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Abstract
Vaccine research is a combinatorial science requiring computational analysis of vaccine components, formulations and
optimization.Wehave developeda framework thatcombines computational tools for the studyof immune function and
vaccinedevelopment.This framework,namedImmunoGridcombinesconceptualmodelsof theimmune system,models
of antigen processing and presentation, system-level models of the immune system, Grid computing, and database
technology to facilitate discovery, formulation and optimization of vaccines. ImmunoGridmodules share commoncon-
ceptualmodels andontologies.The ImmunoGridportaloffers access to educational simulatorswherepreviouslydefined
casescanbedisplayed,andtoresearchsimulators thatallow thedevelopmentofnew,or tuningofexisting,computational
models.Theportalis accessibleat <igrid-ext.cryst.bbk.ac.uk/immunogrid>.
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INTRODUCTION
Vaccination is an immunologic intervention that

produced the largest single positive impact on

control of infectious disease and saving of human

lives over the last 200 years. Some 50 successful

vaccines have been developed during this period to

control almost 30 infectious diseases [1]. Two major

classes of vaccinations exist: prophylactic vaccines

to prevent future infections or diminish their effects,

and therapeutic vaccines to treat established disease.

Advances in vaccine development come in waves

produced by technological advances. The historic

technological breakthroughs in the vaccine field

include pathogen attenuation, pathogen inactivation,

cell culture of viruses, genetic engineering and

induction of cellular immunity. The current bio-

technological revolution brings combination vac-

cines, advanced adjuvants, genomics and proteomics,

nanotechnology-based delivery systems, immuno-

modulation, rational vaccine design and computa-

tional simulations to improve our understanding

of both the makings of human organism and

immune system and of pathogens [2, 3]. These

latest technological advances also offer great hope for

immunologic control of noninfectious disease

including cancer, autoimmunity, allergies and post-

transplantation complications. These interventions

are specially promising in cases where alternatives

(such as surgery, chemotherapy or others) are

limited, ineffective, or non-existent [4].

Unfortunately, for most diseases variation in host

and pathogens make a universal vaccine a remote

possibility [5]. Thanks to advances in genomics and

sequencing of entire genomes of multiple strains of

pathogenic microorganisms, the issue of pathogen

diversity can be addressed by targeting pan-genomes

or total gene repertoire for a given microorganism

[6]. The diversity of the human immune system

is enormous; the number of different products of

the immune system is five orders of magnitude

larger than some 106 non-immune system products

encoded by the human genome. Vaccines must

contain at minimum two antigenic epitopes: one to

induce specific B cell or cytotoxic T-cell responses,

and one to provide T-cell help [7]. Broadly

protective vaccines, against multiple strains of

pathogen require cocktails of target antigens or

epitopes [8, 9]. In addition, immunomodulatory

components (adjuvants and various suppressors and

enhancers) are added to enable desired immune

responses. The development of combinations of

adjuvant and immunomodulatory components

requires considering the route and kinetics of

immunization; the resulting combinatorial space

of possible adjuvants is huge [10]. The efficiency of

vaccines depends on multiple factors: components

and formulation, the administration route [11],

vaccine delivery systems [12, 13], the dose of vaccine

[14], the number of vaccinations and vaccination

schedules [15]. Vaccination induces a broad spectrum

of regulatory cytokine responses [16]. The typical

effect of vaccination is the promotion of protective

immune responses; however vaccines are also known

to induce immunosuppression [17]. Therefore, the

combination of bioinformatics and high-throughput

immunologic assays is essential for screening poten-

tial vaccine targets [4].

