functions of the multi-stepped beam, into Eq. (19) provides the following relationship: 

Q 

T 
e · δq e = q 

T 
e ·
∫ 1 

0 

B 

T (ξ ; ξEI 
, β

∗
) k (ξ ; ξEI 

, β) B (ξ ; ξEI 
, β

∗
) dξ · δq e (20)

Eq. (20) implies the following relationship between the force and displacement element nodal vectors Q e and q e : 

Q e = K e ( ξ
EI 

, β, β
∗
) · q e (21)

where K e ( ξEI , β, β∗) is the element stiffness matrix, dependent on the current state of the element by means of the plastic

intensity parameter vectors β, β∗ and the plastic segment extension vector ξEI , defined as follows: 

K e ( ξ
EI 

, β, β
∗
) = 

∫ 1 

0 

B 

T (ξ ; ξEI 
, β

∗
) k (ξ ; ξEI 

, β) B (ξ ; ξEI 
, β

∗
) dξ (22)

The expression reported in Eq. (22) shows clearly how the element stiffness matrix K e , differently from the classical

displacement based approach commonly adopted in the literature, depends on the variation of the shape functions which

are updated in accordance to the parameter vector β∗. 

According to the Gauss integration scheme the element stiffness matrix in Eq. (22) can be evaluated as follows: 

K e ( ξ
EI 

, β, β
∗
) ≈

N ∑ 

r=1 

B 

T (ξG 
r ; ξEI 

, β
∗
) k (ξG 

r ; ξEI 
, β) B (ξG 

r ; ξEI 
, β

∗
) w r (23)

In Eq. (23) N is the number of Gauss points adopted in the integration scheme. In the numerical applications conducted in

the present study different integrations have been performed by considering N varying up to 10 Gauss points. 

It is worth noting that the curvature shape functions involved in the matrix B ( ξ ; ξEI , β∗), since obtained by the

second derivative of the displacement shape functions reported in Eq. (10) , are discontinuous functions at cross sections

ξi = 

∑ i −1 
j=1 w r , i = 1 , 2 , . . . , n where the bending stiffness undergoes abrupt changes in the considered model. The extended

form of the element stiffness matrix K e ( ξEI , β, β∗) provided by Eq. (23) , in view of Eqs. (16) , is reported as follows:: 

K e ( ξ
EI 

, β
∗
) = 

N ∑ 

r=1 

⎡ 

⎢ ⎢ ⎣ 

k (ξG 
r ) N 

II 
1 

2 
(ξG 

r ) k (ξG 
r ) N 

II 
1 (ξ

G 
r ) N 

II 
y 2 (ξ

G 
r ) k (ξG 

r ) N 

II 
1 (ξ

G 
r ) N 

II 
z3 (ξ

G 
r ) k (ξG 

r ) N 

II 
1 (ξ

G 
r ) N 

II 
4 (ξ

G 
r ) 

k (ξG 
r ) N 

II 
2 

2 
(ξG 

r ) k (ξG 
r ) N 

II 
2 (ξ

G 
r ) N 

II 
3 (ξ

G 
r ) k (ξG 

r ) N 

II 
2 (ξ

G 
r ) N 

II 
4 (ξ

G 
r ) 

k (ξG 
r ) N 

II 
3 

2 
(ξG 

r ) k (ξG 
r ) N 

II 
3 (ξ

G 
r ) N 

II 
4 (ξ

G 
r ) 

sym k (ξG 
r ) N 

II 
4 

2 
(ξG 

r ) 

⎤ 

⎥ ⎥ ⎦ 

w r (24)

The terms in Eq. (24) deserving attention, with respect to the standard stiffness matrix formulation, are the curvature shape

functions N 

II 
j 
(ξG 

r ; ξEI 
, β∗

) , j = 1 , . . . , 4 evaluated at the Gauss points ξG 
r , to be updated during the iterative procedure. 

3.5. The nodal resisting forces and the nodal forces equivalent to the external load 

Besides the element constitutive relation in terms of nodal force and displacement quantities expressed by Eq. (21) , the

normalised element nodal resisting forces Q e to be replaced in the structural global equilibrium equations can be deter-

mined, again, by making use of the principle of virtual work as formulated in Eq. (18) . However, in this case, substitution

of Eq. (15) into Eq. (18) leads to: 

Q 

T 
e · δq e = 

∫ 1 

M(ξ ; ξEI 
, β

∗
) B (ξ ; ξEI 

, β
∗
) dξ · δq e (25)
0 
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Eq. (25) implies the following definition for the element nodal resisting forces in terms of bending moment distribution

M ( ξ ; ξEI , β∗): 

Q e ( ξ
EI 

, β
∗
) = 

∫ 1 

0 

B 

T (ξ ; ξEI 
, β

∗
) M(ξ ; ξEI 

, β
∗
) dξ (26) 

As considered for the element stiffness matrix, the expression reported in Eq. (26) shows that the element nodal resisting

forces Q e , differently from the classical displacement based approach commonly adopted in the literature, depends on the

variation of the shape functions which are updated in accordance to the parameter vector β∗ and the related discontinuity

position vector ξEI . 

