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a b s t r a c t

Many physical or biological phenomena deal with the dynamics of interacting entities.
These class of phenomena are well described in physics, using a kinetic approach based
on Boltzmann equation. A Generalized Kinetic theory has been proposed to extend this
approach to biological scenarios. An analytical solution of Boltzmann equation can be found
only in very simple cases, so numerical methods become extremely relevant. The particle
method is a class of numerical methods used to find a numerical solution of Boltzmann
equations. The MWF-method for kinetic equations was firstly proposed by S. Motta and
J. Wick in 1992. Here, we show that the MWF-method can be extended to system of
Boltzamm equations.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Many physical or biological phenomena can be described by considering collections of interacting entities. These
phenomena are well described, using a kinetic approach based on the Boltzmann equation, and extensively used in
physics [1]. An extension of the Boltzmann equation to describe biological problems has been proposed [2–4]. In many
biological problems, one needs to consider many different populations of interacting entities. In these cases, the problem is
represented by a system of Boltzmann equations. The exact solution of a single Boltzmann equation is limited to simple and
well known problems. System of coupled Boltzmann equations are obviously more difficult to solve analytically.
In some cases, one can analyze analytically reduced problems or asymptotic behaviors but, in most cases, one needs

to resort to an approximate and numerical solution for the full problem. However, even an approximate solution of the
Boltzmann equation is a hard problem, for which both analytical and numerical methods are continuously proposed [5–7].
Particle methods are in a class of numerical methods widely used for the Vlasov equation during the last three decades
[8,9]. The extension of particle methods to the Boltzmann equation has been done mainly with two different strategies in
treating the collision integral: a stochastic or a deterministic approach. Classical stochastic particle methods are based on
the well known Montecarlo method [10], and simulate collision probabilities using stochastic events. New approaches on
this line have been proposed in recent years [11–14]. Deterministic particle methods use particles as quadrature nodes for
computing an approximate solution of collision integral. In most methods, particles are kept fixed in the velocity space and
the evolution is reflected in changing their weights in time. This is a well established technique, and it is used in many
applications [14–16].
In the framework of deterministic particle methods, a different approach was presented by Motta and Wick [17]. A new

formulation of themethod, oriented for implementationpurposeswas later presentedbyMotta [18,19]. Particles are allowed
to move in the velocity space, while the particle weight is kept constant. The idea of the method (hereafter referred simply
as MWF-method) is to write the equation in divergence form and formally to transform the problem into a collisionless one.
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This can be done by introducing a flux equivalent for the inhomogeneity and by computing, at each time step, the collision
induced force term for the collisionless problem.
In the first paper, the method was numerically tested with model equations. Then, the relevant quantities of the method

for semiconductor kernels in 2D and 3D were derived by Barone andMotta [20,21]. The method was applied to the classical
test case of a semiconductor N+N−N+ structure, showing that themethod can be implemented on a parallel computer [22].
Comparison with other particle methods was presented by Wick [23].
In the present paper, we take the matter again, using the latter formulation [18] and we show the extension of the

method to a system of coupled Boltzmann equations. The general approach is then applied to a linear collision kernel to test
the numerical solution vs an exact solution.
The plan of the paper is the following: in Section 2 we write the system of kinetic equations to solve; in Section 3 we

extend the MWF method for a system of kinetic equations and show that the solution is gauge invariant; in Section 4 we
consider the case of a linear collision kernel, and we write the exact solution of this problem which we then compare with
numerical solution obtained by the MWF method. Finally, in Section 5, we draw some conclusions and plans for further
investigation.

2. The Kinetic equations system

Let f = (f1, f2, . . . , fn)T ∈ Rn×1 be a vector function whose components

fi(x, v, t) : Ωx ×Ωv × [0,∞] → R, i = 1, 2, . . . , n

are scalar functions of x ∈ Ωx ⊂ R3, v ∈ Ωv ⊂ R3 and t ≥ 0. Here, x = (x1, x2, x3) ∈ R3 denotes a typical point in space,
v = (v1, v2, x3) ∈ R3 denotes a typical point in velocity and t ≥ 0 denotes a typical time.
A kinetic equations system (KES) is the following system of first-order, semi-linear partial differential equations

∂t f+ div(x,v)(f (u, F)) = Q(f), (1)

involving the unknown vector function f = (f1, f2, . . . , fn)T ∈ Rn×1,where

u(v) = (u1(v), u2(v), . . . , un(v)) : Ωv → Rn, (2)

