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Abstract. We study the effects of correlated low-frequency noise sources
acting on a two-qubit gate in a fixed coupling scheme. A decoherence model
for the spatial and cross-talk correlations is introduced. The efficiency inside
the SWAP subspace is analyzed by combining analytic results based on the
adiabatic approximation and numerical simulations. Results critically depend
on amplitude of the low-frequency noise with respect to the qubits’ coupling
strength. Correlations between noise sources induce different qualitative
behavior depending on the values of the above parameters. The possibility
to reduce dephasing due to correlated low-frequency noise by a recalibration
protocol is discussed.
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1. Introduction

Solid-state nanodevices are at the forefront of present research toward the implementation of
quantum networks for quantum computation and communication. The impressive development
in device design and control tools achieved in recent years has by now to face intrinsic
limitations due to material imperfections and fluctuations. The resulting noise presents a
variety of material and device-dependent features, ranging from noise spectra showing narrow
resonances at selected frequencies (sometimes resonant with the nanodevice relevant energy
scales) to low-frequency high-amplitude noise, often displaying 1/ f behavior. Modeling these
fluctuations has naturally lead to overtake the ubiquitous effective bath description via harmonic
models and/or the hypothesis of linear coupling to the device under investigation.

A typical example are background charge fluctuations which for more than 10 years have
been known to strongly affect the performance of single-electron tunneling (SET) circuits [1].
Nowadays they represent the main limitation for any nanocircuit gate requiring highly reliable
electrostatic control. This is clearly the case of charge [2] and charge-phase [3] superconducting
qubits, but also of semiconducting spin qubits elecrostatically coupled to form a two-qubit
gate [4].

The general belief is that background charge noise is due to the activity of random
traps for single electrons in dielectric materials surrounding the island of SET devices or of
superconducting nanocircuits. These traps may have different trapping energies and switching
times, γ −1. An ensemble of non-interacting traps with a uniform distribution of trapping
energies and a 1/γ distribution of switching rates may originate the frequently observed 1/ f
noise [5]. Such a spectrum is indicative of numerous traps participating in the generation of
the noise. On the other hand, some samples clearly produce a telegraph noise with random
switching between a few states (with a magnitude of up to 0.1e in SET devices) [1, 6]. In
addition, recent observations on superconducting qubits in different setups have suggested
the possibility that a few impurities may entangle with the device [7, 8]. Such a variety of
experimental facts may be consistently predicted by describing background charges as two-
state systems whose dynamical behavior may turn from quantum mechanical to classical with
increasing temperature and/or with increasing strength of their dissipative interaction with the
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fluctuations of the surrounding local host [9]. Such a modelization clearly departs from the
‘conventional’ bosonic bath model and appropriately predicts the different protocol-dependent
decay laws of the coherent dynamics observed in charge and charge-phase qubits [9]. Multiple
frequencies in the qubit dynamics and dependence on the uncontrollable impurities’ initial state
at the beginning of measurement protocol are typical manifestations of non-gaussian character
of background charge fluctuations [10].

In order to limit the effect on single-qubit gates of these material-specific fluctuations
different strategies have been developed. Amongst the most successful is the design of
nanocircuits operating at ‘protected working points’ insensitive to charge fluctuations of the
lowest order in the noise strength [3]. Open- and closed-loop control protocols partly mutated
from quantum optics and NMR [11], represent another promising route [12]–[14].

Presently, the effort of the scientific community working with Josephson qubits is to
appropriately extend the above strategies to multiqubit architectures, the first step being to
implement an efficient two-qubit gate. Different schemes to couple superconducting qubits have
been proposed [15] and some experiments pointed out the possibility to realize the desired
entangled dynamics [16]–[18]. However, achievement of the needed high fidelity is still an
ambitious task. In addition to fluctuations experienced individually by each single-qubit gate,
coupled qubits, being usually built on-chip, may suffer from correlated noise due to sources
acting simultaneously on both sub-units. The effects on two-qubit gates of uncorrelated and
correlated bosonic baths has been investigated [19].

As far as the effect of background charges, opinions about the probable location of traps
are divided and observations depend to a certain extent on the specific sample and on the
junction geometry. However, there is unambiguous evidence that fluctuating traps located in the
insulating substrate contribute essentially to the total noise in SET devices [1, 20]. These traps
are expected to induce similar fluctuations on the two islands built on the same substrate. On
the other hand, fluctuating traps concentrated inside the oxide layer of the tunnel junctions, due
to screening by the junction electrodes, are expected to act independently on the two qubits [1].

Fluctuating impurities acting simultaneously on coupled qubits represent a further
unconventional noise source which solid-state nanodevices have to face [21]. This is the
subject of the present paper. Specifically, we will introduce a model for correlated charge
noise on interacting charge-phase qubits in a fixed capacitive coupling scheme. Relying on
measurements on SET circuits of power spectra on the two transistors and of the cross-spectrum
power density, we suppose a 1/ f behavior for both the two-channel spectra and the cross-
spectrum [1]. In addition, the cross-talk between the two qubits due to the capacitive coupling
itself between the islands will be discussed. Our analysis is based on analytical results obtained
within the adiabatic approximation for the 1/ f noise and on the numerical solution of the
stochastic Schrödinger equation. Solving the dynamics from short-to-intermediate timescales
allows complete understanding of the effects of correlations. Our work extends the analysis
of [21] which, being limited to the long-time behavior, misses relevant features occurring in
the short-time domain. We find that usually correlations induce a faster decay of the coherent
dynamics compared to the action of independent fluctuations. Nevertheless, under realistic
values of low-frequency noise amplitude, increasing the degree of correlation may instead lead
to longer decoherence times. Finally, the possibility of reducing the effects of low-frequency
correlated noise via open-loop recalibration protocols is discussed.

