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ABSTRACT

Summary: Since few years the problem of finding optimal solutions
for drug or vaccine protocols have been tackled using system biology
modeling. These approaches are usually computationally expensive.
Our previous experiences in optimizing vaccine or drug protocols
using genetic algorithms required the use of a high performance
computing infrastructure for a couple of days. In the present article
we show that by an appropriate use of a different optimization
algorithm, the simulated annealing, we have been able to downsize
the computational effort by a factor102. The new algorithm requires
computational effort that can be achieved by current generation
personal computers.
Availability: Software and additional data can be found at
http://www.immunomics.eu/SA/
Contact: francesco@dmi.unict.it

1 INTRODUCTION
Drugs and vaccines design and development is an inherently
laborious process. The availability of animal models and in
particular of humanized animal models has contributed greatly to
their experimentation. The refinement of a vaccine protocol or
the trials to improve a drug efficacy could lead to an endless
series of long-term wet-lab experiments. In such a framework,
computational and mathematical models in system biology could
represent a valuable help to biologists and medical researches. Some
interesting applications of system biology models and optimization
techniques can be found in recent literature (Davies and Flower,
2007). Mathematical continuous models have been proposed to
describe cancer therapy (Kirschner and Panetta, 1998; Nani and
Freedman, 2000; Vainstein et al., 2006), to optimize immunotherapy
(Castiglione and Piccoli, 2007) and chemotherapy (Agur et al.,
2006). Agent-based models (ABM) like SimTriplex (Pappalardo
et al., 2005) and C-ImmSim (Bernaschi and Castiglione, 2001)
have been proposed for reproducing important pathologies like
mammary carcinoma and AIDS. Drug and vaccine scheduling
optimization using ABM has been also performed (Castiglione
et al., 2007; Lollini et al., 2006a). We only note here that, from
the immunological point of view, the major difference between
continuous and discrete models is that the latter ones take into
consideration the recognition phase of the immune response while
the former only consider the effector cells. Continuous models
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are appropriate to describe the general behavior of the system
while discrete models provide a detailed description of the immune
processes. An extensive survey of ‘Tumor—Immune System’
competition can be found in Adam and Bellomo (1997) and Preziosi
(2003).

We briefly recall here the vaccine schedule optimization
problem to introduce its major computational aspect. A vaccination
schedule is usually designed empirically using a combination
of immunological knowledge, vaccinological experience from
previous endeavors and practical constraints. In subsequent trials,
the schedule of vaccinations is then renewed on the basis of
the protection elicited in the first batch of subjects and their
immunological responses e.g. kinetics of antibody titers, cell
mediated response, etc. The problem of defining optimal schedules
is particularly important in cancer immunopreventive approaches,
which requires a sequence of vaccine administrations to keep a
high level of protective immunity against the constant generation
of cancer cells over very long periods, ideally for the entire lifetime
of the host.

The Triplex vaccine represents a clear example of such
immunopreventive approaches. It has been designed (Lollini et al.,
2006b) to improve the efficacy of existing immunopreventive
treatments against mammary carcinoma. Triplex showed to be
effective in preventing the carcinoma in situ (CIS) formation in
HER-2/neu mice using a Chronic schedule in a follow-up time
between 52 and 57 weeks.

However it is not known if Chronic schedule really is the minimal
set of vaccinations able of assuring complete, long-term protection
against mammary carcinoma. Shorter heuristic protocols failed, in
in vivo experiments, in fulfilling this requirement, but between the
Chronic and the shorter schedules there is still a huge number of
possibilities which remain yet unexplored.