F(x, t) = (F1(x, t), F2(x, t), . . . , Fn(x, t)) : Ωv × [0,∞] → Rn, (3)

Q(f) = (Q1(f),Q2(f), . . . ,Qn(f)) : Rn → Rn, (4)

are given vector fields and

div(x,v)(f (u, F)) =


divx(f1u1)+ divv(f1F1)
divx(f2u2)+ divv(f2F2)

...
divx(fnun)+ divv(fnFn)

 .
The inhomogeneity Q(f) is usually a collision integral which describes short range interactions.
Here, we suppose that the system comprises the same number n of scalar equations as unknowns fi, i = 1, 2, . . . , n.
The (KES) is solved if we find all f verifying (1), possibly only among those functions satisfying certain auxiliary boundary

conditions (classical solution). By finding the solution means, ideally, obtaining explicit solutions, or, failing that, deducing
the existence and other properties of solutions. There is no general theory, to the best of our knowledge, known concerning
the solvability of the (KES). Such a theory is extremely unlikely to exist, given the rich variety of physical and probabilistic
phenomena which can be modeled by (KES).
LetΩ = Ωx ×Ωv be the cartesian product ofΩx andΩv . We look for a solution of (1) in the following space functions:

M(Ω) =

{
f = (f1, f2, . . . , fn) : Ω × [0,∞] → Rn : fi ≥ 0,

∫
Ω

fi(x, v, t) dx dv = 1
}

(5)

under the conservation hypothesis∫
Ωv

Qi(f) dv = 0, i = 1, 2, . . . , n. (6)

To the system (1) we associate an initial condition f0(x, v) = (f 01 , f
0
2 , . . . , f

0
n ) ∈M(Ω), such that

f(x, v, 0) = f0(x, v).

The latter choice and the conservation property (6) guarantees that the solution f belong to the spaceM(Ω) for all times.
Then f(·, t) can be interpreted as the density of probability measure µ(t).
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3. The extension of the MWFmethod

The MWF method consists in rewriting the (KES) (1) in a conservation law in divergence form, redefining the collisions
as a flux (CRF). To do that, one rewrites the collision termQ(f) as divergence of a flux9, and formally transform the problem
in a collisionless one.
Let9 = [ψ ij ] ∈ Rn×3 be the following matrix

9 =


ψ (1)

ψ (2)

...

ψ (n)

 =

ψ
(1)
1 ψ

(1)
2 ψ

(1)
3

ψ
(2)
1 ψ

(2)
2 ψ

(2)
3

...
...

...

ψ
(n)
1 ψ

(n)
2 ψ

(n)
3


such that

divvψ (i)
= −Qi(f), i = 1, 2, . . . , n (7)

ψ (i)
· nΩv = 0, v ∈ Ωv. (8)

The last conditionsmean thatQ(f) is expressed as a flux9. Moreover the boundary condition guarantees the conservative
property of the system.
Now, we look for a matrix G = [g(i)j ] ∈ Rn×3, such that

9 = f e1 G,
where e1 = (1, 0, . . . , 0) is the first element of the canonical basic of Rn. The last decomposition allow us to write

9 =


f1g

(1)
1 f1g

(1)
2 f1g

(1)
3

f2g
(2)
1 f2g

(2)
2 f2g

(2)
3

...
...

...

fng
(n)
1 fng

(n)
2 fng

(n)
3


and in a compact way as9 = [ψ (i)

j ] = [fi g
(i)
j ] for i = 1, 2, . . . , n and j = 1, 2, 3.

Thus, G is a velocity matrix associated with f, whose physical dimensions are those of a force field. Taking the above
considerations into account, the (KES) defined in (1) thus read

∂t f+ div(x,v)(f (u, F+ e1G)) = 0. (9)

This system is formally identical to a Vaslov equation. Since the element of G are added to the given vector field, only the
computation of G is needed.

3.1. The computation of the force matrix G

Since we are interested in treating the collision term, we restrict our attention to the spatially homogeneous problem,
i.e. f = f(v, t) and G = G(v, t). Let µ(B) and ν(B) be the following measures

µ(B) =
∫
B
ψ
(i)
j dv,

ν(B) =
∫
B
g(i)j dv.

