
Journal of Discrete Algorithms 11 (2012) 25–36
Contents lists available at ScienceDirect

Journal of Discrete Algorithms

www.elsevier.com/locate/jda

On the bit-parallel simulation of the nondeterministic Aho–Corasick and
suffix automata for a set of patterns

Domenico Cantone, Simone Faro ∗, Emanuele Giaquinta

Università di Catania, Dipartimento di Matematica e Informatica, Viale Andrea Doria 6, I-95125 Catania, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 2 March 2011

Keywords:
Multiple pattern matching
Text processing
Automata
Bit-parallelism

In this paper we present a method to simulate, using the bit-parallelism technique,
the nondeterministic Aho–Corasick automaton and the nondeterministic suffix automaton
induced by the trie and by the Directed Acyclic Word Graph for a set of patterns,
respectively. When the prefix redundancy is nonnegligible, this method yields—if compared
to the original bit-parallel encoding with no prefix factorization—a representation that
requires smaller bit-vectors and, correspondingly, less words. In particular, if we restrict
to single-word bit-vectors, more patterns can be packed into a word.
We also present two simple algorithms, based on such a technique, for searching a set P
of patterns in a text T of length n over an alphabet Σ of size σ . Our algorithms, named
Log-And and Backward-Log-And, require O((m +σ)�m/w�)-space, and work in O(n�m/w�)
and O(n�m/w�lmin) worst-case searching time, respectively, where w is the number of bits
in a computer word, m is the number of states of the automaton, and lmin is the length of
the shortest pattern in P .

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Given a set P of r patterns and a text T of length n, all strings over a common finite alphabet Σ of size σ , the multiple
pattern matching problem is to determine all the occurrences in T of the patterns in P . In this paper we focus on automata
based solutions of such problem and, in particular, on the efficient simulation of the nondeterministic finite automaton
(NFA) for the language

⋃
P∈P Σ∗ P induced by the trie data structure for P and the nondeterministic automaton for the

language
⋃

P∈P Suff (P) of all the suffixes of the strings in P induced by the Directed Acyclic Word Graph (DAWG) data
structure for P . We shall refer to such two automata as Aho–Corasick NFA and suffix NFA, respectively.

The first linear solution for the multiple pattern matching problem based on finite automata is due to Aho and Corasick
in [1]. The Aho–Corasick algorithm uses a deterministic incomplete finite automaton based on the trie for the input patterns
and on the failure function, a generalization of the border function of the Knuth–Morris–Pratt algorithm [9]. The optimal
average complexity of the problem is O(n logσ (rlmin)/lmin) [11], where lmin is the length of the shortest pattern in the set P ;
this bound has been achieved by algorithms based on the suffix automaton induced by the DAWG data structure, namely
the Backward-DAWG-Matching (BDM) and Set-Backward-DAWG-Matching (SBDM) algorithms [7,10]. Later, Baeza-Yates and
Gonnet introduced in [3] the bit-parallelism technique to simulate efficiently simple nondeterministic finite automata (NFAs,
for short) for the single pattern case. Their Shift-And algorithm is one of the most efficient and elegant simulations of
this kind of NFAs. Navarro and Raffinot used this technique to simulate the BDM algorithm; specifically, their algorithm,

* Corresponding author.
E-mail addresses: cantone@dmi.unict.it (D. Cantone), faro@dmi.unict.it (S. Faro), giaquinta@dmi.unict.it (E. Giaquinta).
1570-8667/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2011.02.001

http://dx.doi.org/10.1016/j.jda.2011.02.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jda
mailto:cantone@dmi.unict.it
mailto:faro@dmi.unict.it
mailto:giaquinta@dmi.unict.it
http://dx.doi.org/10.1016/j.jda.2011.02.001

26 D. Cantone et al. / Journal of Discrete Algorithms 11 (2012) 25–36
named Backward-Nondeterministic-DAWG-Matching (BNDM), is based on a bit-parallel encoding of the nondeterministic
suffix automaton induced by the DAWG of a single pattern [12].

In the bit-parallel simulation, the automaton current configuration is represented as an array of � bits, where � is the
number of states in the automaton. Bits corresponding to active states are set to 1, whereas bits corresponding to inactive
states are set to 0. Such representation allows one to take advantage of the intrinsic parallelism of the bit operations inside
a computer word, thus cutting down the number of operations up to a factor equal to the number of bits in a computer
word.

However, to simulate efficiently an NFA with the bit-parallelism technique, the states of the automaton must be mapped
into the positions of a bit-vector by a suitable topological ordering of the NFA.1 There are known bit-parallel simulations
for the trie of a single pattern and for the maximal trie of a set of patterns. In the case of a single pattern, the construction
of the topological ordering is quite simple, since it is unique [3]. Appropriate topological orderings can be obtained also for
the maximal trie of a set of patterns, by interleaving the tries of the single patterns in either a parallel fashion, under the
restriction that all the patterns have the same length [14], or in a sequential fashion [12]. The Shift-And and BNDM algo-
rithms can be easily extended to the multiple patterns case by deriving the corresponding automaton from the maximal trie
of the set of patterns. The resulting algorithms have an O(σ �size(P)/w�)-space complexity and work in O(n�size(P)/w�)
and O(n�size(P)/w�lmin) worst-case searching time complexity, respectively, where size(P) = ∑

P∈P |P | is the sum of the
lengths of the strings in P and w is the size of a computer word.

In both cases, the bit-parallel simulation is based on the following property of the topological ordering π associated to
the trie which allows to encode the transitions using a shift of k bits and a bitwise and: for each edge (p,q), the distance
π(q) − π(p) is equal to a constant k. For an in-depth survey on the topic, the reader is referred to [6].

The problem which arises when trying to bit-parallel simulate the Aho–Corasick NFA and the suffix NFA is that, in
general, there might be no topological ordering π such that, for each edge (p,q), the distance π(q)−π(p) is fixed. Cantone
and Faro presented in [6] a bit-parallel simulation of the Aho–Corasick NFA that encodes variable length shifts using the
carry property of addition and based on a particular topological ordering; however, such topological orderings do not always
exist. Their algorithm has an O(σ �m/w�)-space and O(n�m/w�)-searching time complexity, where m is the number of
nodes in the trie.