The element nodal resisting forces Q e , provided by Eq. (26) , can be numerically evaluated according to the Gauss

integration scheme as follows: 

Q e ( ξ
EI 

, β
∗
) ≈

N ∑ 

r=1 

B 

T (ξG 
r ; ξEI 

, β
∗
) M(ξG 

r ; ξEI 
, β

∗
) w r (27) 

Again, the number of Gauss points N appearing in Eq. (27) have been considered, in the numerical applications reported in

Section 5 , variable from a minimum of 3 up to 10 Gauss points. 

On the other hand, the nodal forces equivalent to the along axis external forces, to be balanced by the internal forces

determined by means of Eq. (27) , are given as: 

P e ( ξ
EI 

, β
∗
) = 

∫ 1 

0 

N 

T (ξ ; ξEI 
, β

∗
) p(ξ ) dξ (28) 

The element nodal external forces P e , provided by Eq. (28) , can be numerically evaluated according to the Gauss integration

scheme as follows: 

P e ( ξ
EI 

, β
∗
) ≈

N ∑ 

r=1 

N 

T (ξG 
r ; ξEI 

, β
∗
) p(ξG 

r ) w r (29) 

4. The sectional constitutive law and the exact solution for straight beams 

In this section the constitutive law, adopted to perform the non linear plastic analysis, of beam elements, is specified.

In particular, since the aim of the work is testing the performance of the shape functions proposed in the previous section

against exact solutions, an elastic- perfectly plastic behaviour of the material (i.e. no plastic hardening/softening is allowed

both in tension and compression) is assumed. However, it has to be pointed out that introduction of a linear or non linear

post elastic material behaviour can also be treated by suitable integration of the constitutive law at Gauss point level by

means of known procedures available in the literature. 

According to a perfectly plastic behaviour, a cross section subject to bending undergoes a development of plastic

deformations, dependent on the stress distribution across the height, following the material fibres that progressively exceed

the yield stress σ o . The latter phenomenon determines a non linear inelastic bending moment-curvature relationship ruled

by the geometry of the cross-section. 

For the case of rectangular cross section, defined by width b and height 2 h , and material with no hardening/softening,

the relationship between bending moment M ( ξ ) and curvature χ ( ξ ) can be written, by using dimensional quantities, as

follows [30] : 

χ = 

{ 

3 
2 

M 

Eb h 3 
if | M | ≤ M e 

− K √ 

M p −| M | if | M | > M e 
(30) 

where M e = 

2 
3 b h 

2 σo and M p = bh 2 σ o are the limit elastic moment and the fully plastic moment, respectively, being | M | =
M e the condition for initiation of plastic deformation starting at the curvature value χe = 

σo 
Eh 

. Furthermore, the constant K

in Eq. (30) is defined as K = sign [ −M ] 

√ 

bσ 3 
o 

3 E 2 
. The bending moment-curvature relationship in Eq. (30) is plotted in Fig. 4 . 

Once the bending moment-curvature relationship has been set, Eq. (30) itself, in view of the relationship χ = − d 2 u 
d x 2 

, can

be considered as a second order non linear differential equation to be integrated over the beam domain 	 = [0, L ] to be

partitioned into n e elastic subdomains 	(i ) 
e , i = 1 , . . . , n e , (where | M | ≤ M e ) and n p plastic sub-domains 	( j) 

p , j = 1 , . . . , n p ,

(where | M | > M e ) as follows: 

d 2 u (x ) 

d x 2 
= 

{ 

− 3 
2 

M(x ) 
Eb h 3 

in 	(i ) 
e , i = 1 , . . . , n e 

K √ 

M p −| M(x ) | in 	( j) 
p , i = 1 , . . . , n p 

(31) 

Integration of Eq. (31) is particularly convenient for statically determinate beams since the bending moment distribution is

dependent only on the external loads and consequently the domain subdivision into elastic and plastic sub-domains can be

a priori inferred and are not influenced by the presence of plastic strains. 
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Fig. 4. The bending moment-curvature relationship in Eq. (30) for a rectangular cross-section with elastic, perfectly plastic material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Precisely, the closed form solution of Eq. (31) in terms of displacement u y ( x ) proposed in [30] is obtained by the sum of

the homogeneous u H y (x ) and a particular u P y (x ) solution as follows: 

u (x ) = u 

H (x ) + u 

P (x ) (32)

where the homogeneous solution is given as u H (x ) = C 1 x + C 2 , being C 1 , C 2 integration constants. A particular solution for

a second order polynomial form for the bending moment M ( x ) = m 2 x 
2 + m 1 x + m o , as in the most common load cases, is

as follows in the elastic sub-domains 	(i ) 
e , i = 1 , . . . , n e : 

u 

P (x ) = − x 2 

8 Eb h 

3 
( m 2 x 

2 + 2 m 1 x + 6 m o ) (33)

while it takes the following forms in the plastic sub-domains 	(i ) 
p , i = 1 , . . . , n p according to the degree n = 0, 1, 2 of the

bending moment polynomial: 

u 

P (x ) = 

K 

2 

√ 

M p − | m o | 
x 2 for n = 0 

u 

P (x ) = 

4 K 

3 m 

2 
1 

√ 

( M p − | M(x ) | ) 3 for n = 1 

u 

P (x ) = 

⎧ ⎨ 

⎩ 

K 

2 
√ 

| m 2 | 3 
[ 

T (x ) arcsin 

(
T (x ) 
| D | 
)

+ 

√ 

D 

2 − T 2 (x ) 
] 

if sign [ M(x ) ] m 2 > 0 

K 

2 
√ 

| m 2 | 3 
[ 

T (x ) arsh 

(
T (x ) 
| D | 
)

−
√ 

D 

2 + T 2 (x ) 
] 

if sign [ M(x ) ] m 2 < 0 

for n = 2 (34)

where T ( x ) is the shear force distribution and D is the discriminant of the second order equation M p − | M | = 0. 