The paper is organized as follows: in section 2, we introduce the setup consisting of two
Cooper pair boxes (CPB) coupled by a capacitor. The cross-talk effect and the charge noise
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Figure 1. Two CPBs connected by a fixed capacitor.

sources responsible for correlations will be described and their correlation factor defined. In
section 3, we present a possible model for correlated noise exhibiting 1/ f power spectrum and
cross-spectrum. In section 4, relevant dynamical quantities for a two-qubit gate are introduced
and analytic/numerical methods are illustrated. Section 5 consists of our results for the entangled
qubits dynamics in the presence of correlations. Conclusions are presented in section 6.

2. Coupled CPBs and noise correlations

In the fixed capacitive coupling scheme for charge [2] or charge-phase [3] qubits, the islands of
two CPBs are connected through a capacitance [16, 17], as illustrated in figure 1. The system
is described by the Hamiltonian

H0 =

∑
α∈{1,2}

Hα + ECC(q̂1 − q1,x)(q̂2 − q2,x), (1)

where each CPB is modeled by

Hα = [Eα,C(q̂α − qα,x)
2 + Eα,J cos ϕ̂α]. (2)

Eα,C = 2e2/Cα,6 is the charging energy of the island belonging to CPB α, the total island
capacitance Cα,6 = Cα,G + Cα,J being the sum of the gate and junction capacitances. qα,x =

Cα,GVα,G/(2e) is the corresponding dimensionless gate charge. Cooper pair tunneling across
the Josephson junction α requires an energy Eα,J. ECC = (2e)2CT/(C1,6C2,6) is the coupling
energy, with 1/CT = 1/CC + 1/C1,6 + 1/C2,6 the total inverse capacitance of the device.

The dimensionless charge q̂ and the phase ϕ̂ of each box are conjugated variables,
[ϕ̂, q̂] = i. The system is subject to fluctuations of different origin. In part, they arise from
the control circuitry and can be described by an effective impedance modeled by a conventional
bosonic bath. Noise sources of microscopic origin are atomic defects located in the oxide of
the tunnel junctions, leading to fluctuations of the Josephson energy and background charges
acting like additional uncontrollable qα,x sources. Devices based on the charge variable are
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Figure 2. Pictorial representation of cross-talk (a) and spatial correlations (b).
(a) The uncorrelated noise sources s1 and s2 act on coupled qubits: because of
the coupling each qubit also suffers from the noise source directly acting on the
other qubit. (b) Two non-interacting qubits in the presence of s1, s2 and of s12 that
simultaneously act on both qubits. s12 may represent a set of impurities located in
the insulating substrate. It generates a fluctuating interaction even in the absence
of direct coupling between the two qubits.

particularly sensitive to background charge fluctuations. Usually they can be modeled as
two-level fluctuators (TLF) inducing a bistable polarization of the superconducting island. A
collection of TLF produces a noise whose spectral density approximately follows a 1/ f law.
They are responsible for the sensitive initial reduction of the amplitude of coherent oscillations
in single-qubit gates observed when repeated measurements are performed [9, 12]. Fluctuations
of polarization islands are expected to be a severe hindrance for coupled qubits gates based
on the charge variable [22]. Low-frequency charge fluctuations lead to an additional stray
contribution to the gate charge qα,x , which can be modeled by a random variable δqα,x(t)
leading to

H=H0 + δH,

δH= −q̂1

[
2E1,Cδq1,x(t)+ ECCδq2,x(t)

]
− q̂2

[
ECCδq1,x(t)+ 2E2,Cδq2,x(t)

]
.

(3)

Note that the coupling capacitance induces a cross-talk between the two devices, i.e. fluctuations
δq1,x(t) acting on q̂2 and vice-versa. As we already mentioned, background charges responsible
for gate-charge fluctuations are spatially distributed in a device-dependent unpredictable
way. Possibly they are partly located in the substrate, partly in the oxide layer covering
all electrodes, partly in the oxide barriers of the tunnel junctions. Due to the shielding by
the electrodes, impurities within tunnel junction α are expected to induce only gate-charge
fluctuations δqαx(t). On the other hand, random arrangement of noise sources in the bulk
substrate produce correlations between gate-charge fluctuations to an extent depending on their
precise location [1]. Pictorially, we may separate impurities into two ensembles {s1, s2} and s12

influencing either each sub-unit or both islands, as illustrated in figure 2. The noise δqα,x viewed
by qubit α is due both to sα and s12. Correlations between δq1,x and δq2,x originate from set s12,
are termed spatial correlations.