As explained above, the current technique used to extend string matching algorithms based on bit-parallelism to the
multiple string matching problem consists, on a conceptual basis, in sequentially concatenating the automata for each pat-
tern. The drawback of this method is that it is not possible to exploit the prefix redundancy in the patterns, a property
which can be significant in the case of small alphabets. The trie and the DAWG data structures make it possible to factor
common prefixes in the patterns. However, because of the lack of regularity in such structures, it is not possible to devise a
simulation of the corresponding automata using the original bit-parallel encoding. In this paper we present a new more gen-
eral approach to the efficient bit-parallel simulation of the Aho–Corasick NFAs and suffix NFAs. When the prefix redundancy
is nonnegligible, this method yields—if compared to the original encoding with no prefix factorization—a representation that
requires smaller bit-vectors and, correspondingly, less words. Therefore, if we restrict to single-word bit-vectors, it results
that more patterns can be packed into a word. Our construction is based on a result for the Glushkov automaton [13], which
however requires exponential space in the number of states in the NFA to encode the transition function. We show that,
by exploiting the relation between active states of the NFA and its associated failure function, it is possible to represent the
transition function in polynomial space using a similar encoding.

The rest of the paper is organized as follows. In Section 2 we recall some preliminary notions and elementary facts. In
Section 3 we present a general technique to simulate NFAs for a set of patterns. Then in Sections 4 and 5 we devise a bit-
parallel encoding of the Aho–Corasick NFA and of the suffix NFA, respectively, and describe also two bit-parallel algorithms
for the multiple pattern matching problem based on such encodings. Finally, we briefly draw our conclusions in Section 6.

2. Basic notions and definitions

A string P of length |P | = m over a given finite alphabet Σ is any sequence of m characters of Σ . For m = 0, we
obtain the empty string ε. Σ∗ is the collection of all finite strings over Σ . We denote by P [i] the (i + 1)-st character
of P , for 0 � i < m. Likewise, the substring of P contained between the (i + 1)-st and the (j + 1)-st characters of P is
denoted by P [i .. j], for 0 � i � j < m. We also put Pi =Def P [0 .. i], for 0 � i < m, and make the convention that P−1
denotes the empty string ε. It is common to identify a string of length 1 with the character occurring in it. For any
two strings P and P ′ , we write P .P ′ to denote the concatenation of P ′ to P , and P ′ � P to express that P ′ is a proper
suffix of P , i.e., P = P ′′.P ′ for some nonempty string P ′′ . The notation P ′ � P will be used with the obvious meaning.
Analogously, P ′ � P (P ′ � P) expresses that P ′ is a (proper) prefix of P , i.e., P = P ′.P ′′ for some (nonempty) string P ′′ . We
say that P ′ is a factor of P if P = P ′′.P ′.P ′′′ , for some strings P ′′, P ′′′ ∈ Σ∗ , and we denote by Fact(P) the set of the factors
of P . Likewise, we denote by Suff (P) the set of the suffixes of P . We write P r to denote the reverse of the string P , i.e.,
P r = P [m−1]P [m−2] . . . P [0]. Given a finite set of patterns P , we put P r =Def {P r | P ∈ P } and Pl =Def {P [0 .. l −1] | P ∈ P }.

1 We recall that a topological ordering of an NFA is any total ordering < of the set of its states such that p < q, for each edge (p,q) of the NFA.

D. Cantone et al. / Journal of Discrete Algorithms 11 (2012) 25–36 27
Also we put size(P) =Def
∑

P∈P |P | and extend the maps Fact(·) and Suff (·) to P by putting Fact(P) =Def
⋃

P∈P Fact(P) and
Suff (P) =Def

⋃
P∈P Suff (P).

We recall the notation of some bitwise infix operators on computer words, namely the bitwise and “&”, the bitwise
or “|”, the left shift “	” operator (which shifts to the left its first argument by a number of bits equal to its second
argument), and the unary bitwise not operator “∼”. The functions that compute the first and the last bit set to 1 of a word
x are �log2(x & (∼ x + 1))� and �log2(x)�, respectively.2

A nondeterministic finite automaton (NFA) with ε-transitions is a 5-tuple N = (Q ,Σ, δ,q0, F), where Q is a set of states,
q0 ∈ Q is the initial state, F ⊆ Q is the collection of final states, Σ is an alphabet, and δ : Q × (Σ ∪ {ε}) → P (Q) is the
transition function (P (·) is the powerset operator).3 For each state q ∈ Q , the ε-closure of q, denoted as ECLOSE(q), is the
set of states that are reachable from q by following zero or more ε-transitions. ECLOSE can be generalized to a set of states
by putting ECLOSE(D) = ⋃

q∈D ECLOSE(q). In the case of an NFA without ε-transitions, we have ECLOSE(q) = {q}, for any
q ∈ Q .

The extended transition function δ∗ : Q × Σ∗ → P (Q) induced by δ is defined recursively by

δ∗(q, u) =Def

{⋃
p∈δ∗(q,v) ECLOSE(δ(p, c)) if u = v.c, for some v ∈ Σ∗ and c ∈ Σ,

ECLOSE(q) otherwise (i.e., if u = ε).

In particular, when no ε-transition is present, then

δ∗(q, ε) = {q} and δ∗(q, v.c) =
⋃

p∈δ∗(q,v)

δ(p, c).

Both the transition function δ and the extended transition function δ∗ can be naturally generalized to handle set of
states, by putting δ(D, c) =Def

⋃
q∈D δ(q, c) and δ∗(D, u) =Def

⋃
q∈D δ∗(q, u), respectively, for D ⊆ Q , c ∈ Σ , and u ∈ Σ∗ . The

extended transition function satisfies the following property:

δ∗(q, u.v) = δ∗(δ∗(q, u), v
)
, for all u, v ∈ Σ∗. (1)

Given a set P of patterns over a finite alphabet Σ , the trie T P associated with P is a rooted directed tree, whose edges
are labeled by single characters of Σ , such that

(i) distinct edges out of the same node are labeled by distinct characters,
(ii) all paths in T P from the root are labeled by prefixes of the strings in P ,

(iii) for each string P in P there exists a path in T P from the root which is labeled by P .

For any node p in the trie T P , we denote by lbl(p) the string which labels the path from the root of T P to p and put
len(p) =Def |lbl(p)|. Plainly, the map lbl is injective. Additionally, for any edge (p,q) in T P , the label of (p,q) is denoted by
lbl(p,q).

For a set of patterns P = {P1, P2, . . . , Pr} over an alphabet Σ , the maximal trie of P is the trie T max
P obtained by merging

into a single node the roots of the linear tries T P1 , T P2 , . . . , T Pr relative to the patterns P1, P2, . . . , Pr , respectively. Strictly
speaking, the maximal trie is a nondeterministic trie, as property (i) above may not hold at the root.

The directed acyclic word graph (DAWG) for a finite set of patterns P is a data structure representing the set Fact(P).
To describe it precisely, we need the following definitions. Let us denote by end-pos(u) the set of all positions in P where
an occurrence of u ends, for u ∈ Σ∗; more formally, we put

end-pos(u) =Def
{
(P , j)

∣∣ u � P j, with P ∈ P and |u| − 1 � j < |P |}.
For instance, we have end-pos(ε) = {(P , j) | P ∈ P and −1 � j < |P |}, since ε � P j , for each P ∈ P and −1 � j < |P | (we
recall that P−1 = ε, by convention).