The non linear constitutive law for a rectangular cross section reported in Eq. (30) will be adopted in the following

applications. 

The closed form solution in terms of displacement function reported in Eqs. (32) –(34) is adopted as a benchmark

solution to test the performance of the proposed SDB beam element for a specific case of straight beam already treated in

the literature. In other cases the proposed element is tested against the classical DB finite element approach, a FB approach

and a mixed approach. 

5. Applications 

5.1. Cantilever beam 

The case of cantilever beam with a concentrated tip load with length L = 4 m and rectangular cross section with width

b = 30 cm and height 2 h = 40 cm, is considered first. The material is characterised by Young modulus E = 210 0 0 0 MPa and

yield stress σ o = 300 MPa and the cross section bending moment-curvature constitutive law is given by Eq. (30) with M e

= 2400 kNm, M p = 3600 kNm and χ e = 7, 14286 · 10 -5 cm 

-1 . 

On the account of the above considered material and geometric data, the ultimate load of the cantilever beam is F p =
900 kN. The following numerical applications are based on different approaches and have been executed by means of the

Newton–Raphson iterative algorithm by considering different numbers of FEs for the along axis discretisation. 

Fig. 5 shows the tip load value versus the vertical displacement of the end cross section. The analyses have been

performed by means of the proposed SDB FE by making use of displacement shape function updating during the plastic

deformation occurrences and by means of the classical DB FE with constant shape functions. In both cases, five integration

points have been considered in each non linear finite element. 
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a

b

Fig. 5. Tip load-vertical displacement curve of the cantilever beam: (a) classical DB versus FB approach; (b) proposed SDB versus FB approach. 

Table. 1 

Ultimate load error of the SDB and DB approaches for different FE discretisation. 

Number of Elements 1 2 4 8 

SDB F [kN] 927,47 920,18 913,83 909,07 

Error [%] 3,05 2,24 1,54 1,01 

DB F [kN] 1195,72 1040,92 969,15 934,82 

Error [%] 32,86 15,66 7,68 3,87 

 

 

 

 

 

 

 

 

 

 

In particular, in Fig. 5 a and b the force-displacement curves for an increasing number of classical DB FEs and by means

of the proposed SDB FE, respectively, are plotted and compared with the FB approach obtained with the SeismoStruct

software [46] . 

Analysis of Fig. 5 reveals that updating the shape functions during the iterative integration procedure, according to

expressions reported in Eqs. (11) , (12) and the related expressions of the stiffness matrix and the nodal forces, results in a

better performance of the displacement based approach (if generalised functions are employed) requiring a small number

of elements for an accurate analysis. 

The details of the errors of the DB and SDB approaches with respect to the theoretical ultimate load F p = 900 kN are

reported in Table. 1 . 

It has to be noted an error of about 3% if a single beam element with updating shape functions is adopted, compared to

almost 33% error if the displacement shape functions are kept constant. 

Furthermore, the performance of the proposed approach for different numbers of integration points has been tested. In

Fig. 6 a and b the tip load-vertical displacement curves for the DB and SDB approaches are reported for 3,5,10 integration

points. It can be seen that the results are not sensitive to the number of integration points if the minimum number of 5 is

adopted. The errors, in terms of ultimate load are reported in Table. 2 . 
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a

b

Fig. 6. Tip load-vertical displacement curve of the cantilever beam for different numbers of integration points: (a) classical DB versus FB approach; (b) 

proposed SDB versus FB approach. 

Table. 2 

Ultimate load error of the SDB and DB approaches for different number of integration points. 

Number of integration points 3 5 10 

SDB F [kN] 938,42 927,47 925,90 

Error [%] 4,27 3,05 2,88 

DB F [kN] 1296,80 1207,21 1211,39 

Error [%] 44,09 34,13 34,60 

q

L2=1m

F
b=20 cm

2h
=

40
 c

m

L1=2m

Fig. 7. A simply supported overhanging beam with a distributed and a concentrated load. 

 

 

 

5.2. Simply supported overhanging beam 

The simply supported overhanging beam reported in Fig. 7 with lengths L 1 = 2 m, L 2 = 1 m has been also studied with

the purpose of testing the proposed SDB FE against the closed form solution, able to describe the diffusion of plasticity,

proposed by Stock and Halilovic [30] according to the procedure summarized in Section 4 . The beam has a rectangular cross
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Fig. 8. Vertical load – vertical displacement (at the position of the maximum bending moment) curve of the simply supported overhanging beam in Fig. 

7 for ψ = 0.127 with an increasing number of FEs: (a) DB FE; (b) SDB FE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

section with width b = 20 cm and height 2 h = 40 cm and the material properties, together with the non linear bending

moment-curvature relationship, are those already adopted in the application of the Section 5.1 . 