The large number of possible vaccine formula-

tions makes computational and biomathematical

approaches essential for projects aiming to perform

systematic exploration and optimization of vaccine

formulations. We have developed a framework

that combines computational tools for the study

of immune function and vaccine development with

experimental validation. This framework, named

ImmunoGrid combines conceptual models of the

immune system, models of antigen processing and

presentation, system-level immune system models,

Grid computing, and database technology to facil-

itate vaccine discovery, formulation and optimization

(Figure 1). Currently ImmunoGrid has selected

simulators of infection, cancer and atherosclerosis,

and allows simulation of antigen interactions in

lymph nodes. ImmunoGrid is an example of

collaborative environment in which well defined

modeling and simulation tools are integrated with

the expansive computational infrastructure. In

future, ImmunoGrid will include models, simulators

and tools that address various further aspects of

the immune system. In principle there is no limit

as to what models can be included. Thanks to

Grid infrastructure these tools can be distributed

across different physical sources while the portal

serves only as the common interface. The criteria

for inclusion of tools into the ImmunoGrid frame-

work are the accuracy and the utility of

the tools, and compatibility with the conceptual

framework.
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CONCEPTS, STANDARDSAND
ONTOLOGIES
Standardized rules and formal concepts for the

identification, description and classification of bio-

logical components and processes are used in the

modeling of the Virtual Immune System (VIS) as

a part of the Virtual Physiological Human (VPH).

The VPH is a framework of methods and technol-

ogies that aim to enable the investigation of the

human body as a single complex system [18]. Unique

numbering and controlled vocabularies (ontologies)

have been developed for the formal description of

antigen receptors including antibodies or immuno-

globulins (IG), T-cell receptors (TR) and the major

histocompatibility complex (MHC). Human MHC

is known as human leukocyte antigen (HLA). The

formal definition is necessary for capturing the

incredible diversity of antigen receptors amongst

individuals (1012 IG, 1012 TR, or >1020 possible

combinations of HLA per person). These definitions

(rules) are crucial for a standardized analysis of

the interactions between receptors and ligands and

between proteins and are used for molecular-level

modes and system-level simulators. The concept

definitions and ontologies are largely based on

IMGT� [19, 20], which has become a widely

accepted standard in immunology. IMGT focuses

on antigen receptors and MHC at the molecular

level and provides the standardization for immuno-

genetics data from genome, proteome, genetics and

3D structures [21–24]. The ImmunoGrid extensions,

currently under development, provide the defini-

tions of immune concepts at the cellular, organ and

organism levels, and further provide formal defini-

tions of various immune pathologies.

ImmunoGrid is a complex environment contain-

ing multiple development, application and dissemi-

nation components (Figure 1). Each of the

components is connected directly, or indirectly, to

the ‘Concepts’ and ‘Standards’ components, ensuring

that a common conceptual model, terminology

and standards are used.

MOLECULAR-LEVELMODELS
A large body of mathematical and computational-

modeling work has been done on modeling the

adaptive immune system [25], but less so on

modeling innate immunity. The adaptive immune

system acts through its two arms: humoral immunity,

mediated by antibodies and cellular immunity

mediated by T cells. Antibodies, which are produced

by B cells, neutralize pathogens and antigens outside

the cells. T cells neutralize intracellular pathogens

and cancers by eliminating infected or malfunction-

ing cells and they also provide regulatory help

for both humoral and cellular immunity. The

enormous repertoires of both B- and T-cell receptors

(IG and TR) provide means for recognition,

immune activation and acquiring of memory against

Figure 1: The components of ImmunoGrid and their
relationships. There are five principal groups of compo-
nents. The first three groups define the scientific back-
ground of the ImmunoGrid framework: conceptual
background, individual components, models and applica-
tions. The fourth group defines the engineering back-
ground and the simulator of the immune system. The
fifth group defines the means for reaching the broader
community. The directed arrows in the figure show
dependencies. For example concepts, standards and
validation determine contexts. Concepts define stan-
dards, and standards are then used to define validations
to be performed. Concepts and standards are used
to define specific components, namely molecular and
system models. Physical models such as tumor-suscepti-
blemouse are external to ImmunoGrid and the observed
experimental results areused to refine the concepts (the
feedback arrow shown). Molecular- and system-level
models can be descriptive or predictive and they are
used for vaccine applications.These models and applica-
tions are implemented as Grid applications or databases
and require integration of components. The results are
then distributed to the researchers and the community.
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disease. B cell epitopes are 3D shapes on the antigen

surface, mostly discontinuous parts of antigen

sequences, recognized by antibodies. Molecular

mechanisms involved in the IG synthesis result in a

large diversity of B cell clones that are selected for

specific antigens and mature into plasma cells

producing highly-specific antibodies. T-cell epitopes

are short fragments of antigenic peptides that are

produced by antigen processing and presentation

pathways. Cytotoxic CD8þ T-cells (CTLs) recog-

nize and target cells that display foreign T-cell

epitopes presented by class I pMHC complexes.