In the above phenomenological description, we assume that δqα,x(t) are stationary
stochastic processes having zero average and the same variance σ̄ 2. We quantify the degree
of spatial correlation between δq1,x and δq2,x via 〈δqα,x(t)δqβ,x(t)〉 = [δαβ +µsp(1 − δαβ)]σ̄ 2.
Evaluation of µsp would require a microscopic description of the device and it is expected to
depend on the dimension of the boxes and on their relative distance, on the specific spatial
distribution of impurities s12 and on the relative weights on δqα,x(t) of fluctuations due to set s12

and sα, as shown in [1].
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Cross-talk due to coupling and spatial correlations enters the overall noise Xα felt by each
sub-unit

X1(t)= 2E1,C δq1,x(t)+ ECC δq2,x(t), (4)

X2(t)= ECC δq1,x(t) + 2E2,C δq2,x(t). (5)

The amount of correlation between X1 and X2 may be quantified by a correlation coefficient,
which is defined for general stochastic processes ξ1 and ξ2 as [23]

µ=

〈[
ξ1(t)− ξ̄1

][
ξ2(t)− ξ̄2

]〉
√〈[

ξ1(t)− ξ̄1

]2
〉 〈[
ξ2(t)− ξ̄2

]2
〉 , (6)

where 〈·〉 indicates the ensemble average, and ξ̄i ≡ 〈ξi(t)〉. From (4) and (5) we obtain

〈X 2
α〉 = (4E2

α,C + E2
CC + 4µsp Eα,C ECC)σ

2,

〈X1 X2〉 = [2ECC(E1,C + E2,C)+µsp(4E1,C E2,C + E2
CC)]σ

2
;

thus, the correlation coefficient of X1 and X2 reads

µ=
2ECC(E1,C + E2,C)+µsp(4E1,C E2,C + E2

CC)√(
4E2

1,C + E2
CC + 4µsp E1,C ECC

)(
4E2

2,C + E2
CC + 4µsp E2,C ECC

) . (7)

In the absence of spatial correlations, δqα,x are independent and only the effect of cross-talk is
left. The correlation coefficient in this case is reduced to

µct =
2ECC(E1,C + E2,C)√(

4E2
1,C + E2

CC

)(
4E2

2,C + E2
CC

) '
4EC ECC(

4E2
C + E2

CC

) . (8)

In the last approximation we have supposed Eα,C ' EC, within manufacturing tolerances. For
typical values of parameters for charge qubits EC � ECC, thus µct ' ECC/EC, giving values
between 0.015 [22] and 0.12 [17]. Clearly, larger values of the coupling strength ECC, desirable
to produce faster two-qubit gates, would also lead to higher cross-talk correlations µct. In
general, the correlation coefficient (7) for Eα,C ' EC is approximately given by

µ'
4EC ECC +µsp(4E2

C + E2
CC)

4E2
C + E2

CC + 4µsp EC ECC
=
µct + µsp

1 +µctµsp
, (9)

where we used (8). Strong correlations between X1 and X2, µ≈ 1, may originate either from
large cross-talk or from large spatial correlations. For instance by engineering device design [24]
it could be possible to get µct ' 1 implying µ' 1. On the other hand, in the presence of a low
level of correlations µspµct � 1, equation (9) is simplified to µ' µsp +µct.

In general, (7) gives the overall amount of correlation between fluctuations affecting the
two CPBs. In the following, we will not specify the physical mechanism responsible for these
correlations. We will simply suppose the existence of a degree of correlation between the
fluctuations X1 and X2 quantified by the coefficient µ.
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3. Charge noise power spectra and cross-spectrum

Measurements of charge noise due to background charge fluctuations in SET devices [1] have
revealed a 1/ f behavior at low frequencies (measurements extend down to about 1 Hz), with
a roll-off frequency of 100–1000 Hz. Two SET whose islands are positioned about 100 nm
apart show similar 1/ f behavior for the cross-spectrum (defined later by (11)) indicating
correlations between fluctuations affecting both islands. Similarly, measurements of charge
noise in charge-phase [12] qubits show a 1/ f behavior for f < 100 kHz whose amplitude
depends on temperature, on junction size and on screening of the island by electrodes. Echo
experiments suggest that 1/ f noise extends up to 1 MHz. In this setup, charge noise at higher
frequencies (up to 10 MHz) is due to driving and readout subcircuits and it is characterized by
white spectrum. Measurements of energy relaxation processes in charge qubits have suggested
that charged impurities may also be responsible for ohmic noise at gigahertz frequencies [25].
To our knowledge, measurements of cross-spectrum on this class of nanodevices have not been
reported in the literature. It is however expected that, similarly to SET devices, correlations
between fluctuations acting on superconducting islands of the two on-chip CPBs display 1/ f
cross-spectrum at low frequencies.

Our goal is to introduce a model for the fluctuations X1(t) and X2(t) such that both power
spectra and cross-spectrum

SXα(ω) =

∫ +∞

−∞

dτ e−iωτ
[
〈Xα(t + τ)Xα(t)〉 − X̄ 2

α

]
(10)

SX1 X2(ω) =

∫ +∞

−∞

dτ e−iωτ
[
〈X1(t + τ)X2(t)〉 − X̄ 1 X̄ 2

]
(11)

display similar 1/ f behavior at low frequencies and are characterized by a finite correlation
coefficient defined by (6). To this end, we introduce two independent stationary stochastic
processes, n1(t) and n2(t) with the same average and characterized by the same autocovariance
function and spectrum [23]

Cnαnα(τ )= 〈nα(t + τ)nα(t)〉 − n̄2
α ≡ C(τ ),

(12)

Snαnα(ω) =

∫ +∞

−∞

dτ e−iωτ C(τ )≡ S(ω).