The beam in Fig. 7 is subjected to a concentrated force F at its free end and a uniformly distributed load q between the

supports. Stock and Halilovic [30] studied the diffusion of plasticity as the loading parameter λ (multiplying both external

loads λF , λq , i.e. proportional loading is assumed) increases, for different values of the ratio ψ = 

F 
q L 1 

between the external

loads governing the location of the maximum bending moment and position of the plastic yielding initiation. 

In the applications the following two values of the external load ratio will be considered: case 1) ψ = 0.127, inducing

plastic yielding between the two supports; case 2) ψ = 0.225 leading to yielding at the right support. The limit elastic

moment is M e = 1600 kNm, while the couples of ultimate load values, inferred by the value of the fully plastic moment M p 

= 2400 kNm, are as follows: case 1)F p = 1600 kN, q p = 63 kNcm; case 2)F p = 2400 kN, q p = 53.33 kNcm . 

In Fig. 8 the results of the incremental analysis in terms of total vertical load V = F + qL 1 versus the vertical dis-

placement at the position of the maximum bending moment for case 1 ) (ultimate vertical load V p = 14200 kN) are

plotted. Precisely, Fig. 8 a reports the curves for an increasing number of classical DB FE, while Fig. 8 b the curves obtained

through the proposed SDB FE and the results are compared with the exact incremental solution by Table. 1 of the

paper [30] . 

Precisely, Fig. 8 a and b are relative to case 1) (ultimate vertical load V p = 14200 kN) and case 2) (ultimate vertical load

V p = 130 6 6 kN) , respectively. 

Fig. 9 reports the results of the incremental analysis in terms of total vertical load V = F + qL 1 versus the vertical

displacement of the free end (case 2) for an increasing number of the classical DB FE ( Fig. 9 a) and the proposed SDB FE

( Fig. 9 b) and compared with the exact incremental solution by Table. 1 of the paper [30] . 

On the other hand, in order to show how the proposed element improves the performance of classical shape functions,

the errors of the SDB and the DB FE approaches in terms of ultimate load value, evaluated with respect to the exact

solution, are reported for comparison purposes in Table. 3 . 
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Fig. 9. Total Vertical load – vertical displacement (at the free end of the beam) curve of the simply supported overhanging beam in Fig. 7 for ψ = 0.225 

with an increasing number of FEs: (a) DB FE model; (b) SDB FE model. 

Table. 3 

Ultimate load error of the SDB and DB approaches for different FE discretisation. 

ψ = 0.127 ψ = 0.225 

Ultimate Load [kN] error [%] Ultimate Load [kN] error [%] 

Exact solution [30] 14196,79 – 13059,65 –

1 element SDB 1504 9,6 8 6,01 13847,82 6,04 

1 element DB – – 19794,68 51,57 

2 elements SDB 14498,27 2,12 13622,92 4,31 

2 elements DB 16088,61 13,33 16061,61 22,99 

4 elements SDB 14364,17 1,18 13394,31 2,56 

4 elements DB 14601,78 2,85 14217,67 8,87 

 

 

 

 

 

The deformed shape of the entire beam obtained by means of the proposed approach, provided by Eq. (10) is also

plotted in Fig. 10 both for case 1) and case 2) and compared with the exact solution. 

The diffusion of plasticity, captured by the segments of the beam subjected to stiffness reduction, is evidenced both for

case 1) and case 2) in Fig. 11 as the number of SDB FE increases. Obviously, plastic deformation diffusion is more detailed

as the number of FE, or alternatively the number of Gauss points, increases. 

5.3. Simply supported beam with concentrated load in presence of hardening 

The single span simply supported beam with a point load concentrated at the middle cross section reported in Fig. 12 ,

studied in [23] by means of mixed FE formulation, has been also analysed by means of the proposed SDB FE for further

comparison purposes. 
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Fig. 10. Deformed shape of the beam in Fig. 7: (a) case 1) ψ = 0.127 yielding in the span; (b) case 2) ψ = 0.225 yielding in the overhanging portion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric and physical properties of the beam are as follows: beam length L = 180 cm, rectangular cross section

with width b = 10 cm and height 2 h = 10 cm, Young modulus E = 290.0 0 0 MPa, yield stress σ o = 50 0 MPa and a 1% linear

hardening with respect to the elastic modulus. The beam is modelled with two elements and five Gauss–Lobatto integration

points are considered along each beam element. In the paper [23] the mixed FE formulation has been compared with the

solution obtained by using a standard DB FE model with cubic Hermite polynomial shape functions by adopting two, four

and eight elements for the discretisation of the entire beam. The latter comparison in terms of force-displacement relation,

beam deformed shape and distribution of the bending moment and curvature along the beam length, showed the superior-

ity of the mixed formulation with respect to the standard DB FE model. The contribution provided by the present work aims

at improving the performance of the DB FE approach by introducing the adoption of generalised function in the displace-

ment shape functions and considering their updating in the elastic-plastic analysis. For this reason the force-displacement

curve at the middle cross section provided in [23] , corresponding to the mixed model (MB), is here enriched with the

results obtained with the traditional displacement FE model (DB) and the smart displacement model (SDB). The graph is

reported in Fig. 12 and shows that the proposed approach, aiming at keeping unaltered the standard displacement approach

although based on shape functions updating, provides results comparable to those provided by the mixed approach. 