Helper CD4þ T cells recognize class II pMHC

complexes and provide regulatory signals (T-cell

help) needed for activation of B cells and CTLs.

The combinatorial complexity of antigen proces-

sing and presentation makes the prediction and

analysis of MHC-binding peptides and T-cell

epitopes a problem suitable for large-scale screening

and computational analysis. Vigorous research and

development has produced a large number of

computational models of antigen processing and

presentation during the last 15 years. A large number

of MHC ligands and T-cell epitopes have been

stored in specialist databases [26–29]. A number of

techniques, including motifs, quantitative matrices,

artificial neural networks, hidden Markov models,

support vector machines, molecular modeling and

others have been developed [30, 31] and deployed

as web servers. The antigenic epitope prediction, or

‘molecular-level models’, used in ImmunoGrid are

principally the CBS tools [32–37], complemented

by several other predictive models [38–40]. The

predictive models and the modes of usage are

judiciously selected using exhaustive validation

with carefully selected experimental data. Because

ImmunoGrid focuses on practical applicability to

vaccine research, the models are applied in a

manner that best suits vaccine discovery and the

validation process (as shown in an example in

Figure 2). Using this approach, we have analyzed

40 000 influenza proteins for peptides that bind to

some 50 HLA alleles.

The testing and assessment of these models

shows that the predictions of peptide binding to

HLA class I molecules are of high accuracy and

therefore directly applicable to identification of

vaccine targets [41–43]. Furthermore, we have

shown that these models are stable and their

performance can be reproduced across several

major HLA class I variants [44].

Predictions of MHC-II class II ligands and T-cell

epitopes are more complex: pMHC-II-binding

predictions are of much lower accuracy than those

of pMHC-I [45, 46]. The accuracy of predictions

can be improved by using genetic algorithms [47],

Gibbs sampling [48] or by combining predictions

from multiple predictors [49]. For the time being,

HLA class I predictions can be used for prediction of

positives (binders and T-cell epitopes), while HLA

class II predictions can be used for elimination of

obvious negatives (non-binders, non-T-cell epi-

topes). Preliminary results from the combined

analysis of computational prediction, that lead to

selection of peptides used for T-cell-activation

experiments, together with measurement of cytokine

profiles from experimental validation studies of viral

proteomes indicate that the concept of ‘T-cell

epitope’ can not be linked to MHC binding only

but rather to a larger panel of biological phenomena,

including peptide processing, their availability in

various tissues, T-cell repertoires, and others.

SYSTEM-LEVELMODELS
Our knowledge of the immune system is incomplete

and imprecise. Mathematical modeling provides

a formal description of the underlying principles

and organization of the immune system and the

Figure 2: An example of integration ofmolecular-level
models for discovery of target T-cell epitopes. A set of
molecular models (multiple HLA variants) are used
to analyze a complete set of viral antigens. Predictions
are performed using Grid computing, to accommodate
a large numbers of prediction jobs. Predicted vaccine
targets are then stored in a relational database as anno-
tated entries. Subsequent user requests for analysis
of candidate T-cell epitopes from one, several, or
all antigens can be performed by data-mining of the
database of predicted targets.
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relationships between its components. The immune