We also define an equivalence relation R P over Σ∗ by putting

u R P v ⇔Def end-pos(u) = end-pos(v), (2)

for u, v ∈ Σ∗ , and denote by R P (u) the equivalence class of R P containing the string u. Also, we put

val
(

R P (u)
) =Def the longest string in the equivalence class R P (u). (3)

Then the DAWG for a finite set P of patterns is a directed acyclic graph (V , E) with an edge labeling function lbl(), where
V = {R P (u) | u ∈ Fact(P)}, E = {(R P (u), R P (uc)) | u ∈ Σ∗, c ∈ Σ, uc ∈ Fact(P)}, and lbl(R P (u), R P (uc)) = c, for u ∈ Σ∗ ,
c ∈ Σ such that uc ∈ Fact(P) (cf. [4]).

We define below the Aho–Corasick NFA and the suffix NFA for a set P of patterns.

2 Modern architectures include assembly instructions for this purpose; for example, the x86 family provides the bsf and bsr instructions, whereas the
powerpc architecture provides the cntlzw instruction. For a comprehensive list of machine-independent methods for computing the index of the first and
last bit set to 1, see [2].

3 In the case of NFAs with no ε-transitions, the transition function has the form δ : Q × Σ → P (Q). For the basics on NFAs, the reader is referred to [8].

28 D. Cantone et al. / Journal of Discrete Algorithms 11 (2012) 25–36
2.1. The Aho–Corasick NFA

The Aho–Corasick NFA for a set P of patterns over an alphabet Σ is induced directly by the trie T P for P . More
precisely, it is the NFA AP = (Q ,Σ, δA,q0, F), where:

• Q is the set of nodes of T P (the set of states);
• q0 ∈ Q is the root of T P (the initial state);
• δA : Q × Σ → P (Q) is the transition function, with

δA(q, c) =Def

{ {p ∈ Q | lbl(p) = c} ∪ {q0} if q = q0,

{p ∈ Q | lbl(p) = lbl(q).c} if q �= q0,

for q ∈ Q , c ∈ Σ , and where we recall that P (·) denotes the powerset operator;
• F =Def {q ∈ Q | lbl(q) ∈ P } is the set of final states.

Plainly we have |Q | � ∑
P∈P |P |.

We also associate with the NFA AP a failure function fail : Q \ {q0} → Q such that

• lbl(fail(q)) � lbl(q), and
• len(fail(q)) � len(p), for each p ∈ Q such that lbl(p) � lbl(q)

(in other words, lbl(fail(q)) is the longest proper suffix of lbl(q) which is also a prefix of a string in P).
The automaton AP can be seen as the nondeterministic version of the Aho–Corasick automaton: this is a trie T P for

a set of patterns P augmented with failure links, which are followed when no transition is possible on a text character
(cf. [1]).

An immediate, yet useful, property of the Aho–Corasick NFA, which can be readily proved by induction, is the following

q0 ∈ δ∗
A(q0, u), for every u ∈ Σ∗. (4)

The Aho–Corasick NFA AP = (Q ,Σ, δA,q0, F) relative to a given set P of patterns can be used to find the occurrences
of the patterns of P in a given text T , by observing that a pattern P ∈ P has an occurrence in T ending at position i, i.e.,
P � Ti , if and only if δ∗

A(q0, T [0 .. i]) contains a final state q ∈ F such that lbl(q) = P . Thus, to find all the occurrences in T
of the patterns of P , it is enough to compute the set δ∗

A(q0, Ti) ∩ F , for i = 0,1, . . . , |T | − 1. As an immediate consequence
of (1) and the definitions of δA and δ∗

A on P (Q), we have δ∗
A(q0, Ti) = δA(δ∗

A(q0, Ti−1), T [i]), for i = 1,2, . . . , |T | − 1. Hence,
the problem of computing efficiently the sets δ∗

A(q0, Ti) can be reduced to the problem of evaluating efficiently transition
actions of the form δA(D, c), for any c ∈ Σ and any reachable configuration D ⊆ Q of AP , namely any subset D ⊆ Q such
that D = δ∗

A(q0, u), for some u ∈ Σ∗ .
The following property is an immediate consequence of the definition of the failure function.

Lemma 1. Given the Aho–Corasick NFA AP = (Q ,Σ, δA,q0, F) for a set P of patterns and its associated failure function fail : Q \
{q0} → Q , we have

lbl(p) � lbl(q) → lbl(p) � lbl
(

fail(q)
)
,

for all p ∈ Q and q ∈ Q \ {q0}.

2.2. The suffix NFA

The suffix NFA for a finite set P of patterns over an alphabet Σ is the NFA with ε-transitions S P = (Q ,Σ, δS ,q0, F)

induced by the DAWG for P , where

• Q =Def {R P (u) | u ∈ Fact(P)} is the set of states4;
• q0 = R P (ε) is the initial state;
• δS : Q × (Σ ∪ {ε}) → P (Q) is the transition function defined by:

δS
(

R P (u),a
) =Def

⎧⎨
⎩

Q if ua = ε,

{R P (ua)} if ua ∈ Fact(P) \ {ε},
∅ otherwise;

• F = {q ∈ Q | val(q) ∈ Suff (P)} is the set of final states.

4 R P is the equivalence relation defined by (2).

D. Cantone et al. / Journal of Discrete Algorithms 11 (2012) 25–36 29
It is well known that the language recognized by the NFA S P is Suff (P). Additionally, the NFA S ′
P = (Q ,Σ, δS ,q0, Q),

obtained from S P by considering all states in Q as final, recognizes the language Fact(P) of all factors of strings in P .
In other words, for u ∈ Σ∗ , we have

δS(q0, u) �= ∅ if and only if u ∈ Fact(P). (5)

We also observe that if size(P) > 1, then |Q | � 2
∑

P∈P |P | − 1 (cf. [4]).
We also define a failure function, suf : Fact(P) \ {ε} → Fact(P), named suffix link, by putting

suf (u) =Def the longest v ∈ Suff (u) such that v/R P u (6)

for u ∈ Fact(P) \ {ε}.
The suf (·) function can be extended to the equivalence classes of R P not containing ε, and therefore to the set Q \ {q0}

of states of S P , by putting for all q ∈ Q \ {q0}

suf (q) =Def R P
(
suf

(
val(q)

))
.

A useful property of the function suf (·) is proved in the following lemma.