It can be concluded that the SDB FE approach improves drastically the poor performance of the standard displacement

approach, the latter being the main reason that motivated alternative approaches accounting for force distribution mod-

elling along the finite element. It has to be noted that the mixed formulation presented in [23] requires the choice of

Gauss–Lobatto points also along the depth of the beam that is not required by the formulation here presented. 

6. Conclusions 

This work provided an improvement of the performance of the DB (stiffness matrix) finite element approach for the

elastic-plastic analysis of beam-like and frame structures. Precisely, it has been shown that accurate results can be achieved

by avoiding a discretisation of each structural member into several finite elements (mesh refinement) or by the introduc-
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Fig. 11. Diffusion of plastic deformation in the beam of Fig. 7: (a) n.1 SDB FE; (b) n.2 SDB FEs; (c) n.4 SDB FEs. 

Fig. 12. Force – displacement (at middle cross section) curve of the simply supported beam studied in [23] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tion of higher order displacement shape functions. Hence, the increment of the number of degrees of freedom and the

consequent reduction of the computational efficiency required by the classical DB approach for a better accuracy is avoided.

The strategy pursued in this study relies on the adoption of the explicit solution of stepped beams (i.e. beams with

abrupt cross section variations) to model flexural stiffness reductions over portions of the beam due to the occurrence of

plastic deformations. The latter solution has been formulated by means of the use of generalised functions (distributions)

which allow to express the solution as a function of the end degrees of freedom only as in the uniform beam. The

adopted analytical solution allows the construction of displacement shape functions to be updated according to the stiffness

reduction caused by the post-yielding material behaviour. The above displacement shape function updating is built in the

iterative procedure of the Newton–Raphson type and leads to enriched forms of the structural stiffness matrix, internal and

external nodal forces with respect to the standard constant displacement shape function approach. 

The proposed procedure has been tested both for beam-like and frame structures and, in particular, against the exact

solution available in the literature for a simply supported overhanging beam. The latter solution has been adopted as a

benchmark for the plasticity diffusion due to bending moment-curvature nonlinear curve inferred by a rectangular cross

section with an elastic, perfectly plastic material. 

The results of the proposed procedure, denoted in this work as SDB (Smart Displacement Based) approach, have led

to a drastic improvement of the displacement based finite element discretisation, within the context of diffused plasticity

models, competitive with both force based and mixed approaches. 
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Fig. A1. The out-of-plane beam element: (a) nodal displacements, (b) nodal forces. 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix. The out-of-plane flexural SDB element 

A brief description of some details regarding the generalisation of the proposed SDB beam element to the case of

out-of-plane bending behaviour is reported in this appendix for the benefit of the interest reader. 

In case of out-of-plane bending behaviour, the SDB beam element is here defined in the x, y, z Cartesian space as shown

in Fig. A1 . The nodal displacements given by the transversal displacements and rotations at nodes i and j , as in Fig. A1 are

collected in the vector q e = { q 1 , q 2 , q 3 , q 4 , q 5 , q 6 , q 7 , q 8 } 
T . Furthermore, nodal forces provided by shear forces and bending

moments at nodes i and j , as in Fig. 2 b, are collected in the vector Q e = { Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 , Q 7 , Q 8 } 
T . 

The distributional model for the flexural stiffness of a multi-stepped beam adopted in this work can be extended to the

out-of-plane behaviour by considering the components of the normalised flexural stiffness, both for the x, z and x, y planes,

as follows: 

k z (ξ ; ξEI 
, ̂  βz ) = 1 −

n ∑ 

i =1 

( ̂  βz,i − ˆ βz,i −1 ) U(ξ − ξi ) 

k y (ξ ; ξEI 
, ̂  βy ) = 1 −

n ∑ 

i =1 

( ̂  βy,i − ˆ βy,i −1 ) U(ξ − ξi ) (A1) 

In Eq. (A1) , in order to take into account the out-of-plane influence of the discontinuity parameters, the new parameters

(with the superimposed hat) ˆ βz,i = βz,i + κz βy,i and 

ˆ βy,i = βy,i + κy βz,i have been introduced. The two constants κz , κy ,

dependent on the geometric and physical cross section properties and representing the mutual influence of βz,i and βy, i ,

are zero for the elastic state, being y and z principal inertia axes, and are to be updated during the plastic analysis, being

related to the current state of the beam sections. 

Furthermore, for convenience, in Eq. (A1) the vectors ˆ βz = [ ̂  β
z, 1 

ˆ β
z, 2 

. . . ̂  βz,n ] 
T and 

ˆ βy = [ ̂  βy, 1 
ˆ βy, 2 . . . ̂

 βy,n ] 
T have been

introduced. 