system is a distributed system lacking central control,

but it performs complex functions efficiently and

effectively [50]. Mathematical modeling of the

immune system requires understanding both the

properties of types of mathematical models involved

and understanding the source data used for model-

ing. These methodologies have strengths and

limitations that need to be understood for effective

development of mathematical models that use these

data. For example the source data often need

transformations (normalization, filtering, or other

pre-processing) before it can be used for model

development. Mathematical models of the immune

system evolved from classical models using differ-

ential equations, difference equations, or cellular

automata to model a small number of interactions,

molecules, or cell types involved in immune

responses. Principal types of mathematical models

for immunological applications are described in

[51, 52]. The key enabling technologies of genomics

[53], proteomics [54, 55], bioinformatics [56] and

systems biology (including such genomic pathway

analysis) [57] in immunology have provided large

quantities of data describing molecular profiles

of both physiological and pathological states. Assays

for immune monitoring (multiparametric flow

cytometry, nanotechnology for quantitation of

cytokine production, ELISPOT, intra-cytoplasmic

cytokine staining and mRNA/micro-RNA-based

assays) keep improving and expanding our ability

to measure various immunoregulatory and modula-

tory molecules [58]. Laser scanning cytometry

enables the measurement and analysis of effector

function of individual cells in situ and thus quantifica-

tion of molecular and cellular events in physiological

and pathological states [59]. These emerging tech-

nologies provide data that previously were not

available and that enable more detailed modeling

of immune processes.

Mathematical modeling of the immune system

has grown to include the extensive use of simula-

tions [51] and iterative refinement of the immune

system models at both molecular [60] and system

level [61]. ImmunoGrid system-level models are

based on the cellular automata model of the

immune system originally developed by Celada

and Seiden [62] and spatial physical models using

partial differential equations to describe lymph

nodes, chemotaxis, cell movement and diffusion.

The two key models of the immune system are

C-ImmSim [63] and SimTriplex [15]. These models

include components of both adaptive and innate

immunity and the core function for both models

is the modeling of adaptive immunity (both humoral

and cellular arms are included). C-ImmSim is a

generic model and it has been applied for the

modeling of: primary and secondary immune

responses, bacterial infection and viral infection. It

has been applied to the descriptive studies of HIV

infection [64, 65], Epstein-Barr virus infection [66]

and cancer immunotherapy [67]. The first version

of SimTriplex model was derived from C-ImmSim

with a focus on predictive modeling, with the later

versions evolving independently. The SimTriplex

model has been applied to predictive modeling of

immunoprevention vaccine [15, 61, 68, 69] and

more recently to the descriptive modeling of

atherosclerosis [70]. The most recent developments

of models for inclusion in ImmunoGrid are physical

models of tumor growth based on nutrient or

oxygen starvation (based on the lattice Boltzmann

method [71, 72]). These models have enabled the

simulation of tumor growth for both benign and

malignant tumors [manuscript in preparation].

ImmunoGrid also has a lymph node simulator

offering a mechanistic view to the interactions of

antigen and the immune system cells in the lymph

node.

In ImmunoGrid, our main concern is the practical

applicability of computational models to vaccine

discovery, formulation, optimization and scheduling.

The models must, therefore, be both biologically

realistic as well as mathematically tractable [73]. The

models used in ImmunoGrid are validated experi-

mentally and incrementally refined (tuned). Specific

applications that have been investigated include

the study of mammary cancer immunoprevention;

therapeutic approaches to melanoma and lung

cancer; immunization with influenza epitopes; the

study of HIV infection and HAART therapy; and

modeling atherosclerosis.

In ImmunoGrid we use predictive models that

are carefully validated, and are refined iteratively

(predict-test-refine) using selected experiments.

Modeling of immunoprevention vaccine against

mammary carcinoma in genetically susceptible mice

has been validated experimentally and shown to

accurately reproduce immune responses for up to 52

weeks of age [15, 61, 68, 69] while additional model

tuning is needed for later stages of the disease. The

vaccination data indicate that for the older
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(e.g. second year of mouse life) immune system,

the rate of immune responses are lower than in

the younger (e.g. first year of mouse life) immune

system (P.L. Lollini, unpublished data) and, accord-

ingly, the model needs additional tuning for older

mice. Modeling of HIV-1 infection in untreated

as well as patients receiving HAART has been

tuned against data from literature as well as clinical

observations [64, 65]. CBS tools have been assessed

as best performing prediction systems for HLA

binders and T-cell epitopes, specific details can be

found in [43, 45].