Since the measure µ is then absolutely continuous with respect to ν, the force-matrix G can be computed, interpreting
each fi as the Radon–Nikodyn derivative of the µ with respect to ν. Integrating in Borel sets B ⊂ Ωv , we obtain for each
component∫

B
fi g

(i)
j dv =

∫
B
ψ
(i)
j dv, (10)

for i = 1, 2, . . . , n and j = 1, 2, 3.
To compute the components of the induced force on each particle g(i)j,r (j = 1, 2, 3, r = 1, 2, . . . ,N , i = 1, 2, . . . , n).

Fixed i, we need 3N relations that can be obtained by integrating (10) along the subset of Ωv that constitutes a partition
ofΩv .
Suppose that in the chosen coordinate system, the momentum space Ωv can be represented as a Cartesian product of

three intervals

Ωv =

3∏
i=1

[αi, βi],
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with αi and βi can be eventually−∞ and∞ respectively. As a partition ofΩv , we consider three different partitions ofΩv ,
one for each component g(i)j,r for j = 1, 2, 3. To compute g

(i)
j,r , we divide the interval [αj, βj] in the following way

Ωv =

N⋃
r=1

I(kr−1j , kr+1j ) =

N⋃
r=1

Irj ,

where I(kr−1j , kr+1j ) is defined as

I(kr−1j , kr+1j ) = {v ∈ Ωv : kr−1j ≤ vj ≤ k
r+1
j },

and k0j = αj, k
N+1
j = βj. Each set Irj is the portion ofΩv delimited by the planes vj = kr−1j and vj = kr+1j .

We also suppose, in the previous definition, that particles are ordered according to the j-coordinate ordering. Moreover
the sets Irj , r = 2, . . . ,N − 1, contains only three particles, one on each boundary and the sets I

1
j , I

N
j contain two particles.

Integrating (10) on each Irj∫
Irj

fi g
(i)
j dv =

∫
Irj

ψ
(i)
j dv, (11)

we get the 3Nn relations. We define the right hand side of (11) as

Ψ
(i)
j,r =

∫
Irj

ψ
(i)
j dv

and

Ψ
(i)
j =


Ψ
(i)
j,1

Ψ
(i)
j,2
...

Ψ
(i)
j,N


for j = 1, 2, 3.
The left hand side of (11) can be evaluated, by using a suitable integration formula in each interval. If, for instance, we

use a Simpson’s rule, we get three linear system of order N for each i = 1, 2, . . . , n in the unknown g(i)j,r

Ai Γ
(i)
j = Ψ

(i)
j (12)

for i = 1, 2, . . . , n, j = 1, 2, 3, r = 1, 2, . . . ,N , where Γ (i)
j = (g(i)j,1, . . . , g

(i)
j,N)

T
∈ RN×1 and Ai ∈ RN×N is a fixed matrix,

depending on the chosen quadrature formula. To solve these linear systems, it is necessary to compute the terms Ψ (i)
j,r as

function of the collision kernel Q(f). Moreover, one should be guaranteed that the matrix Ai is not singular, which is the
case when one choose Simpson’s rule.
Let γj be a constant αj ≤ γj ≤ βj, we consider the portion ofΩv delimited by the planes vj = αj and vj = γj

I(αj, γj) = {v ∈ Ωv : αj ≤ vj ≤ γj}.

Let F (i)j (γj) be the integral function

F (i)j (γj) =
∫
I(αj,γj)

ψ
(i)
j (v) dv.

Proposition 3.1. For αj ≤ γj ≤ βj

F (i)j (γj) = −
∫
I(αj,γj)

(∫ vj

αj

Qi(f) dv′j

)
dv.

Proof. Let Γ (γj) be the set of the vectors inΩv which belong to the plane vj = γj

Γ (γj) = {v ∈ Ωv : vj = γj} =

j−1∏
k=1

[αk, βk] × γj ×

3∏
k=j+1

[αk, βk].
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This surface does not belong to the ∂Ωv , and it has the outward normal vector along the axis vj and versus along increasing
vj, i.e.

nΓ (γj) · v̂j = 1.

Let γj be such that αj ≤ γj ≤ γj,

−

∫
I(αj,γj)

Qi(f) dv =
∫
I(αj,γj)

div ψ (i) dv.