The processes X1(t) and X2(t), defined as linear combinations of n1(t) and n2(t),

X1(t)=
√

1 − η n1(t) +
√
η n2(t)

(13)

X2(t)=
√
η n1(t) +

√
1 − η n2(t)

with η ∈ [0, 1
2 ] are correlated and their correlation coefficient reads

µ= 2
√
η(1 − η). (14)

Thus, µ is a monotonic function of η ∈ [0, 1
2 ] ranging in the interval [0,1], if η = 0, X1 and X2

reduce respectively to the uncorrelated processes n1 and n2, and µ= 0. Instead when η =
1
2 , the

correlation factor reaches its maximum value µ= 1. In this case, X1 and X2 are reduced to the
same process

µ= 1 ⇒ X1(t) = X2(t) =
1

√
2

[n1(t)+ n2(t)]. (15)
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The autocovariance functions of X1(t) and X2(t) are identical and read

CXαXα(τ )= 〈Xα(t + τ)Xα(t)〉 − X̄ 2
α = (1 − η)Cn1n1 + ηCn2n2 = C(τ ) , (16)

therefore X1 and X2 have the same variance σ 2, and equal power spectra SX1(ω)= SX1(ω)=

S(ω) given by (12). This simple model for correlated noise allows, by changing the arbitrary
parameter η, to modulate the correlation coefficient between X1 and X2 from 0 to 1, maintaining
the desired spectrum S(ω) for both processes. It is worth noticing that the first-order statistics
of X1 and X2 depends on η: X̄1 = X̄2 = n̄(

√
1 − η +

√
η). To avoid this dependence we set

n = 0, implying vanishing average values for X1 and X2. The correlation factor enters the
cross-covariance and the cross-spectrum of X1 and X2 [23]

CX1 X2(τ )= 〈X1(t + τ)X2(t)〉 − X 1 X 2 = µC(τ ), (17)

SX1 X2(ω)=

∫ +∞

−∞

dτ e−iωτ CX1 X2(τ )= µ S(ω). (18)

It can therefore be detected by spectral analysis via [26]

SX1 X2(ω)√
SX1(ω)SX1(ω)

= µ. (19)

By measuring power spectra and cross-spectrum of voltage fluctuations across each SET
in the frequency range 1–10 Hz, Zorin et al [1] estimated according to (19) the correlation
coefficient µ= 0.15 ± 0.05.

In order to obtain a 1/ f spectrum for processes Xα(t), we adopt a commonly employed
model which consists of an ensemble of independent TLF. Each fluctuator incoherently switches
between two metastable levels, with a rate γk , producing a random signal ξk(t). This signal has
a Lorentzian power spectrum, Sξk (ω)=

1
2v

2
kγk/(γ

2
k +ω2), vk being the difference between the

values assumed by ξk(t). When the switching rates γk are distributed according to P(γ )∝ 1/γ
in [γm, γM], the overall noise obtained by summing all TLF contributions displays 1/ω behavior
in [γm, γM] [5]

ξ =

∑
k

ξk(t) ⇒ Sξ (ω)=

NTLF∑
k=1

v2
kγk

2(γ 2
k +ω2)

'
A
ω
, (20)

where A= π〈v2
〉NTLF/[4ln(γM/γm)] and NTLF is the total number of fluctuators. If the

independent random processes n1(t) and n2(t) are generated as a sum of such an ensemble
of TLFs, the spectrum of each nα(t) will be 1/ f in [γm, γM] and will have variance
σ 2

=
1

2π

∫
dω S(ω)=

1
4 NTLF〈v

2
〉. The 1/ f -correlated stochastic processes X1(t) and X2(t) are

obtained from (13), once the phenomenological correlation factor µ is fixed.

4. Two-qubit gate and relevant dynamical quantities

At sufficiently low temperatures each CPB may operate as an effective two-state system,
the coupled boxes implementing a two-qubit gate. In the fixed coupling scheme, the
interaction is switched on by individually manipulating each qubit to enforce mutual resonance
conditions [16, 17]. This allows the realization of elementary two-qubit operations. We
denote the lowest eigenstates of each CPB as {|+〉α, |−〉α}, with splitting depending on
the control parameter qα,x , �α(qα,x). By operating at the so-called ‘charge-protected point’,
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Table 1. Eigenvalues and eigenvectors of H0. Here, sinϕ = g/(2
√

1 + g2/4) and
cosϕ = −1/

√
1 + g2/4.

i λ
(0)
i |i〉

0 −
√

1 + g2/4 [−(sinϕ/2)| + +〉 + (cosϕ/2)| −−〉]
1 −g/2 (−| + −〉 + | − +〉)/

√
2

2 g/2 (| + −〉 + | − +〉)/
√

2
3

√
1 + g2/4 [(cosϕ/2)| + +〉 + (sinϕ/2)| −−〉]

qα,x = 1/2, the system is insensitive to charge fluctuations at lowest order, meaning that
d�α(qα,x)/dqα,x |qα,x=0.5 = 0 [3]. In a pseudo-spin description, in the eigenstate basis charge
fluctuations are off-diagonal at this working point. Therefore, projecting the coupled boxes
Hamiltonian (2) into the computational subspace {|i〉1 ⊗ | j〉2} − i, j ∈ {+,−} we get,