The model for atherogenesis is descriptive and

it was tuned to match published experimental

data—the detailed descriptions are available in [70].

The descriptive simulator of a lymph node repro-

duces experimental data published in [74–76].

INTEGRATED SYSTEM AND
GRID COMPUTING
Integrated systems for data management and labora-

tory automation are emerging as cyber infrastructure

that is the new research environment that enables

research using Internet resources [77, 78]. These

systems mainly deal with the management and

analysis of data addressing the bottleneck due to

the huge and rapidly growing quantities of data and

the need to automate the process of multi-step large-

scale screening. Continuous developments of

information and communication technologies and

computational intelligence [79] have led to the

concept of ‘Virtual Laboratory’. The Virtual

Laboratory environment offers an integrated intelli-

gent environment for systematic production of high-

dimensional quality assured data, as opposed to the

common approach where independent exploratory

studies are typically combined in an ad hoc manner

[80]. The ImmunoGrid environment provides a

number of modules that can be suitably combined

for addressing specific vaccine questions; these

include Grid computing for large-scale tasks and

sharing distributed data. Each vaccine study per-

formed within the ImmunoGrid framework

involves: conceptual modeling of the disease/pathol-

ogy, followed by utilization of models for simulation

of the immune system and processes. Descriptive

models are tuned to the available data sets, while

predictive models are developed incrementally,

starting from simple solutions which are incremen-

tally validated and expanded. The ImmunoGrid

framework enables integration of molecular- and

system-level models for vaccine research, an example

is shown in Figure 3.

In ImmunoGrid, the meaning of the Grid is

primarily that of a ‘virtual organization’, implying

access to heterogeneous resources and administrative

resources through a single point of access [81]. The

main requirements for the ImmunoGrid simulator

are processing power, data federation, visualization

of results and user portals. The initial benchmarking

of ImmunoGrid simulations showed that large-scale

simulations of 1600 vaccine schedules in 100 virtual

mice (representing 24 months of mouse life) can

be accomplished within 26 h of wall time (time

difference between job submission and receiving

the results). Modeling mouse immune responses is

a step towards modeling human immune system.

Figure 3: An example of integration of system-level
models for discovery, formulation, or optimization of
vaccines. First, a tumor sample is profiled for presence
of tumor antigens and the profile of tumor microenvi-
ronment, including profiles of immunoregulatory mole-
cules.T-cell epitopes are predicted using molecular-level
models. A small number of experiments are followed
by further computational simulations. The ‘Multiplex’
refers to the analysis of multiple components in the
vaccines (SimTriplex contains three components).
Massive scale simulations can be performed using Grid
computing and the simulations can be stored in a data-
base for future analysis. The iterative process of initial
experiments! simulation!validation, ultimately lead-
ing to a vaccine can be used for formulation and optimi-
zation of formulation, dosage and scheduling. This
approach has been used for optimization of immuno-
prevention vaccine scheduling using SimTriplex in mouse
models of mammary cancer. Molecular-level models
are linked with system-level models through predicted
T-cell epitopes.
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Overall, mouse system-level models are very similar

to the human immune system, with an added

advantage that experiments can be performed read-

ily; they are normally used for vaccine research and

also they are used as benchmarks for bioinformatics-

driven vaccine research. ImmunoGrid development

is based on the analysis of HLA as well as scaling-up

of the mouse ImmunoGrid developments. In

ImmunoGrid, Grid computing, therefore, enables

robust and scalable solutions for immune system

modeling.

Each model within ImmunoGrid simulator has

integrated a set of user notes, accessible by clicking

on the question marks. Also, tutorial notes are

available on the web site.