By applying the Gauss divergence theorem, we have∫
I(αj,γj)

div ψ (i) dv =
∫
Γ (γj)

ψ
(i)
j (. . . , vj = γj, . . .) dSj,

where dSj is the surface element on the plane vj = γj. Since∫
Γ (γj)

ψ
(i)
j (vj−1, γj, vj+1) dSj =

1,2,3∏
k6=j

∫ βk

αk

ψ
(i)
j (. . . , vj = γj, . . .)

1,2,3∏
i6=j

dvi.

We have obtained that

−

∫
I(αj,γj)

Qi(f) dv =
1,2,3∏
k6=j

∫ βk

αk

ψ
(i)
j (. . . , vj = γj, . . .)

1,2,3∏
i6=j

dvi.

Since the last equality holds for all αj ≤ γj ≤ γj, we can change the name of the variable γj into vj, then

−

∫
I(αj,vj)

Qi(f) dv′ =
1,2,3∏
k6=j

∫ βk

αk

ψ
(i)
j (vj−1, vj, vj+1)

1,2,3∏
i6=j

dvi.

The last integral is a function of vj, now integrating in [αj, γj], we obtain for the right hand side∫ γj

αj

[
1,2,3∏
k6=j

∫ βk

αk

ψ
(i)
j (vj−1, vj, vj+1) dvj−1 dvj+1

]
dvj ≡ F

(i)
j (γj)

and for the left hand side, we have

−

∫ γj

αj

(∫
I(αj,vj)

Qi(f) dv′
)
dvj = −

∫
I(αj,γj)

(∫ vj

αj

Qi(f) dv′j

)
dv. �

Proposition 3.2. The terms Ψ (i)
j,r are given by

Ψ
(i)
j,r = F

(i)
j (k

r+1
j )− F (i)j (k

r−1
j ).

Proof. By the last proposition we have:

Ψ
(i)
j,r =

∫
I(kr−1j ,kr+1j )

ψ
(i)
j dv = −

∫
I(kr−1j ,kr+1j )

(∫ vj

αj

Qi(f) dv′j

)
dv.

Since I[kr−1j , kr+1j ] = I[αj, k
r+1
j ] \ I[αj, k

r−1
j ] the last integral can be written as

Ψ
(i)
j,r = −

∫
I[αj,k

r+1
j ]

(∫ vj

αj

Qi(f) dv′j

)
dv +

∫
I[αj,k

r−1
j ]

(∫ vj

αj

Qi(f) dv′j

)
dv

and we have the proof by definition of the function F (i)j . �

Remark 3.3. The definition of ψ (i) for i = 1, 2, . . . , n is not unique. Indeed, if ψ (i) satisfy (7), for every vector field χ (i), the
vector field

ϕ(i) = ψ (i)
+∇ × χ (i),

will satisfy (7) as well. This is a trivial consequence of the fact that ∇ · (∇ × χ (i)) = 0.
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Nevertheless, the results obtained using theMWFmethod do not depend on the choice of a particular gauge in definition
(7).

Theorem 3.4 (The Gauge Invariance). The results of the MWF method do not depend on the choice of the matrix 9, satisfying
(7).

Proof. We need only to show that Ψ (i)
j,r does not depend on the gauge P. Since

Ψ
(i)
j,r =

∫
I(kr−1j ,kr+1j )

ψ
(i)
j dv (13)

=

∫
I(αi,k

r+1
j )

ψ
(i)
j dv −

∫
I(αi,k

r−1
j )

ψ
(i)
j dv (14)

=

∫ kr+1j

αi

∫
Γ (v′j )

ψ
(i)
j (v

′

j) dSj dv
′

j −

∫ kr−1j

αi

∫
Γ (v′j )

ψ
(i)
j (v

′

j) dSj dv
′

j (15)

=

∫ kr+1j

αi

∫
I(αj,k′j)

div ψ (i) dv dv′j −
∫ kr−1j

αi

∫
I(αj,k′j)

divψ (i) dv dv′j (16)

=

∫ kr+1j

kr−1j

divψ (i) dv dv′j , (17)

where in the last equality it was used the Gauss divergence theorem. �

4. The linear collisional terme case

In this section, we consider F ≡ 0, u ≡ 0 and a linear collisional kernel Q(f). Let A ∈ Rn×n be a matrix whose elements
are aij. The kernel has the following form

Q(f) = A f.