SimTriplex is an ABM that describes all the relevant processes
of the ‘immune system—mammary carcinoma’ competition by
means of rules derived from biological experiences. This model
and simulator includes all the most relevant entities (immune
system cells, cancer cells, vaccine cells) and processes (recognition,
differentiation, duplication) needed to reproduce the immune
response induced by the Triplex vaccine. A detailed description can
be found in (Pappalardo et al., 2005). A validated simulator will
reasonably reproduce, in the validation range, the immune response
activated by a vaccination protocol, thus one can reproduce in silico
different vaccination schedules and search for the schedules with a
minimal number of vaccine administrations still capable to prevent
CIS formation.
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Combining SimTriplex and genetic algorithms (GA) approach, an
optimal vaccination schedule capable to guarantee in silico survival
has been found (Lollini et al., 2006a). Optimal search strategy was
biologically guided. Considering that Chronic proved to be effective
for tumor control, the optimal search tried to find a protocol with
minimum number of vaccine administrations able to reproduce,
in silico, the time evolution of the chronic schedule. This strategy
was used in the GA optimal search. It is well known that GA
are slowly converging algorithms; the GA optimal search required
about 3 days using 32 nodes of an high performance computing
infrastructure.

The application of such techniques in a clinical environment
will require to downsize the requested computational resources
and computational time. We note here that model complexity
increases with biological knowledge and physical scale. Thus,
even if computer power will continue to grow following Moore’s
law, complexity of models will grow too, rendering useless the
availability of the added power. Therefore better performing
approaches for the optimal protocol finder are always desirable.
To this end we decided to investigate the applicability of simulated
annealing (SA), a global optimization algorithm, widely tested and
known for its computational speed and ability to achieve optimal
solutions. (Interested readers can found an extended description of
SA algorithm in van Laarhoven and Aaris, 1997). In the present
article we show how the combination of the SA algorithm with
biologically driven heuristic strategies, leads to a much faster
algorithm and better results for the optimal vaccination schedule
problem for Triplex vaccine.

2 IMPLEMENTATION OF THE SA ALGORITHM
The translation of the biological concept of vaccine effectiveness
in mathematical–computational terms has been shown in Lollini
et al. (2006a). Here we remark that in silico experiments, like the in
vivo ones, consider a randomly chosen sample to represent a larger
population. In our in silico experiment, we select a population of
200 virtual mice and a simple random sample of k =8 mice. The
SA is a computational method which reproduces the slow cooling
process of a solid. Physically this leads to a sequence of semi-
equilibrium configurations toward the equilibrium configuration of
minimum energy and temperature. The use of this optimization
method for the optimal protocol problem requires: (i) the definition
of the SA relevant concepts in terms of vaccine protocol, (ii) a
description of the optimal protocol problem in terms of a cooling
process.

In this context the relevant concepts in SA are: the initial solid
configuration (and its subsequent perturbations), the temperature,
the energy and the semi-equilibrium condition.

The relevant concepts of a vaccine administration protocol are:
the number of injections, the mean survival age of the selected
population of mice and the time distribution of injections of a
given protocol. The optimal protocol is the one which provides
the maximum survival of the sample with the minimum number
of vaccine administrations. Since we want to model an in vivo
experiment which runs for 57 weeks performing a maximum of two
vaccine administrations per week, we describe a candidate protocol
with a bit-string, i.e. a binary vector P of cardinality V =114,
where the bits position represents the administration time t and
the bit value 1/0 represent vaccine, or no-vaccine administration

at time t. The total number of vaccine administrations n and M, the
total number of possible schedules with n vaccine administrations,
Pl

n, l=1,..., M are, respectively, given by: n=∑V
j=1Pl

n(j) and
M=V !/[n! (V −n)!].
The initial configuration. The initial distribution is an equilibrium
configuration defined by Pin, nin and the initial energy Ein as defined
later on. To obtain an initial equilibrium configuration we use the
Metropolis algorithm (Metropolis et al., 1953).
Temperature. The temperature of a semi-equilibrium represents, in
the SA, the control parameter of the algorithm. The temperature
is slowly but constantly lowered to reach the minimum of energy.
In our case the most suitable entity to represent this feature is
n, the number of vaccine administration of a semi-equilibrium
configuration.
Energy. The configuration energy of SA is slowly stochastically
decreasing.At a given temperature, a semi-equilibrium configuration
is reached when the energy is minimal. To identify a suitable energy
definition let us first consider the simple case of optimizing the
schedule for a single mouse. In this case the semi-equilibrium will
be reached when we find the maximum survival time τ of the
mouse with the given number of vaccine administrations, i.e E ∝τ .
However this would lead to finding a maximum (i.e. maximum
energy) while SA is designed for finding a minimum. Taking into
account that energy is always a positive quantity, we can define the
energy E ∝1/τ .
The natural extension of this definition to the case in which we
consider k mice is the aritmetic mean of the inverse of survival
times, i.e. E ∝1/k ·∑1/τi. This simply represents the inverse of the
harmonic mean H of the survival times τi.
The SA algorithm for protocol optimization. (i) starts from a
randomly chosen initial vaccine distribution and find the initial