The closed form expression proposed in Eq. (7) for the in-plane behaviour is extended to the out-of-plane case by means

of the following expressions for the transversal displacements u z ( ξ ) and u y ( ξ ): 

u z (ξ ) = c z1 + c z2 ξ + c z3 f z3 (ξ ) + c z4 f z4 (ξ ) + f z5 (ξ ) 

u y (ξ ) = c y 1 + c y 2 ξ + c y 3 f y 3 (ξ ) + c y 4 f y 4 (ξ ) + f y 5 (ξ ) (A2) 

where 

f z3 (ξ ) = ξ 2 + 

n ∑ 

j=1 

ˆ β∗
zi (ξ − ξi ) 

2 
U(ξ − ξi ) 

f z4 (ξ ) = ξ 3 + 

n ∑ 

j=1 

ˆ β∗
zi ( ξ

3 − 3 ξ 2 
i ξ + 2 ξ 3 

i ) U(ξ − ξi ) 

f z5 (ξ ) = p [4] (ξ ) + 

n ∑ 

i =1 

ˆ β∗
zi 

[
p z 

[4] (ξ ) − p z 
[4] ( ξi ) 

]
U(ξ − ξi ) −

n ∑ 

i =1 

ˆ β∗
zi p z 

[ 3 ] ( ξi )(ξ − ξi ) U(ξ − ξi ) (A3) 

and 

f y 3 (ξ ) = ξ 2 + 

n ∑ 

j=1 

ˆ β∗
yi (ξ − ξi ) 

2 
U(ξ − ξi ) 

f y 4 (ξ ) = ξ 3 + 

n ∑ 

j=1 

ˆ β∗
yi ( ξ

3 − 3 ξ 2 
i ξ + 2 ξ 3 

i ) U(ξ − ξi ) 

f y 5 (ξ ) = p [4] (ξ ) + 

n ∑ 

i =1 

ˆ β∗
yi 

[
p y 

[4] (ξ ) − p y 
[4] ( ξi ) 

]
U(ξ − ξi ) −

n ∑ 

i =1 

ˆ β∗
yi p y 

[ 3 ] ( ξi )(ξ − ξi ) U(ξ − ξi ) (A4) 



B. Pantò et al. / Applied Mathematical Modelling 44 (2017) 336–356 353 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Eqs. (A3) and ( A4 ) the new parameters ˆ β∗
zi 
, ˆ β∗

yi 
take into account both the in- and the of the out-of-plane influence of

the discontinuity parameters and they are obtained in accordance to Eq. (6) as follows: 

ˆ β∗
z,i = 

ˆ βz,i 

1 − ˆ βz,i 

−
ˆ βz,i −1 

1 − ˆ βz,i −1 

, ˆ β∗
y,i = 

ˆ βy,i 

1 − ˆ βy,i 

−
ˆ βy,i −1 

1 − ˆ βy,i −1 

(A5)

At this stage it is hence convenient to introduce the vectors ˆ β
∗
z = [ ̂  β∗

z1 
ˆ β∗

z2 
. . . ̂  β∗

zn ] 
T , ˆ β

∗
y = [ ̂  β∗

y 1 
ˆ β∗

y 2 
. . . ̂  β∗

yn ] 
T and collect them in

the vector ˆ β
∗
, accounting for the out-of-plane influence, as follows: ˆ β

∗ = [ ̂  β∗
z 

ˆ β∗
y ] 

T . 

According to the procedure proposed in the main body of the paper, the shape functions of the transversal displacements

u z ( ξ ) and u y ( ξ ), characterising the out-of-plane SDB element, able to account for the occurrence of zones with discontinuous

flexural stiffness due to plasticity, are obtained by the enforcement of the following nodal displacements and rotations: 

u z (0) = q 1 ; ϕ y (0) = −u 

I 
z (0) = −q 2 ; u y (0) = q 3 ; ϕ z (0) = −u 

I 
y (0) = q 4 ;

u z (1) = q 5 ; ϕ y (1) = −u 

I 
z (1) = −q 6 ; u y (1) = q 7 ; ϕ z (1) = −u 

I 
y (1) = q 8 (A6)

Imposition of the boundary conditions in Eq. (A6) onto the closed form expression proposed in Eq. (A2) , and its first

derivative, in the x, z and x, y planes in turn, leads to the expressions of the beam axis transversal deflection in terms of

nodal displacements and the external load function as follows: 

u ( ξ ; ξEI 
, ̂  β

∗
) = N (ξ ; ξEI 

, ̂  β
∗
) · q e + u p ( ξ ; ξEI 

, ̂  β
∗
) (A7)

where 

u ( ξ ; ξEI 
, ̂  β

∗
) = 

[
u z (ξ ; ξEI 

, ̂  β
∗
z ) 

u y (ξ ; ξEI 
, ̂  β

∗
y ) 

]
; u p ( ξ ; ξEI 

, ̂  β
∗
) = 

[ 

u p z ( ξ ; ξEI 
, ̂  β

∗
z ) 

u p y ( ξ ; ξEI 
, ̂  β

∗
y ) 

] 

N (ξ ; ξEI 
, ̂  β

∗
) = 

[
N z (ξ ; ξEI 

, ̂  β
∗
z ) 0 

0 N y (ξ ; ξEI 
, ̂  β

∗
y ) 

]
;

N z (ξ ; ξEI 
, ̂  β

∗
z ) = 

[
N z, 1 (ξ ; ξEI 

, ̂  β
∗
z ) N z, 2 (ξ ; ξEI 

, ̂  β
∗
z ) N z, 3 (ξ ; ξEI 

, ̂  β
∗
z ) N z, 4 (ξ ; ξEI 

, ̂  β
∗
z ) 
]
;