The (KES) considered is

∂t f = A f. (18)

Definition 4.1. A matrix A ∈ Rn×n is called MWF-conservative if the sum of the elements of every rows is equal zero, i.e.
n∑
j=1

aij = 0, i = 1, 2, . . . , n.

Lemma 4.2. A MWF-conservative matrix is singular.

Proof. The endomorphism f from Rn to Rn, which has the matrix A associated with the canonical base of Rn is not an
isomorphism, since the vectors (1, 1, . . . , 1) ∈ Rn belong to the kernel of f . �

Proposition 4.3. The matrix A of system (18) is a MWF-conservative matrix.

Proof.

0 = ∂t
∫
Ωv

f dv =
∫
Ωv

A f dv = A I. �

It is interesting to observe that, from a point of view of the solutions, this problem can be considered as a system of
ordinary differential equations where the constants are function of the velocity v. This is a consequence of the fact that
there are only partial derivatives with respect the time. In this context the exponential matrix of A

eA =
+∞∑
k=0

Ak

k!
,

is a solution matrix. This fact allow us to prove the following result.
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Theorem 4.4. Let f0(v) ∈ C1[Ωv], then there exists one and only one solution f of the following Cauchy problem{
∂t f = A f,
f(0, v) = f0(v). (19)

Proof. Let etA be the solution exponential matrix. For every g(x, v) ∈ Rn

f̃ = etA g(x, v),

is solution of ∂t f = A f. Indeed

∂t̃ f = A etA g(x, v) = A f̃.

The above considerations allow us to say that the solution of (19) is

f = etA f0(v).

Now we prove that the solution is unique. If f̃ and f̂ are two distinct solutions of (19), the function h = f̃− f̂ satisfies{
∂th = A h,
h(0, v) = 0.

The solution of the above problem is h ≡ 0. This implies the proof. �

The case n = 2. Consider the problem{
∂t f1 = −α f1 + α f2,
∂t f1 = β f1 − β f2,

with initial condition

f1(v, 0) = f 01 (v), f2(v, 0) = f 02 (v).

In this case

Q(f1, f2) =
(
Q1(f1, f2)
Q2(f1, f2)

)
=

(
−α(f1 − f2)
β(f1 − f2)

)
.

The exponential matrix and the vector solution are respectively

etA =


b
a+ b

+
a
a+ b

e−(α+β)t
a
a+ b

(1− e−(α+β)t)

b
a+ b

(1− e−(α+β)t)
a
a+ b

+
b
a+ b

e−(α+β)t



f1(v, t) =

β

α + β
f 01 (v)+

α

α + β
f 02 (v)+

α

α + β
(f 01 (v)− f

0
2 (v)) e

−(α+β)t

f2(v, t) =
α

α + β
f 01 (v)+

α

α + β
f 02 (v)−

β

α + β
(f 01 (v)− f

0
2 (v)) e

−(α+β)t .

4.1. Numerical example

In this section, we give a numerical example to estimate the accuracy of the method. It is well known that numerical
accuracy depends on many parameters, also including the hardware platform; however an extensive analysis of numerical
accuracy of themethod is not in the aim of the present paper. In the following, we will simply compare a numerical solution
versus an exact one, to give an estimate of the numerical errors. Exact solutions of Boltzmann equations are very rare, and
usually restricted to the simple case of relaxation problems. Here we consider a relaxation problem in the case n = 2 with

f = (f1(x, y, t), f2(x, y, t)),

where (x, y) ∈ [0, 1] × [0, 1], (α, β) = (1, 1) and initial conditions f1(x, y, 0) = f 01 (x, y), f2(x, y, 0) = f
0
2 (x, y). The exact

solution thus read

f1(x, y, t) =
1
2
(f 01 (x, y)+ f

0
2 (x, y))+

1
2
(f 01 (x, y)− f

0
2 (x, y)) e

−2t ,

f2(x, y, t) =
1
2
(f 01 (x, y)+ f

0
2 (x, y))−

1
2
(f 01 (x, y)− f

0
2 (x, y)) e

−2t .
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Table 1
Errors in the l2-norm for f1 numerical moments

Error f1

E1x 7.07×10−14

E1y 2.00× 10−4

E1xx 2.47× 10−2

E1yy 1.22× 10−2

E1xy 6.23× 10−4

As initial conditions, we choose f 01 (x, y), f
0
2 (x, y) ∈M(Ω), such that

f 01 (x, y) = f
0
1 (x) = 1− cos 2πx

f 02 (x, y) = f
0
2 (y) = 1− cos 2πy.