Lemma 2. Given a nondeterministic suffix automaton S P = (Q ,Σ, δS ,q0, F) for a set of patterns P , for all p,q ∈ Q \ {q0} we have

(a) if val(p) � val(q) then val(p) � val(suf (q)) � val(q);
(b) if val(p) � val(q) then suf (k)(q) = p, for some k � 1 (where suf (0)(q) =Def q and, recursively, suf (h+1)(q) =Def suf (suf (h)(q)), for

h � 0, provided that suf (h)(q) �= q0).

Proof. Let val(p) � val(q). From the definition (6) of the function suf (·), we have val(p) � suf (val(q)) � val(q). Since
val(R P (suf (val(q)))) is the longest string in the equivalence class of suf (val(q)), we have also that suf (val(q)) �
val(R P (suf (val(q)))) and val(p) � val(R P (suf (val(q)))) � val(q). Thus, (a) follows by observing that val(suf (q)) =
val(R P (suf (val(q)))).

Concerning (b), we argue as follows. From (a) we have val(p) � val(suf (q)). If val(p) = val(suf (q)), then suf (1)(q) =
suf (q) = p, and we are done. Otherwise, val(p) � val(suf (q)). By applying (a) repeatedly, we eventually obtain a sequence

val(p) = val
(
suf (k)(q)

) � val
(
suf (k−1)(q)

) � · · · � val
(
suf (q)

) � val(q),

for some k � 1, which implies suf (k)(q) = p, thus proving (b). �
Given a set of patterns P over Σ , the suffix NFA S(Plmin

)r = (Q ,Σ, δS ,q0, F) for (Plmin)
r can be used to find the occur-

rences of the patterns of P in a text T of length n by observing that a pattern P ∈ P of length m has an occurrence in T
ending at position i +m−1, i.e., T [i .. i +m−1] = P , if and only if δ∗

S (q0, (T [i .. i + lmin −1])r) contains a final state q ∈ F such
that val(q) � P r and T [i + lmin .. i +m −1] � P . Hence, to find all the occurrences of the patterns in P in T , one can compute
δ∗

S (q0, (T [i .. i + lmin − 1])r) ∩ F , for i = 0,1, . . . ,n − lmin and then make the appropriate checks for the candidate matches. In
practice, algorithms based on this approach can skip windows as follows: for a window of T of size lmin beginning at posi-
tion i, let l be the length of the longest proper suffix of T [i .. i + lmin −1] such that δ∗

S (q0, (T [i + lmin − l .. i + lmin −1])r)∩ F �= ∅.
Then, the windows at positions i, i + 1, . . . , i + lmin − l − 1 can be safely skipped.

3. Bit-parallel simulation of NFAs for the multiple string matching problem

To simulate efficiently the NFAs AP and S P with the bit-parallel technique, a suitable representation of the transi-
tion function δ is needed, in order that δ(D, c) can be computed by O(�|Q |/w�) computer operations, for any reachable
configuration D ⊆ Q and character c ∈ Σ (as before, w is the number of bits in a computer word).

Our construction is based on a result for the Glushkov automaton that can be immediately generalized to NFAs like AP
and S P as follows (cf. [13]).

Let N = (Q ,Σ, δ,q0, F) be an NFA with ε-transitions such that up to the ε-transitions, for each state q ∈ Q , either

(i) all the incoming transitions in q are labeled by the same character, or
(ii) all the incoming transitions in q originate from a unique state.

Let B(c), for c ∈ Σ , be the set of states of N with an incoming transition labeled by c, i.e.,

B(c) =Def
{

q ∈ Q
∣∣ q ∈ δ(p, c), for some p ∈ Q

}
.

Likewise, let Follow(q), for q ∈ Q , be the set of states reachable from state q with one transition over a character in Σ , i.e.,

30 D. Cantone et al. / Journal of Discrete Algorithms 11 (2012) 25–36
Follow(q) =Def

⋃
c∈Σ

δ(q, c).

Also, let

Φ(D) =Def

⋃
q∈D

Follow(q),

for D ⊆ Q . Then the following result holds.

Lemma 3. (Cf. [13].) For every q ∈ Q , D ⊆ Q , and c ∈ Σ , we have

(a) δ(q, c) = Follow(q) ∩ B(c);
(b) δ(D, c) = Φ(D) ∩ B(c).

Proof. Concerning (a), we notice that δ(q, c) ⊆ Follow(q) ∩ B(c) holds plainly. To prove the converse inclusion, let p ∈
Follow(q)∩ B(c). Then p ∈ δ(q, c′)∩ δ(q′, c), for some c′ ∈ Σ and q′ ∈ Q . If p satisfies condition (i), then c′ = c, and therefore
p ∈ δ(q, c). On the other hand, if p satisfies condition (ii), then q = q′ and therefore we have again p ∈ δ(q, c).

From (a), we obtain immediately (b), since

δ(D, c) =
⋃
q∈D

δ(q, c) =
⋃
q∈D

(
Follow(q) ∩ B(c)

) =
⋃
q∈D

Follow(q) ∩ B(c) = Φ(D) ∩ B(c). �

Provided that one finds an efficient way of storing and accessing the maps Φ(·) and B(·), equation (b) of Lemma 3 is
particularly suitable for bit-parallelism, as set intersection can be readily implemented by the bitwise and operation.

We observe at once that the immediate solution of storing the maps Φ(·) and B(·) as tables of bit words, respectively
indexed by set of states and by characters in Σ , requires (2m + σ) · m bits, which is exponential in the number m of states
of AP or S P (σ is the size of the alphabet Σ). Thus we have to find a better way to store the map Φ(·), exploiting the fact
that Φ(D) needs to be evaluated over reachable configurations D of AP or S P only.

In Sections 4 and 5 we will show that the map Φ(·) can be conveniently stored in O(m2)-space, both in the case of
the Aho–Corasick NFA and of the suffix NFA. More specifically, we will show in both cases that each nonempty reachable
configuration D can be represented in terms of a unique state, which will be referred to as lead(D). This will allow us to
represent Φ(D) as Φ̇(lead(D)), where Φ̇ : Q → P (Q) is the map such that the q-th bit of Φ̇(p) is set if and only if there
is a transition to state q originating from p or any other state belonging to the reachable configuration uniquely identified
by p. Plainly, the map Φ̇ can be stored in O(m2)-space and allows to rewrite equation (b) of Lemma 3 as

δ(D, c) = Φ̇
(
lead(D)

) ∩ B(c),

which in turn translates readily into the bit-parallel assignment

D ← Φ̇
[
lead(D)

]
&B[c].