N y (ξ ; ξEI 
, ̂  β

∗
y ) = 

[
N y, 1 (ξ ; ξEI 

, ̂  β
∗
y ) N y, 2 (ξ ; ξEI 

, ̂  β
∗
y ) N y, 3 (ξ ; ξEI 

, ̂  β
∗
y ) N y, 4 (ξ ; ξEI 

, ̂  β
∗
y ) 
]

(A8)

The functions N z, j ( ξ ; ξEI 
, ̂  β

∗
z ) , N y, j ( ξ ; ξEI 

, ̂  β
∗
y ) , j = 1 , . . . , 4 , appearing in Eqs. (A7) and ( A8 ) are the displacement shape func-

tions, collected in the matrix N ( ξ ; ξEI 
, ̂  β

∗
) , dependent on the abscissas and intensity of the flexural stiffness discontinuities

collected in the vectors ξEI 
, ̂  β

∗
, respectively. Moreover, the vector u p ( ξ ; ξEI 

, ̂  β
∗
) in Eq. (A7) , contains the contributions of

the external loads p z ( ξ ), p y ( ξ ) to the transversal displacements. 

The explicit expressions of the shape functions N z, j ( ξ ; ξEI 
, ̂  β

∗
z ) , N y, j ( ξ ; ξEI 

, ̂  β
∗
y ) , j = 1 , . . . , 4 of the transversal displace-

ments u z ( ξ ) and u y ( ξ ) of the beam axis, in view of Eq. (A2) , can be written as follows: 

N z, j (ξ ; ξEI 
, ̂  β

∗
z ) = 

j C z1 + 

j C z2 ξ + 

j C z3 f z3 (ξ ; ξi , 
ˆ β∗

z,i ) + 

j C z4 f z4 (ξ ; ξi , 
ˆ β∗

z,i ) , 

N y, j (ξ ; ξEI 
, ̂  β

∗
y ) = 

j C y 1 + 

j C y 2 ξ + 

j C y 3 f y 3 (ξ ; ξi , 
ˆ β∗

y,i ) + 

j C y 4 f y 4 (ξ ; ξi , 
ˆ β∗

y,i ) , 

i = 1 , . . . , n, j = 1 , . . . , 4 (A9)

where f z3 (ξ ; ξi , 
ˆ β∗

z,i 
) , f z4 (ξ ; ξi , 

ˆ β∗
z,i 

) and f y 3 (ξ ; ξi , 
ˆ β∗

y,i 
) , f y 4 (ξ ; ξi , 

ˆ β∗
y,i 

) are defined in Eqs. (A3) and ( A4 ), respectively. 

Furthermore, the constants j C z 1 , 
j C z 2 , 

j C z 3 , 
j C z 4 and 

j C y 1 , 
j C y 2 , 

j C y 3 , 
j C y 4 (with j = 1, …, 4) in Eq. (A9) can be inferred

by Eq. (12) with the adoption of f z3 (ξ ; ξi , 
ˆ β∗

z,i 
) , f z4 (ξ ; ξi , 

ˆ β∗
z,i 

) and f y 3 (ξ ; ξi , 
ˆ β∗

y,i 
) , f y 4 (ξ ; ξi , 

ˆ β∗
y,i 

) given Eqs. (A3) and ( A4 ),

respectively, in their definition. The terms u p z ( ξ ; ξEI 
, ̂  β

∗
) , u p y ( ξ ; ξEI 

, ̂  β
∗
) related to the contribution of the external load

can be inferred by the expressions in Eqs. (13) and (14) with the adoption of f z 3 ( ξ ), f z 4 ( ξ ), f z 5 ( ξ ) and f y 3 ( ξ ), f y 4 ( ξ ), f y 5 ( ξ )

respectively, in their definition. 

Considering the out-of-plane behaviour, the curvatures χz (ξ ; ξEI 
, ̂  β

∗
z ) and χy (ξ ; ξEI 

, ̂  β
∗
z ) of the beam element can be

expressed in terms of nodal displacements and distributed external forces as follows: 

χ(ξ ; ξEI 
, ̂  β

∗
z ) = 

[
χy (ξ ; ξEI 

, ̂  β
∗
z ) 

χz (ξ ; ξEI 
, ̂  β

∗
y ) 

]
= B (ξ ; ξEI 

, ̂  β
∗
z ) · q e − u 

II 
p 

(
ξ ; ξEI 

, ̂  β
∗
z 

)
(A10)

where B (ξ ; ξEI 
, ̂  β

∗
) , defined as follows: 
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B (ξ ; ξEI 
, ̂  β

∗
) = 

[
−N 

II 
z (ξ ; ξEI 

, ̂  β
∗
z ) 0 

0 −N 

II 
y (ξ ; ξEI 

, ̂  β
∗
y ) 

]
(A11) 

is the matrix collecting the curvature shape functions obtained as second derivatives of the transversal displacement shape

functions containing the effect of the discontinuities. 