H̃= H̃0 + δH̃, (21)

H̃0 = −
�

2
σ
(1)
3 ⊗ I(2) −

�

2
I(1) ⊗ σ

(2)
3 +

ẼCC

2
σ
(1)
1 ⊗ σ

(2)
1 , (22)

δH̃= −
X̃ 1

2
σ
(1)
1 ⊗ I(2) −

X̃ 2

2
I(1) ⊗ σ

(2)
1 , (23)

where we assume the two qubits are tuned at the same Bohr splitting �, whose typical
value is of the order 1011 rad s−1. Here, ẼCC = 2ECC q1,+− q2,+− and X̃α = 2Xα qα,+−, being
qα,+− = 〈+|αq̂α|−〉α.

We remark that this symmetric configuration is hardly reachable in practice by fabrication
accuracy only. In the charge-phase implementation [3] this can be achieved thanks to the
characteristic two-port design. The quantization is in fact based on a split CPB connected to a
large measurement Josephson junction, the phase across it, δ, representing an additional control
knob. The device presents a ‘doubly’ protected point at qx = 1/2 and δ = 0, which is a saddle
point of the single-qubit energy splitting versus external parameters. In the two-qubit setup
resonance is achieved by slightly displacing one of the qubits from the phase-protected point,
but maintaining both qubits at the charge-protected point. This setup is therefore expected to be
sensitive also to phase fluctuations and this topic will be addressed elsewhere [27].

The setup described by (21) may in principle implement an iSWAP gate. This is easily
illustrated in its eigenstate basis, reported in table 1 in terms of the dimensionless coupling
strength g = ẼCC�

−1. In the absence of fluctuations, the two-qubit Hilbert space is factorized
in two subspaces spanned by pairs of computational states. In particular, the system prepared
in the state | + −〉, freely evolves inside the subspace spanned by {| + −〉, | − +〉}, reaching
the entangled state (|+−〉 + i|−+〉)/

√
2 at time τ̄ = t̄�= π/2g. States {|1〉, |2〉} generate the

so-called SWAP subspace, whereas we refer to the Z subspace as the one spanned by
{|0〉, |3〉} [27].

A numerical analysis has shown that for typical values of parameters in charge-phase
qubits, the SWAP-eigenvalues are more stable than single-qubit splitting with respect to
uncorrelated gate-charge fluctuations [28]. As a consequence, for sufficiently small-amplitude,
low-frequency charge fluctuations the decay time for entangled states in the SWAP subspace is
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expected to be longer than the single-qubit dephasing time [28]. In the following, we analyze
how low-frequency correlations between charge noise felt by each qubit may influence the
dynamics in the SWAP subspace.

4.1. Relevant dynamical quantities

In the presence of low-frequency fluctuations the calibration of the device is unstable. As a
result, the quantum dynamics of the interacting qubits will depend on the measurement protocol,
as already observed for single-qubit gates. Ideal quantum protocols assume measurements of
individual members of an ensemble of identical (meaning that the preparation is controlled)
evolutions, defocusing occurring during time evolution. In practice, for solid-state nanodevices
several samples are collected during an overall measurement time tm. Lack of control of the
environment preparation determines defocusing of the signal, analogous to inhomogeneous
broadening in NMR. The considerable initial reduction of the amplitude of the coherent
oscillations of single-qubit gates affected by 1/ f charge noise is due precisely to this
effect [9, 12]. On the other hand, the effect of low-frequency noise on relaxation processes
is negligible. Thus, the system dynamics can be treated in the adiabatic approximation for the
low-frequency charge fluctuations. Under this approximation scheme, populations of the system
eigenstates do not evolve. The relevant dynamical quantities are therefore the off-diagonal
elements of the system density matrix in the same basis.

The efficiency of the iSWAP protocol in the presence of 1/ f spectra on both qubits and
1/ f cross-spectrum can therefore be extracted by evaluating a single dynamical quantity, the
coherence between the eigenstates of the SWAP subspace. The two-qubit density matrix in the
presence of the dimensionless classical stochastic processes xi(t)= X i(t)/� generally reads

ρ(τ)=

∫
D[x1(τ

′)]D[x2(τ
′)]P[x1(τ

′), x2(τ
′)]ρ[τ |x1(τ

′), x2(τ
′)], (24)

where ρ[τ |x1(τ
′), x2(τ

′)] is the system density matrix calculated for a given realization
{x1(τ

′), x2(τ
′)}. The integration is over all possible realizations weighted by the probability

density P[x1(τ ), x2(τ )].
We solved equation (24) numerically by generating the independent random processes

n1(τ ) and n2(τ ) and from them the correlated processes x1(t) and x2(t), as illustrated in
section 3. The Schrödinger equation related to the Hamiltonian (21) is numerically solved by
a fourth-order Runge–Kutta algorithm [29], calculating the system dynamics ρ[τ |x1(τ ), x2(τ )].
These operations are repeated to perform an average of ρ[τ |x1(τ ), x2(τ )] over many (>104)
realizations of the stochastic processes. Numerical simulations confirm that in the presence of
low-frequency noise (with γM < 10−2�) transitions between the SWAP and Z subspaces can
be neglected. This further legitimizes focusing on the coherence in the SWAP subspace which
reads as