4. Bit-parallel simulation of the Aho–Corasick NFA for a set of patterns

In this section we present a bit-parallel encoding of the Aho–Corasick NFA; specifically, based on the idea explained in
the previous section, we first show that each reachable configuration of AP is uniquely identified by a single state. Then,
we devise the map Φ̇(·) by using the relation between reachable configurations of the automaton and the associated failure
function, and prove its correctness. Finally, we show that the map lead(·) admits an efficient implementation.

We begin by showing in the following elementary lemma that, for any string u, the configuration of the automaton after
reading u consists of all the states whose labels are a suffix of u.

Lemma 4. Let AP = (Q ,Σ, δ,q0, F) be the Aho–Corasick NFA for a finite set P of patterns over the alphabet Σ , and let u ∈ Σ∗ . Then
δ∗(q0, u) = {q ∈ Q | lbl(q) � u}.

Proof. For u = ε, the lemma holds plainly. Thus, let u = u′.c, with u′ ∈ Σ∗ and c ∈ Σ . We first show by induction on u that
δ∗(q0, u) ⊆ {q ∈ Q | lbl(q) � u}. Let p ∈ δ∗(q0, u). Since, by (1),

δ∗(q0, u′.c
) = δ∗(δ∗(q0, u′), c

) = δ
(
δ∗(q0, u′), c

) =
⋃

q∈δ∗(q0,u′)
δ(q, c),

we have p ∈ δ(q̄, c), for some q̄ ∈ δ∗(q0, u′), so that, by inductive hypothesis, lbl(q̄) � u′ , and therefore lbl(p) = lbl(q̄).c �
u′.c = u.

D. Cantone et al. / Journal of Discrete Algorithms 11 (2012) 25–36 31
To show the converse inclusion relationship, let p ∈ Q be such that lbl(p) � u. We prove by induction on lbl(p) that
p ∈ δ∗(q0, u). In view of (4), we may dismiss at once the case in which lbl(p) = ε, i.e., p = q0, and therefore assume that
lbl(p) = lbl(p′).c, for some p′ ∈ Q and c ∈ Σ . Hence u = u′.c, for some u′ ∈ Σ∗ such that lbl(p′) � u′ , so that, by inductive
hypothesis, we have p′ ∈ δ∗(q0, u′). Thus, by (1), p ∈ δ(p′, c) ⊆ δ(δ∗(q0, u′), c) = δ∗(δ∗(q0, u′), c) = δ∗(q0, u′.c) = δ∗(q0, u). �

Given a reachable configuration D , the previous lemma implies that for any two distinct states p, p′ ∈ D we have
|lbl(p)| �= |lbl(p′)|, since either lbl(p) � lbl(p′) or lbl(p′) � lbl(p). Thus there must exist a unique state q̄ ∈ D such that
|lbl(p)| � |lbl(q̄)|, for every p ∈ D . Let us denote such a state by lead(D). Then we have:

Corollary 1. Let AP = (Q ,Σ, δ,q0, F) be the Aho–Corasick NFA for a finite set P of patterns over Σ , and let D be a reachable
configuration of AP . Then D = {q ∈ Q | lbl(q) � lbl(lead(D))}.

Proof. Let u ∈ Σ∗ be such that D = δ∗(q0, u). In view of Lemma 4, it is enough to observe that lbl(q) � u if and only if
lbl(q) � lbl(lead(D)), for every q ∈ Q . �

From the preceding corollary, it follows at once that the reachable configurations of the Aho–Corasick NFA AP =
(Q ,Σ, δ,q0, F), for a set P of patterns, are in 1–1 correspondence with its states, and therefore their number is |Q |.

A convenient way to represent Φ uses the map Φ̇A : Q → P (Q), recursively defined by

Φ̇A(q) =Def

{
Follow(q0), if q = q0,

Follow(q) ∪ Φ̇A(fail(q)), if q �= q0,
(7)

as shown in the following lemma.

Lemma 5. For any reachable configuration D of the Aho–Corasick NFA AP , we have Φ(D) = Φ̇A(lead(D)).

Proof. We proceed by induction on |lbl(lead(D))|. If |lbl(lead(D))| = 0, then lead(D) = q0 and D = {q0}, so that Φ(D) =
Follow(q0) = Φ̇A(q0) = Φ̇A(lead(D)). For the inductive step, we have

Φ(D) =
⋃
q∈D

Follow(q) =
⋃
q∈Q

lbl(q)�lbl(lead(D))

Follow(q)

= Follow
(
lead(D)

) ∪
⋃
q∈Q

lbl(q)�lbl(lead(D))

Follow(q)

= Follow
(
lead(D)

) ∪
⋃
q∈Q

lbl(q)�lbl(fail(lead(D)))

Follow(q)

= Follow
(
lead(D)

) ∪ Φ
({

q ∈ Q
∣∣ lbl(q) � lbl

(
fail

(
lead(D)

))})
= Follow

(
lead(D)

) ∪ Φ̇A
(

fail
(
lead(D)

) = Φ̇A
(
lead(D)

))
. �

Plainly, the map Φ̇A(·) requires only |Q |2 bits. Additionally, the map lead(·) can be computed very efficiently at run-time,
provided that the states of AP are ordered in such a way that a state p precedes a state q whenever |lbl(p)| < |lbl(q)| (say,
by a breadth-first visit of AP from q0). Indeed, in such a case, if we assume that D is encoded as a bit mask, then lead(D)

is the index of the highest bit of D set to 1, and therefore is equal to �log2 D�.

4.1. The Log-And algorithm

Based on the previous considerations, we present an efficient bit-parallel algorithm, which we call Log-And, for solving
the multiple string matching problem.

In the Log-And algorithm, reported in Fig. 1, the sets D , B and the map Φ̇A are encoded as bit tables.
As opposed to the Shift-And algorithm, bit 0 is reserved for the initial state, so that lead(D) is never computed for an

empty set (0 value) as the initial state is always active.
In the preprocessing phase, the Log-And algorithm iterates over the nodes of AP , which are assumed to be sorted by a

breadth-first search; for each node, the corresponding Φ mask is computed using (7) and the B masks associated to the
labels of its outgoing edges are augmented accordingly. The algorithm precomputes also a final state bit mask, L, where a
bit is set to 1 if and only if it corresponds to a final state of the automaton. The maps Follow(·), lbl(·) and fail(·) can be
constructed using the algorithm introduced in [1], while the loop iterating over the states of the automaton in breadth-first
order can be easily implemented using a queue.

32 D. Cantone et al. / Journal of Discrete Algorithms 11 (2012) 25–36
Log-And (T , P = {P1, P2, . . . , Pr})

/* Preprocessing */
1. Let AP = (Q ,Σ, δ,q0, F) be the Aho–Corasick NFA relative to the set of patterns P and let

the maps Follow(), lbl(), and fail() be defined as before, relative to AP . We also assume that
Q = {0,1, . . . , � − 1}, where � = |Q |, and that if |lbl(p)| < |lbl(q)| then p < q, for any p,q ∈ Q .