In the presented out-of-plane beam element the normalised bending moments, collected in the bending moment vector

M (ξ ; ξEI 
, ̂  β

∗
z ) = [ M y (ξ ; ξEI 

, ̂  β
∗
z ) M z (ξ ; ξEI 

, ̂  β
∗
y ) ] 

T , are related to the curvature vector by means of the following relationship: 

M (ξ ; ξEI 
, β, ̂  β

∗
) = k (ξ ; ξEI 

, β) χ(ξ ; ξEI 
, ̂  β

∗
) = 

[
k zz (ξ ; ξEI 

, βz ) k zy (ξ ; ξEI 
, βy ) 

k yz (ξ ; ξEI 
, βz ) k yy (ξ ; ξEI 

, βy ) 

][
χy (ξ ; ξEI 

, ̂  βz ) 

χz (ξ ; ξEI 
, ̂  βy ) 

]
(A12) 

where the components of the normalised cross section flexural stiffness matrix k ( ξ ; ξ EI , β), according to the model

introduced in Eq. (A1) , are defined as follows: 

k zz (ξ ; ξEI 
, βz ) = 1 −

n ∑ 

i =1 

( βz,i − βz,i −1 ) U(ξ − ξi ) (A13) 

k zy (ξ ; ξEI 
, βy ) = κz 

[ 

1 −
n ∑ 

i =1 

( βy,i − βy,i −1 ) U(ξ − ξi ) 

] 

(A13) 

k yz (ξ ; ξEI 
, βz ) = κy 

[ 

1 −
n ∑ 

i =1 

( βz,i − βz,i −1 ) U(ξ − ξi ) 

] 

(A13) 

k yy (ξ ; ξEI 
, βy ) = 1 −

n ∑ 

i =1 

( βy,i − βy,i −1 ) U(ξ − ξi ) (A13) 

The non linear variation of the flexural stiffness, as plastic deformations occur, will be explicitly formulated by updating

the vectors βz , βy , in the relevant beam segments identified by the vector ξ EI . 

The relationship between the force and displacement element nodal vectors Q e and q e is: 

Q e = K e ( ξ
EI 

, β, ̂  β
∗
) · q e (A14) 

where K e ( ξ
EI 

, β, ̂  β
∗
) is the element stiffness matrix, dependent on the current state of the element by means of the plastic

intensity parameter vectors β, ̂  β
∗

and the plastic segment extension vector ξ EI , defined as follows: 

K e ( ξ
EI 

, β, ̂  β
∗
) = 

∫ 1 

0 

B 

T (ξ ; ξEI 
, ̂  β

∗
) k (ξ ; ξEI 

, β) B (ξ ; ξEI 
, ̂  β

∗
) dξ (A15) 

and, according to the Gauss integration scheme, the element stiffness matrix is evaluated as follows: 

K e ( ξ
EI 

, β, ̂  β
∗
) ≈

N ∑ 

r=1 

B 

T (ξG 
r ; ξEI 

, ̂  β
∗
) k (ξG 

r ; ξEI 
, β) B (ξG 

r ; ξEI 
, ̂  β

∗
) w r (A16) 

The incremental plastic constitutive law can be formulated according to the associative plasticity hypothesis and is inte-

grated at the controlled Gauss sections ξG 
r , r = 1 , . . . , N, by adopting a yield function for the cross section. Only as a matter

of example, for a nonlinear kinematic hardening type of behaviour, the yield function may assume the following form: 

 = 

(
M y − H ky (χ

p 
y ) χ

p 
y 

M yE 

)α

+ 

(
M z − H kz (χ

p 
y ) χ

p 
z 

M zE 

)α

− 1 = 0 (A17) 

where M zE , M yE are the limit elastic bending moments, χ p 
z , χ

p 
y are the plastic curvature components and H kz (χ

p 
z ) , H ky (χ

p 
y )

are the kinematic hardening moduli to be specified according to the desired nonlinear behaviour. Eq. (A17) represents a

yield surface in the M z , M y plane containing all the admissible stress points. 

According to the strategy of the Newton–Raphson iterative algorithm, the integration procedure of the incremental

holonomic plastic constitutive laws at each Gauss point is composed of an elastic predictor phase and, for those points

outside the yield surface  > 0 in Eq. (A12) , a successive plastic corrector phase implying a return onto the yield surface

 = 0 to provide the updated bending moments. The return algorithms available in the literature differ from each other

according to the chosen path followed by the plastic deformations into the incremental step [4 8,4 9] . According to the

chosen return algorithm, the relationship between the bending moment and the deformation increments provides the so

called updated “consistent tangent matrix” of the relevant Gauss section to be adopted for k (ξG 
r ; ξEI 

, β) in Eq. (A16) [50,51] .

Since the above steps are standard and well established in the literature have been only very briefly summarised.

However, it has to be pointed out that the updating procedure during the plastic analysis is developed as follows: 
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(i) once the components k zz , k zy , k yz , k yy of the stiffness matrix are updated at each Gauss point with the consistent

tangent matrix, the discontinuity parameters βz,i , βy,i and the constants κz , κy are also updated by means of Eq.

(A13) to provide ˆ βz,i = βz,i + κz βy,i and 

ˆ βy,i = βy,i + κy βz,i , i = 1, …, n ; 

(ii) the updated vector ˆ β
∗

at each Gauss section is obtained by Eq. (A5) ; 

(iii) the new SDB beam element requires the updating of the curvature shape function matrix B (ξ ; ξEI 
, ̂  β

∗
) , provided by

Eq. (A11) , depending on the development of the plastic curvature components along the beam axis and, finally, the

stiffness matrix K e ( ξ
EI 

, β, ̂  β
∗
) given by Eq. (A16) , can also be updated. 
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