〈1|ρ(τ)|2〉 ≡ ρ12(τ )

= ρ12(0)e−igτe−i8(τ)

= ρ12(0) ·
∫
D[x1(τ

′)]D[x2(τ
′)]P[x1(τ

′), x2(τ
′)] exp

[
i
∫ τ ′

0
dτ ′′ω12[x1(τ

′′), x2(τ
′′)]

]
,

(25)
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where ω12[x1(τ
′′), x2(τ

′′)] gives the noise-renormalized splitting between states |1〉 and |2〉.
The imaginary part of 8(τ) describes the decay of the entangled dynamics in the presence of
adiabatic correlated noise. Further insight can be obtained by approximating (25) to include
the dominant inhomogeneous broadening effect. This is performed by applying the static
path approximation (SPA), xα(t)≡ xα, which accounts for the lack of control of the device
calibration via a statistical distributed gate charge at each run of the measurement protocol.
In the SPA the coherence (25) reduces to the evaluation of an ordinary two-variable integral

ρ12(τ )= ρ12(0)
∫

dx1 dx2 P(x1, x2) exp [iτω12(x1, x2)] , (26)

where P(x1, x2) is the joint probability density function of the random variables x1 and x2 [23].
In the following, we will use the notation 〈 f (x1, x2)〉 to indicate

∫
dx1 dx2 P(x1, x2) f (x1, x2).

In the following section, we will analytically evaluate the coherence in the SWAP subspace
within the SPA in selected parameter regimes where numerical simulations have confirmed its
accuracy. A numerical analysis will be performed to estimate the decay of entanglement under
more general conditions.

5. Dephasing in the SWAP subspace: effects of correlations

The average in (26) is conveniently evaluated by performing the change of variables (13). In
fact, since the independent random processes n1(t) and n2(t) are generated from a large number
of TLFs, their initial values nα are Gaussian distributed

P(nα)=
1

√
2πσ

exp[−n2
α/(2σ

2
nα)]. (27)

Clearly, x1 and x2 are two correlated Gaussian variables whose joint probability density function
is (for |µ|< 1) [23]:

P(x1, x2)=
1

2πσ 2
√

1 −µ2
exp

[
−

1

2σ 2(1 −µ2)

(
x2

1 + x2
2 − 2µx1x2

) ]
. (28)

The effective splitting in the SWAP subspace in the presence of charge fluctuations entering the
average (26) may be evaluated by exact diagonalization of the Hamiltonian (21). The solution of
the resulting fourth-order polynomial is rather lengthy, so we have not reported it here. Relevant
features can be extracted by expanding the splitting up to the fourth order in xα and keeping the
dominant terms in the coupling strength g [27]

ω12 (x1, x2)≈ g −
g

2

(
x2

1 + x2
2

)
+

1

8g
(x2

1 − x2
2)

2
≡ g + δω12(x1, x2). (29)

This expansion suggests that the system behavior depends on the relative weight of the
amplitude of the noise, measured in the SPA by the standard deviation σ entering (28), and
the strength of the interaction between the qubits, g. In the following, we consider separately
the two regimes of ‘weak’ and ‘strong’ amplitude noise, σ < g and σ > g, respectively. We
remark that the nonmonotonic dependence of the splitting on xα may lead to almost degeneracy
between the renormalized levels of the SWAP subspace. This effect may be relevant when the
interplay of low- and high-frequency components is considered [27].
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Figure 3. Dephasing factor given by (31) for different values of the correlation
coefficient µ for ‘weak’ amplitude noise, σ = 0.02< g = 0.1. The dashed gray
curve refers to the uncorrelated case µ= 0, the dashed black to µ= 0.50, the
thick black refers to µ= 1.00. The crossing of each curve with the dotted
horizontal line at e−1 identifies the estimated dephasing time relative to each
value of µ, τ2(µ). Intersections with the curve corresponding to uncorrelated
noise (µ= 0) identifies the time τ ∗(µ) < τ2. Inset: enlargement for short
times. The thick gray line corresponds to µ= 0.75. The validity of the SPA
approximation has been checked against numerical simulations for stochastic
processes exhibiting a 1/ f power spectrum in a range [γm, γM] = [1, 106] s−1

(not shown).

Weak amplitude noise σ � g. In this regime, (29) can be approximated by keeping terms up to
second order in σ so that δωw

12(x1, x2)= −
g
2 (x

2
1 + x2

2). The average

ρ12(τ )= ρ12(0) eigτ
〈 exp(−iτδωw

12)〉 (30)

can be easily evaluated and leads, for the dephasing factor

Dµ

12(τ ) =

∣∣∣∣ρ12(τ )

ρ12(0)

∣∣∣∣ =
[
1 + (gσ 2(1 −µ)τ)2

]−1/4
×

[
1 + (gσ 2(1 +µ)τ)2

]−1/4
. (31)

The dephasing factor factorizes into two contributions having the form of the decay of the
single-qubit coherence at protected point in the SPA [9] with standard deviations σ

√
1 ±µ . An

analogous result has been found in [21]. Equation (31) is shown in figure 3 for different values
of the correlation coefficient µ. For comparison, the curve corresponding to independent noise
sources acting on the two qubits is also reported, Dµ=0