2. L ← 0�

3. for c ∈ Σ do B[c] ← 0�−11
4. for p ← 0 to � − 1 do
5. Φ̇A [p] ← 0�−11
6. for q ∈ Follow(p) \ {0} do
7. H ← 0�−11	 q
8. c ← lbl(p,q)

9. B[c] ← B[c] | H
10. if q ∈ F then L ← L | H
11. Φ̇A [p] ← Φ̇A [p] | H
12. if p �= 0 then
13. Φ̇A [p] ← Φ̇A [p] | Φ̇A [fail(p)]

/* Searching */
14. D ← 0�−11
15. for j ← 0 to |T | − 1 do
16. lead ← �log2(D)�
17. D ← Φ̇A [lead] & B[T [j]]
18. if D & L �= 0� then Output(j)

Fig. 1. The Log-And algorithm for the multiple string matching problem.

Then, during the searching phase, the Log-And algorithm scans the text T , character by character, using the following
basic transition, based on Lemma 3(b),

D ← Φ̇A
[⌊

log2(D)
⌋]

& B[c].
The resulting algorithm has O((m + σ)�m/w�)-space and O(n�m/w�)-searching time complexity, where n = |T |, m is the
number of nodes of AP , σ is the alphabet size, and w is the word size in bits. When m ∈ O(w), the Log-And algorithm
turns out to have an O(m + σ)-space and O(n)-searching time complexity.

If one is interested also in retrieving the patterns that match (if any) at each text position, it is convenient to precompute
a table which maps each final state of AP to the corresponding pattern index. Then, in the searching phase, for each
position j, the algorithm iterates over the bits of (D & L) by computing the index of the highest bit set and querying the
corresponding pattern number. The whole sequence is repeated, after having cleared the highest bit, until there are no more
bits set.

5. Bit-parallel simulation of the suffix NFA for a set of patterns

In this section we devise a bit-parallel encoding of the suffix automaton induced by the DAWG data structure for a set
of patterns. We observe that the maximal trie of a set P of patterns can also be turned into an automaton that recognizes
the language Suff (P), by adding an ε-transition from the initial state to all remaining states. The size of the DAWG data
structure can vary between the number |Q AP | of states of the Aho–Corasick automaton for P and 2 · size(P) − 1 (cf. [5]).
Thus, although the DAWG allows to factor prefix redundancy in the patterns, it is not always preferable to the maximal trie,
whose size is size(P). However, it turns out that the average size of the DAWG is close to |Q AP | which, depending on the
degree of prefix redundancy in P may be much smaller than size(P).

Let S P be the suffix NFA for a set P of patterns over an alphabet Σ . We devise a bit-parallel encoding of this automaton
much along the lines of what has been done for the AP automaton.

The following lemma is the analogous of Lemma 4 for the present context of suffix NFAs. It shows that, for any string u,
the configuration of the automaton after reading u consists of all the states such that u is a suffix of the corresponding
labels. For the sake of completeness, we include its proof, though, up to few adaptations, it follows closely the proof of
Lemma 4.

Lemma 6. Let S P = (Q ,Σ, δS ,q0, F) be the suffix NFA for a finite set P of patterns, and let u ∈ Σ∗ . Then δ∗
S (q0, u) = {q ∈ Q | u �

val(q)}.

Proof. For u = ε, the lemma holds plainly. Thus, let u = u′.c, with u′ ∈ Σ∗ and c ∈ Σ . We first show by induction on u that
δ∗

S (q0, u) ⊆ {q ∈ Q | u � val(q)}. Thus, let p ∈ δ∗
S (q0, u). By (1), we have δ∗

S (q0, u′.c) = δ∗
S (δ

∗
S (q0, u′), c) = δS (δ

∗
S (q0, u′), c) =⋃

q∈δ∗
S (q0,u′) δS (q, c). Hence, p ∈ δS (q̄, c), for some q̄ ∈ δ∗

S (q0, u′), so that, by inductive hypothesis, u′ � val(q̄), and therefore

u = u′.c � val(q̄).c = val(p).

D. Cantone et al. / Journal of Discrete Algorithms 11 (2012) 25–36 33
To show the converse inclusion relationship, let p ∈ Q be such that u � val(p). We prove by induction on val(p) that p ∈
δ∗

S (q0, u). If val(q) = ε, then p = q0 and u = ε, so that p ∈ δ∗
S (q0, u) holds trivially. Let us then assume that val(p) = val(p′).c,

for some p′ ∈ Q and c ∈ Σ . Hence u = u′.c, for some u′ ∈ Σ∗ such that u′ � val(p′), so that, by inductive hypothesis, we
have p′ ∈ δ∗

S (q0, u′). Thus, by (1), p ∈ δS (p′, c) ⊆ δS (δ
∗
S (q0, u′), c) = δ∗

S (δ
∗
S (q0, u′), c) = δ∗

S (q0, u′.c) = δ∗
S(q0, u). �

The following lemma and corollary illustrate some useful properties concerning a nonempty reachable configuration
D = δ∗

S (q0, u) of S P for a string u and relative equivalence class R P (u) defined by (2). In particular, it will follow from
them that there is a 1–1 correspondence between nonempty reachable configurations of the automaton and the equivalence
classes of R P .

Lemma 7. Let S P = (Q ,Σ, δS ,q0, F) be the suffix NFA for a set of patterns P . Then, for any string u ∈ Σ∗ , the following implications
hold:

(a) if q ∈ δ∗
S (q0, u), then val(R P (u)) � val(q);

(b) if δ∗
S (q0, u) �= ∅, then R P (u) ∈ δ∗

S (q0, u);
(c) if δ∗

S (q0, u) = δ∗
S (q0, v) �= ∅, then u R P v, for v ∈ Σ∗ .

Proof. Concerning (a), let q ∈ δ∗
S (q0, u). From (5), it follows that u ∈ Fact(P), so that val(R P (u)) is defined. Then by

Lemma 6 we have that u � val(q), which in turn implies that end-pos(val(q)) ⊆ end-pos(u) = end-pos(val(R P (u))). Hence,
val(R P (u)) � val(q).