semi-equilibrium configuration nin, Plin
nin

, Elin
nin

using the Metropolis
algorithm. The Metropolis algorithm finds a semi-equilibrium
configuration building a finite sequence Pl

n, l=1,...,<λ (where λ

is a predefined maximum number of iterations) with bits perturbed
randomly and Pl+1

n accepted stochastically according to the energy
variation and temperature. (van Laarhoven and Aaris, 1997); (ii)
Decrease the number of injections of 1 unit; (iii) find a semi-
equilibrium configuration Pi, Ei according to Metropolis algorithm;
(iv) cycle on (ii). The algorithm stops when, once the algorithm
control parameter, i.e. the number of vaccine administrations, is
decreased from n to n−1, the Metropolis algorithm is not able to
find a semi-equilibrium configuration, i.e. an acceptable value of
survivals, in λ iterations. The accepted protocol is the last found at
temperature n.
Biologically inspired modification of Metropolis algorithm. Taking
into account the energy definition, the Metropolis random bits
perturbation can be heuristically improved using biological
knowledge. As we want to optimize mice survival, in moving from

P j
i to P j+1

i , we re-adjust random bits reallocation moving some ‘1’
at a suitable time t <min{τi} ,i=1,k.
Safety thresholds. To implement the optimal search strategy
described in (1) we introduced, for each mouse i of the sample
set, two safety thresholds on the number of cancer cells (CC). These
safety thresholds bound to the in silico observed number of CC when
a Chronic protocol is administered. If, at any time t, the number of
CC is greater than any of the safety thresholds the survival time of
that mouse i is τi = t.
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Fig. 1. Cancer cells behaviors and thresholds in GA (top) and SA (bottom).
Small vertical bars on the x-axis represent vaccine administration times.
Broken-line graphs on the lhs represent safety thresholds.

3 RESULTS AND CONCLUSIONS
Results In previous experiments the GA optimization technique
(Lollini et al., 2006a) used a sample of eight randomly selected
virtually mice to compute its fitness function. This was needed for
obtaining a vaccination protocol effective on a large population of
individuals. The protocol was then tested on the entire population
set (200 virtual mice) and the tumor free percentage of individuals
was of 87%. In order to compare the SA results against GA results,
we used the same 8-mice subset and the same mice population.
The in silico tumor free percentages of the mice population show
no substantial difference between the two methods (87% for GA
versus 86.5% for SA). Moreover, Figure 1 shows the mean number
of CC, computed on the 200-mice set, for the GA protocol (up
lhs) and the SA-protocol (down lhs). Only the SA protocol totally
fulfills the safety threshold conditions. The SA algorithm required
a computational effort of about 2 h on a 8 processor unit to find a
protocol with 37 vaccine administrations. Comparison with previous
results obtained with the GA algorithm show a speedup factor
of ∼1.4×102.
Conclusions We presented a new approach to search optimal
vaccination schedules. The use of the SA algorithm reaches an
optimal solution with a computational effort that can be achieved on
computers available in the consumer market. We note here that the
vaccine administration distribution is not the same in SA-protocol
and GA protocol. This suggests that many protocols Pn which reach
the same global survival goal may exist. Searching between those

protocols the one which better fulfills other clinical requirements
implies a clinically guided optimal search. Work in this direction is
in progress and results will be published in due course.
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