12 (τ )= [1 + (gσ 2τ)2]−1/2. Interestingly, at
short times increasing the correlation coefficient induces a faster reduction of the amplitude of
coherent oscillations in the SWAP subspace. This behavior crosses over to a regime where
instead of increasing, the correlation coefficient slows down dephasing. This occurs during
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Figure 4. Dephasing factor Dµ

12(τ ) for strong amplitude noise, g = 0.01<
σ = 0.08. Curves correspond to different values of the correlation coefficient,
from bottom to top µ ∈ {0, 0.50, 0.75, 0.8, 0.85, 0.90, 0.95, 1.00}. Correlations
improve the system performance despite the large noise amplitude.

times larger than τ ∗ identified by the condition Dµ

12(τ
∗)= D0

12(τ
∗), which gives τ ∗(µ)=

1/(gσ 2
√

1 −µ2/2). The crossover takes place at times shorter than the dephasing time where
Dµ

12(τ2)= e−1

τ2(µ)=

√
−(1 +µ2)+

√
(1 +µ2)2 + (e4 − 1)(1 −µ2)2

gσ 2(1 −µ2)
> τ ∗(µ) . (32)

We remark that, for quantum computing purposes, it is crucial to understand the behavior
at times shorter than the dephasing time. For instance, fault-tolerant quantum computa-
tion [30, 31], i.e. implementing reliable quantum operations even in the presence of errors,
requires errors to be maintained below a small threshold (typically εth ∼ 10−4–10−6). The
error of the iSWAP gate under investigation may be simply estimated as (in the adiabatic
approximation)

ε = 1 − 〈ψ |ρ(τ)|ψ〉 = 1 −
1
2 Dµ

12(τ ) (33)

|ψ〉 being the iSWAP target state. This leads, at the dephasing time τ2, to an error of about 0.8.
The correlation coefficient dependence of the dephasing time τ2 [21] does not reveal relevant
features of the iSWAP gate operation occurring at initial timescales.

Strong amplitude noise σ � g. For larger amplitudes of the noise, the dephasing factor
displays completely different behavior. Numerical results are illustrated in figure 4. In this
case increasing the correlation coefficient systematically reduces dephasing. In particular, the
limiting case µ= 1, where the same noise simultaneously acts on both qubits, turns out to be
relatively weakly affected by the low-frequency noise, despite its large amplitude.

The short-time behavior and its dependence on the correlation coefficient for weak and
strong amplitude noises may be explained considering the renormalized splitting dependence
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Figure 5. (a) Variance (35) as a function µ, for small amplitude noise σ . g.
(b) Correlation coefficient where the variance attains its minimum, as a function
of the ratio σ/g. For σ > 4g, it is µm ' 1. (c) Equation (35) as a function of
µ for σ � g. σ 2

δω12
decreases by different orders of magnitudes when µ> 0.8.

In (a) and (c) g = 0.01.

on the noise variables xα. The level splitting itself in fact can be viewed as a random variable,
with standard deviation σδω12 =

√
〈δω2

12〉 − 〈δω12〉
2. The short times Gaussian approximation for

the dephasing factor gives

Dµ

12(τ )' 1 −
1
2σ

2
δω12
τ 2, (34)

thus, at times short enough that σδω12τ < 1 (for data in figure 3, τ < 104), a larger deviation
σδω12 induces a larger dephasing, i.e. a smaller value for Dµ

12(τ ). The variance of δω12 reads (see
appendix for details)

σ 2
δω12

=
σ 4

g2

{[
(g2

− σ 2)2 + σ 4
]

+µ2
[
(g2 + σ 2)2 − 5σ 4

]
+ 2µ4σ 4

}
. (35)

For σ < g, it reduces approximately to σ 2
δω12

w = g2σ 4(1 +µ2), monotonically increasing with
µ, as shown in figure 5(a). This explains the stronger dephasing observed for small amplitude
noise at short times. On the other hand, for σ > g, σ 2

δω12
is nonmonotonic with a minimum at

µm = [1 −
1
2(σ/g)−2

−
1
4(σ/g)−4]1/2,which rapidly approaches 1 (figure 5(b)). Thus, forµ→ 1

the splitting variance rapidly reaches its minimum value, implying small dephasing at short
times even for large noise amplitudes, σ > 4g.

5.1. Effects of higher frequencies and recalibration protocol

We now consider the effect of correlated 1/ f noise extending to higher frequencies maintaining
the adiabaticity condition with respect to the qubit splitting �, i.e. we simulate fluctuations
leading to 1/ f spectrum up to the cut-off frequency γM = 109 s−1. The resulting dephasing in
this case, in addition to the inhomogeneous broadening mechanism, also originates from the
dynamics of the fluctuators during the time evolution. The dependence of the dephasing factor
on the correlation coefficient µ has the same characteristics observed in the presence of low-
frequency components only. The system still displays different behavior depending on σ being
smaller or larger than g. This is illustrated in figures 6(a) and 7(a). In particular, the very low
dephasing already observed when the qubits are affected by the same environment (µ= 1),
persists also in the presence of high-frequency noise components (figure 7(a)).
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Figure 6. Effect of 1/ f correlated noise extending in [γm, γM] = [100, 109] s−1

for weak noise amplitude σ < g = 0.1 and different values ofµ. The dashed gray
curve refers to µ= 0, the dashed black to µ= 0.50, the thick black to µ= 1.00.
(a) Dephasing factor: correlations slightly increase dephasing at initial times and
decrease it at longer times. The dotted horizontal line refers to e−1. (b) Effect of a
recalibration protocol: increasing the correlation coefficient increases dephasing.
Thin black line corresponds to µ= 0.25, thick gray to µ= 0.75.