Concerning (b), from the very definitions of R P and val(·) (see (2) and (3)), we have that u � val(R P (u)) which, by
Lemma 6, implies that R P (u) ∈ δ∗

S (q0, u).
Finally, concerning (c), let δ∗

S (q0, u) = δ∗
S (q0, v) �= ∅. Then (b) yields R P (u) ∈ δ∗

S (q0, v) and R P (v) ∈ δ∗
S (q0, u) which, again

by Lemma 6, imply val(R P (v)) � val(R P (u)) and val(R P (u)) � val(R P (v)), respectively. Hence, val(R P (u)) = val(R P (v)) so
that u R P v . �

Given a nonempty reachable configuration D for a string u, the previous lemma implies that the set

{
R P (u)

∣∣ δ∗
S(q0, u) = D, for u ∈ Fact(P)

}
has exactly one element. Therefore the following definition is well-given

lead(D) =Def R P (u),

for any u ∈ Fact(P) such that δ∗
S (q0, u) = D .

Corollary 2. Let S P = (Q ,Σ, δ,q0, F) be the suffix NFA for a set of patterns P , and let D be a nonempty reachable configuration of
S P . Then D = {q ∈ Q | val(lead(D)) � val(q)}.

Proof. Let u ∈ Fact(P) such that δ∗
S (q0, u) = D and let q ∈ D . From Lemma 7(a) we have that val(lead(D)) = val(R P (u)) �

val(q). Conversely, if val(R P (u)) � val(q), then u � val(q), so that, by Lemma 6, q ∈ D . �
From the preceding corollary, it follows at once that the nonempty reachable configurations of a suffix NFA S P =

(Q ,Σ, δS ,q0, F) for a set P of patterns are in 1–1 correspondence with its states, and therefore their number is |Q |.
For q ∈ Q , let

rsuf (q) =Def suf −1[{q}] = {
p ∈ Q

∣∣ suf (p) = q
}

be the set of states whose suffix link is q, where suf (·) is the map defined in (6).
We will show that a reachable configuration of S P can be represented in terms of the maps lead(·) and rsuf (·).

Lemma 8. Let D be a nonempty reachable configuration of the suffix NFA S P = (Q ,Σ, δS ,q0, F) for a set P of patterns. Then

D = {
lead(D)

} ∪
⋃

p∈rsuf (lead(D))

{
q ∈ Q

∣∣ val(p) � val(q)
}
.

Proof. From Corollary 2 we have

D = {
q ∈ Q

∣∣ val
(
lead(D)

) � val(q)
} = {

lead(D)
} ∪ {

q ∈ Q
∣∣ val

(
lead(D)

) � val(q)
}
.

Then to prove the lemma it is enough to show that

34 D. Cantone et al. / Journal of Discrete Algorithms 11 (2012) 25–36
{
q ∈ Q

∣∣ val
(
lead(D)

) � val(q)
} =

⋃
p∈rsuf (lead(D))

{
q ∈ Q

∣∣ val(p) � val(q)
}
.

Let q′ ∈ Q be such that val(lead(D)) � val(q′). By Lemma 2(b), there exists k � 1 such that suf (k)(q′) = lead(D). Let p′ =
suf (k−1)(q′). Plainly, suf (p′) = lead(D), so that p′ ∈ rsuf (lead(D)). Additionally, val(p′) = val(suf (k−1)(q′)) � val(q′).

Hence,

q′ ∈ {
q ∈ Q

∣∣ val
(

p′) � val(q)
} ⊆

⋃
p∈rsuf (lead(D))

{
q ∈ Q

∣∣ val(p) � val(q)
}

so that

{
q ∈ Q

∣∣ val
(
lead(D)

) � val(q)
} ⊆

⋃
p∈rsuf (lead(D))

{
q ∈ Q

∣∣ val(p) � val(q)
}
.

To prove the converse relationship, let

q′ ∈
⋃

p∈rsuf (lead(D))

{
q ∈ Q

∣∣ val(p) � val(q)
}

and let p′ ∈ rsuf (lead(D)) such that val(p′) � val(q′). Then val(lead(D)) = val(suf (p′)) � val(p) � val(q′), since suf (p′) =
lead(D). Hence q′ ∈ {q ∈ Q | val(lead(D)) � val(q)} proving

⋃
p∈rsuf (lead(D))

{
q ∈ Q

∣∣ val(p) � val(q)
} ⊆ {

q ∈ Q
∣∣ val

(
lead(D)

) � val(q)
}

and in turn completing the proof of the lemma. �
A convenient way to represent the map Φ(·) makes use of the following map Φ̇S : Q → P (Q), defined by

Φ̇S(q) =Def

{
Follow(q), if rsuf (q) = ∅,

Follow(q) ∪ ⋃
p∈rsuf (q) Φ̇S(p), if rsuf (q) �= ∅,

(8)

as proved in the following lemma.

Lemma 9. For any nonempty reachable configuration D of the suffix NFA S P = (Q ,Σ, δS ,q0, F) for a set P of patterns, we have

Φ(D) = Φ̇S
(
lead(D)

)
.

Proof. To begin with, let us put D p =Def {q ∈ Q | val(p) � val(q)}, for p ∈ rsuf (lead(D)), so that the decomposition of D
provided by the preceding lemma can be rewritten in a more compact way as

D = {
lead(D)

} ∪
⋃

p∈rsuf (lead(D))

D p . (9)

Additionally, we observe that

lead(D p) = p, (10)

for each p ∈ rsuf (lead(D)). Indeed, by Lemma 6,

δ∗
S

(
q0,val(p)

) = {
q ∈ Q

∣∣ val(p) � val(p)
} = D p,

so that lead(D p) = R P (val(p)) = p.
We are now ready to prove the lemma.
We proceed by induction on height(lead(D)), where

height(q) =Def length of the longest chain of suffix link ending at q.

If height(lead(D)) = 0 then D = {lead(D)} and rsuf (lead(D)) = ∅. For the inductive step, in view of (9) and (10) above and
of the fact that

height
(
lead(D p)

)
< height

(
lead(D)

)
for p ∈ rsuf (lead(D)), we have

D. Cantone et al. / Journal of Discrete Algorithms 11 (2012) 25–36 35
Backward-Log-And (T , P = {P1, P2, . . . , Pr})

/* Preprocessing */
1. Let S(Plmin

)r = (Q ,Σ, δ,q0, F) be the suffix NFA relative to the set of patterns (Plmin)r and let
the maps Follow(), val(), and suf () be defined as before, relative to S(Plmin

)r . We also assume
that Q = {0,1, . . . , � − 1}, where � = |Q |, and that if |val(p)| < |val(q)| then p < q, for any
p,q ∈ Q .