By using the Proposition 3.2, we have

Ψ
(1)
1,r =

e−2t

4π2
(cos 2πxr1 − 1), Ψ

(1)
2,r =

e−2t

4π2
(1− cos 2πyr1)

and

Ψ
(2)
1,r = −

e−2t

4π2
(cos 2πxr2 − 1), Ψ

(2)
2,r = −

e−2t

4π2
(1− cos 2πyr1).

The comparison of the numerical solution versus the exact solution is obtained via the first and the second moments.
From the exact solution fi, i = 1, 2, one can easily compute all the first and the second moments:

µix(t) =
∫ 1

0

∫ 1

0
xfi(x, y, t)dxdy =

1
2
,

µiy(t) =
∫ 1

0

∫ 1

0
yfi(x, y, t)dxdy =

1
2
,

µixx(t) =
∫ 1

0

∫ 1

0
x2fi(x, y, t)dxdy =

1
3
+
1+ e−2t

4π2
,

µiyy(t) =
∫ 1

0

∫ 1

0
y2fi(x, y, t)dxdy =

1
3
+
1− e−2t

4π2
,

µixy(t) =
∫ 1

0

∫ 1

0
x yfi(x, y, t)dxdy =

1
4
.

In the numerical test, the points approximation of the initial distribution is performed by a transformation of an uniform
distribution; the time step used was 1t = 0.01 and the computations were performed with N = 100 particles up to time
T = 5 (before the moments approaches equilibrium). The relative error E ij between the the analytical moment µ

i
j(t) and

the numerical j-moment µ̃ij(t) of the i-solution, is measured by the normalized l
2 norms, which is defined as

E ij =
‖µij(t)− µ̃

i
j(t)‖

2

‖µij(t)‖2
,

for i = 1, 2 and j ∈ {x, y, x2, y2, xy}.
Results are shown in Figs. 1 and 2 for f1 and f2 respectively. The x-moments graphs have been omitted from those figures,

as the relative error is of the order 10−14 and the two curves cannot be distinguished. In Fig. 1, we present the graphs of
the moments of the exact solution f1 (continuous line) and of the numerical solution (dashed lines) vs. time for the first and
second moments. In the left-up panel, we compare the graphs for the y-moment and in the right-up panel the graphs of the
xy-moment. As these panels show, the numerical and the analytical moments are in a good agreement; lines are very similar
and differences are negligible. The left-down panel and the right-down panel of Fig. 1 show the graphs of the x2-moment and
y2-moment respectively. It is obvious that for the square moments, the agreement is quite reasonable; the relative errors
E1xx and E1yy between the exact and the numerical moments, is of the order 10

−2. In Table 1, we report the computed errors,
in the l2-norm, of the first and second moments of the numerical solution f1.
In Fig. 2 we present the graphs of the moments for f2. As the figure shows, the qualitative behavior of the moments is

similar to the f1 case; the square and the mixed moments are in a good agreement, the square moments present a greater
error. In Table 2 we report the errors, in the l2-norm, of the first and second moments of the numerical solution f2.
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Fig. 1. Moments of the function f1 .

Fig. 2. Moments of the function f2 .

5. Conclusions

We have presented the extension of the MWF method to a Kinetic equation system. Numerical results show that the
method is highly accurate, but crucially depends, as all deterministic particle methods, on an accurate point approximation
of the initial distribution. The method allows the approximation nodes, i.e. the particles, to move in the velocity space,
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Table 2
Errors in the l2-norm for f2 numerical moments

Error f2

E1x 6.70×10−14

E1y 1.88× 10−4

E1xx 1.73× 10−2

E1yy 1.88× 10−2

E1xy 5.56× 10−4

the method is naturally meshfree. As far as linear kernel are concerned, coding the method is rather simple, even if its
mathematical description looks hard. Taking into account the properties of integrals with δ functions the computation of
the Ψi term (12) reduces, for each component, to the computation of the integral of a Heaviside step functions in the given
interval. The method does not need to introduce amollifier for treating δ functions.
Even if our test of numerical vs exact solution is very good, this does not substitute a formal convergence proof of the

method. This is under investigation and results will be published in due course.
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