0 2500 5000 7500 10 000
τ

–0.4

–0.2

0

0.2

0.4

Im
{ρ

12
}

(a)
0 2500 5000 7500 10 000

τ
0

0.2

0.4

0.6

0.8

1.0

D
µ

(b)

Figure 7. Effect of 1/ f correlated noise extending in [γm, γM] = [100, 109] s−1

for strong noise amplitude σ > g = 0.01 and different values ofµ. (a) Dephasing
factor for µ= 0: black curves (dotted black for slow noise, solid black for low-
and high-frequency noise); µ= 1: gray (slow noise) and red (slow plus high-
frequency noise). (b) The effect of a recalibration protocol is shown by the
dashed curves, µ= 0 black, µ= 0.75 gray, µ= 1 red. In both protocols (a) and
(b) increasing the correlation coefficient decreases dephasing.

In single-qubit gates, the inhomogeneous broadening effect may be sensibly reduced by
a recalibration protocol resetting the initial value of the system polarization at each run of the
measurement protocol [9]. Recalibration turns out to be effective on two-qubit gates also in the
presence of correlations among the noise sources. Results shown in figures 6(b) and 7(b) have
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been obtained numerically by resetting the values of xα(0) at each realization of the stochastic
processes xα(t). Interestingly, even if the effect of low-frequency components is practically
eliminated by the recalibration procedure, the decay has a different dependence on µ depending
on σ . In particular, if σ < g the larger the correlation coefficient, the faster the signal decays
(figure 6(b)), if instead σ > g stronger correlations correspond to slower decay (figure 7(b)).

6. Conclusions

In the present paper, we have introduced a phenomenological model for 1/ f correlated noise
affecting a two-qubit gate in a fixed coupling scheme. Our analysis is based on analytical results
obtained within the adiabatic approximation and on the numerical solution of the stochastic
Schrödinger equation.

Due to the nonmonotonicity of the renormalized splitting in the SWAP subspace, the
entangled dynamics sensitively depends on the ratio σ/g between the amplitude of the low-
frequency noise and the qubit coupling strength. For small amplitude noise, correlations increase
dephasing at the relevant short time scales (smaller than the dephasing time). On the other hand,
under strong amplitude noise, an increasing degree of correlations between noise sources acting
on the two qubits always leads to reduced dephasing. Our numerical analysis has shown that the
above features hold true for adiabatic 1/ f noise extending up to frequencies 109 s−1 about two
orders of magnitudes smaller that the qubit Bohr frequencies.

We remark that the above results on the reduced dynamics in the SWAP subspace apply
also to different two-qubit gates involving the same states, at least as long as the adiabatic
approximation holds true. The performance of two-qubit gates involving states of the Z
subspace, like the c-NOT gate, might be reduced in view of the larger sensitivity of the Z
subspace to low-frequency charge noise [28].

We have analyzed the possibility of reducing the effects of low-frequency correlated
noise by a open-loop recalibration protocol of the two-qubit gate. Despite counteracting the
inhomogeneous broadening effect, the efficiency of the protocol still depends on the value
of σ/g, the maximum efficiency occurring for small-amplitude uncorrelated noise (σ < g and
µ= 0), or for strong-amplitude correlated noise (σ > g and µ= 1).

The observed reduced sensitivity of the SWAP subspace to correlated strong-amplitude
noise might suggest exploiting this subspace to reliably encode a single qubit, in the same
spirit as decoherence free subspaces (DFS) [32]. The possibility of avoiding errors due to
correlated noise by encoding in DFS has indeed been recently discussed for superconducting
qubits in [23, 33, 34]. This strategy rigorously applies to the pure dephasing regime where a DFS
subspace exists for collective noise. In the situation analyzed in the present article, however, the
SWAP subspace is not rigorously a DFS. In fact, in the presence of collective noise (µ= 1), the
interaction Hamiltonian (23) reads −

1
2(σ

(1)
1 ⊗ I(2) + I(1) ⊗ σ

(2)
1 )X̃ . The system operator entering

this coupling term has two degenerate eigenstates which do not span the SWAP subspace. In
addition, for finite values of g, the system Hamiltonian (22) does not leave invariant the subspace
spanned by the degenerate eigenstates, as DFS should require [35].
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Appendix. Moments entering σ δω12

From (28), it comes out that the marginal probability density function of xα is a Gaussian
function with standard deviation σ and zero average value. Then,

〈x2n
α 〉 =

(2n)!

2nn!
σ 2n and 〈x2n+1

α 〉 = 0, (A.1)

(see [36]). Evaluation of the variance of the splitting fluctuations σδω12 requires knowledge of
the following mixed moments:

〈x2
1 x2

2〉 = σ 4(1 + 2µ2),

〈x2
1 x4

2〉 = 3σ 6(1 + 4µ2),

〈x2
1 x6

2〉 = 15σ 8(1 + 6µ2),

〈x4
1 x4

2〉 = σ 8(9 + 72µ2 + 24µ4) (A.2)

which directly follow from (13) by using (A.1).
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