2. L ← 0�

3. for c ∈ Σ do B[c] ← 0�

4. for p ← � − 1 to 0 do
5. for q ∈ Follow(p) do
6. H ← 0�−11	 q
7. c ← lbl(p,q)

8. B[c] ← B[c] | H
9. if q ∈ F then L ← L | H

10. Φ̇S [p] ← Φ̇S [p] | H
11. if p �= 0 then
12. Φ̇S [suf (p)] ← Φ̇S [suf (p)] | Φ̇S [p]

/* Searching */
13. j ← l − 1
14. while j < n do
15. k ← 0, last ← 0
16. D ← 1�

17. while D �= 0� do
18. lead ← �log2(D & (∼ D + 1))�
19. D ← Φ̇S [lead] & B[T [j − k]]
20. if D & L �= 0� then
21. if k < l then
22. last ← k
23. else Output(j)
24. k ← k + 1
25. j ← j + l − last

Fig. 2. The Backward-Log-And algorithm for the multiple string matching problem.

Φ(D) = Φ
({

lead(D)
}) ∪

⋃
p∈rsuf (lead(D))

Φ(D p)

= Follow
(
lead(D)

) ∪
⋃

p∈rsuf (lead(D))

Φ̇S
(
lead(D p)

)

= Follow
(
lead(D)

) ∪
⋃

p∈rsuf (lead(D))

Φ̇S(p)

= Φ̇S
(
lead(D)

)
,

completing the proof of the lemma. �
As for the Aho–Corasick NFA, the map Φ̇S requires only |Q |2 bits and the map lead(·) can be computed very efficiently

at run-time, provided that the states of S P are ordered in such a way that a state p precedes a state q whenever |val(p)| <
|val(q)| (say, by a breadth-first search from q0). Indeed, in such a case, if we assume that D is encoded as a bit mask, then
lead(D) is the index of the lowest bit of D set to 1, and therefore is equal to �log2(D & (∼ D + 1))�.

5.1. The Backward-Log-And algorithm

In this section we present the Backward-Log-And algorithm, a BNDM-like bit-parallel algorithm based on the suffix NFA,
for the multiple string matching problem. In the Backward-Log-And algorithm, whose pseudocode is reported in Fig. 2, the
sets D , B and the map Φ̇S (·) are encoded as bit tables. There is no need to reserve bit 0 for the initial state, as the
simulation stops when there are no more active states. For simplicity, in the pseudocode it is assumed that all patterns have
the same length l.

During the preprocessing phase, the Backward-Log-And algorithm iterates over the states of the suffix NFA S(Plmin
)r , which

are assumed to be sorted by a breadth-first search; for each state, the corresponding masks B and L are computed as in
the Log-And algorithm, while the mask Φ is computed using (8). The maps Follow(·), val(·) and suf (·) can be constructed
using the algorithm introduced in [4], while the loop iterating over the states of the automaton in breadth-first order can
be easily implemented using a queue.

Then, during the searching phase, the Backward-Log-And algorithm scans the text T , character by character, using the
following transition based on Lemma 3(b),

36 D. Cantone et al. / Journal of Discrete Algorithms 11 (2012) 25–36
D ← Φ̇A
[⌊

log2
(

D & (∼D + 1)
)⌋]

& B[c].
The resulting algorithm has O((m +σ)�m/w�)-space and O(n�m/w�lmin)-searching time complexity, where n = |T |, lmin

is the length of the shortest pattern, m is the number of nodes of S(Plmin
)r , σ is the alphabet size and w is the word size in

bits. When m ∈ O(w), the Backward-Log-And algorithm turns out to have an O(m + σ)-space and O(nlmin)-searching time
complexity.

6. Conclusions

We have presented a method to simulate, using the bit-parallelism technique, the nondeterministic Aho–Corasick au-
tomaton induced by the trie for a set of patterns and the nondeterministic suffix automaton induced by the DAWG for a set
of patterns. Our construction, based on a previous result for the Glushkov automaton, achieves polynomial (in the number
of nodes of the automata) space complexity by exploiting the relation between active states of the NFAs and their associated
failure functions. By using these automata it is possible to remove prefix redundancy in the pattern set, which allows to
spare bits in the bit-parallel representation of the data structure.

We plan to investigate whether the approach presented here could be extended also to classes of characters and q-grams,
among others.

Acknowledgements

We thank the anonymous reviewers for their helpful comments.

References

[1] Alfred V. Aho, Margaret J. Corasick, Efficient string matching: An aid to bibliographic search, Commun. ACM 18 (6) (1975) 333–340.
[2] Jörg Arndt, Matters Computational, Springer, 2011, http://www.jjj.de/fxt/.
[3] Ricardo Baeza-Yates, Gaston H. Gonnet, A new approach to text searching, Commun. ACM 35 (10) (1992) 74–82.
[4] A. Blumer, J. Blumer, D. Haussler, R. McConnell, A. Ehrenfeucht, Complete inverted files for efficient text retrieval and analysis, J. ACM 34 (3) (1987)

578–595.
[5] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, Average sizes of suffix trees and DAWGs, Discrete Appl. Math. 24 (1–3) (1989) 37–45.
[6] Domenico Cantone, Simone Faro, A space efficient bit-parallel algorithm for the multiple string matching problem, Internat. J. Found. Comput. Sci. 17 (6)

(2006) 1235–1252.
[7] M. Crochemore, W. Rytter, Text Algorithms, Oxford University Press, 1994.
[8] John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison–Wesley, 2001.
[9] Donald E. Knuth, James H. Morris Jr., Vaughan R. Pratt, Fast pattern matching in strings, SIAM J. Comput. 6 (1) (1977) 323–350.

[10] G. Navarro, M. Raffinot, Flexible Pattern Matching in Strings—Practical On-Line Search Algorithms for Texts and Biological Sequences, Cambridge Uni-
versity Press, 2002.

[11] Gonzalo Navarro, Kimmo Fredriksson, Average complexity of exact and approximate multiple string matching, Theoret. Comput. Sci. 321 (2–3) (2004)
283–290.

[12] Gonzalo Navarro, Mathieu Raffinot, Fast and flexible string matching by combining bit-parallelism and suffix automata, J. Exp. Algorithmics 5 (2000) 4.
[13] Gonzalo Navarro, Mathieu Raffinot, New techniques for regular expression searching, Algorithmica 41 (2) (2005) 89–116.
[14] Sun Wu, Udi Manber, Fast text searching: Allowing errors, Commun. ACM 35 (10) (1992) 83–91.

http://www.jjj.de/fxt/

	On the bit-parallel simulation of the nondeterministic Aho-Corasick and sufﬁx automata for a set of patterns
	Introduction
	Basic notions and deﬁnitions
	The Aho-Corasick NFA
	The sufﬁx NFA

	Bit-parallel simulation of NFAs for the multiple string matching problem
	Bit-parallel simulation of the Aho-Corasick NFA for a set of patterns
	The Log-And algorithm

	Bit-parallel simulation of the sufﬁx NFA for a set of patterns
	The Backward-Log-And algorithm

	Conclusions
	Acknowledgements
	References