EDUCATIONALANDRESEARCH
IMMUNOGRID PORTAL
The ImmunoGrid simulator can be accessed through

the prototype portal web site [82]. The main aims

of the ImmunoGrid simulator are to: provide

tools to enhance our understanding of the

immune system; support vaccine design, formula-

tion and optimization; provide an interactive educa-

tional model of the human immune system; and

apply computer modeling and Grid infrastructure

to complex scientific applications. The modular

architecture of ImmunoGrid enables content hier-

archy and reusability of modules. Educational

simulators are based on learning objects [83] and

currently include the following simulation modules:

cancer vaccine scheduling, antigen processing and

presentation and bacterial replication rates. Learning

objects enable students to select multiple scenarios

and observe the effects of changing input to the

outcome. This strategy promotes student-centered

engagements where students learn through engage-

ments such as querying and problem-solving. The

learning objects provide information in highly visual

and interactive formats supporting deep learning.

Educational ImmunoGrid will be expanded to

include the analysis of T-cell epitopes and immu-

nological hot-spots, tumor growth, tumor regression

and atherosclerosis, among others.

The access to the research portal is currently

restricted to the ImmunoGrid consortium members

and to selected projects. Projects of a very large

scale, such as prediction of peptide binders for

several hundred HLA alleles within 40 000 influenza

sequences, include several steps: pre-calculation of

results using Grid infrastructure, storage of results in

the database and access to the results by interrogating

the database. Smaller-scale projects produce results

by direct access to computational resources.

Educational simulators are developed and imple-

mented from representative examples from earlier

projects. The ImmunoGrid portal is accessible

at <igrid-ext.cryst.bbk.ac.uk/immunogrid>. At this

time the educational simulator contains selected

examples of simulations of cancer vaccine schedul-

ing, cancer growth, viral infection (influenza, HIV

and EBV), atherosclerosis simulator, a mechanistic

lymph node model and antigen processing and

presentation predictions.

CONCLUSIONSANDDISCUSSION
The ImmunoGrid simulator is a new generation

of systems fitting into the framework of the VPH

Initiative [84] enabling both descriptive and pre-

dictive modeling of the immune system in humans

and in model animals. ImmunoGrid promotes a

new, technology-driven, systematic approach to

vaccine research. ImmunoGrid is neither a data

management nor a laboratory automation frame-

work—it is a distributed system containing databases

and computational simulators of immune system and

immune processes that enables vaccine development

applications. ImmunoGrid enables combination of

computational simulations and experimental vali-

dation with iterative improvement of in silico screen-

ing. It represents a new concept of integrated

research environment where virtual experiments

are tightly bound with laboratory experiments and

clinical observation. The combination of these

resources helps improve the economy of vaccine

discovery and development through consideration

of a large proportion of combinatorial space of

vaccine targets—a quest not possible using traditional

methods.

Two representative accomplishments show the

utility of ImmunoGrid. First, ImmunoGrid is, to

our knowledge, the first true Grid application

on immune system modeling. Utilization of Grid

infrastructure has enabled screening in parallel tens

of thousands of viral sequence variants for thousands

of HLA variants and peptide lengths that vary from

8–11mers (HLA class I) and 9–15mers (HLA class II).

Such large-scale applications are now accessible

as on-line resources. Second, the combination of

computational modeling and experimentation of
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immunoprevention vaccine in genetically susceptible

mice provided a speed-up of the project and

significant savings in search for optimal vaccination

schedule. Hundreds of thousands of virtual experi-

ments were used to select tens of key mouse

experiments and a rough estimate is that the time

and cost of experimentation was reduced by two

thirds.

Future developments of the ImmunoGrid will

include refinements of the existing models, addi-

tional models and simulators and extension to other

diseases. Researchers who wish to contribute their

models and tools to the ImmunoGrid and those who

want to use the research ImmunoGrid should

contact the corresponding author or contact person

indicated at the ImmunoGrid Web site. Models

considered for inclusion in ImmunoGrid must satisfy

requirements of validation, concordance with well

established experimental or clinical observations, and

freely accessible source codes.
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