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Abstract— In this paper we present a formal description
of PROSA, a P2P resource management system heavily
inspired by social networks. Social networks have been
deeply studied in the last two decades in order to understand
how communities of people arise and grow. It is a widely
known result that networks of social relationships usually
evolves to small-worlds, i.e. networks where nodes are
strongly connected to neighbours and separated from all
other nodes by a small amount of hops. This work shows
that algorithms implemented into PROSA allow to obtain an
efficient small-world P2P network. We also show how taking
advantage of PROSA structure it is possible to effectively
answer queries. In particular, the so—called query recall
for PROSA is estimated and compared to that obtained in
SETS [1] and GES [2].
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I. INTRODUCTION

A Peer-to-Peer system consists of computing elements
that are connected by a network, addressable in a unique
way, and sharing a common communication protocol. All
computing elements, equivalently called nodes or peers,
have the same functions and role. In P2P networks there
is no difference between “client” and “server” hosts: a
peer acts as a “client” if it requests a resource from the
network, while it acts as a “server” if it is requested
a resource it is sharing. From this point of view, P2P
networks differ a lot from World Wide Web, TCP/IP
networks and, in general, from client-server networks.

Studies on P2P networks are focused on two different
topics: physical P2P networks (i.e.,P2P networks op-
posed to hierarchic and centralised TCP/IP networks) and
overlay networks (i.e. networks of logical links between
hosts over an existing physical network of any type).
Our interest is mainly focused on overlay P2P systems:
they are probably going to become the most used kind
of application—level protocols for resource sharing and
organisation.

In this paper we present a novel P2P overlay net-
work, named PROSA [3] [4], heavily inspired by social
networks. Social networks are sets of people or groups
interconnected by means of acquaintance, interaction,
friendship or collaboration links. Many kinds of natural
social networks have been deeply studied in the last thirty
years [5], and many interesting characteristics of such
networks have been discovered. In a real social network
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relationships among people are of the most importance
to guarantee efficient collaboration, resources discovery
and fast retrieval of remote people. Nevertheless, not
all relationships in a social network are of the same
importance: usually links to parents and relatives are
stronger than links to friends, which are in turn stronger
than links to colleagues and class mates. On the other
hand, it is also interesting to note that usually links in
a social group evolve in different ways. A large amount
of relationships are (and remain) bare “acquaintances”;
some of them evolve around time into “friendships”, while
“relativeness” is typical of very strong links to really
trusted people.

This suggests that a P2P network based on a social
model should take into account that different kind of links
among peers can exist, and that links can evolve from
simple acquaintances to friendship.

Results of studies performed by Watts, Strogatz, New-
man, Barabasi et al. in the last decades[6] [7] [8] [9]
[10] reveal that networks of movie characters, scien-
tific collaborations, food chains, proteins dependence,
computers, web pages and many other natural networks
usually exhibit emerging properties, such that of being
small-worlds. A small-world is a network where distance
among nodes grows as a logarithmic function of the
network size and similar nodes are strongly connected
in clusters.

PROSA tries to build a P2P network based on social re-
lationships, in the hope that such network could naturally
evolve to a small-world.

In section 11, we describe PROSA and algorithms in-
volved in linking peers and routing queries for resources;
in section 1V, we discuss topological properties of PROSA
network, obtained by simulation; section V reports some
results about PROSA performance in searching and re-
trieving resources; in section VI, we summarise obtained
results and plan future work.

Il. RELATED WORKS

In the last decade researchers have proposed many
models for P2P overlay networks, the most common being
“Unstructured Overlays” and “Distributed Hash Tables”
(DHT) [11]

Unstructured Overlay networks are the simplest P2P
networks. Each node is directly connected to a relatively
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small amount of other nodes. Queries for resources are
usually based on limited flooding, i.e. the query is for-
warded to all connected nodes, excepted the one who
sent it, provided that the same query is not forwarded
twice from the same node, and that queries live just for
a limited number of “hops”. The most famous example
of such a network is Gnutella [12]. The worst aspect of
unstructured P2P networks is that flooding is not efficient,
and limited flooding does not guarantee to find matching
results.

DHT-based P2P, on the other hand, are able to give a
certain internal structure to the network. Nodes are usually
assigned unique ID and are connected to a certain number
of nodes that results to be “near to them” according to a
given hashing function and to a similarity index. Queries
are usually routed using the best available link and the
underlying structure allow to forward queries in a really
efficient way, usually in O(log® ) hops, where n is the
number of nodes in the network and & is a small integer
between 1 and 3. The main problem with DHTSs is that
resources have to be queried using their ID, which is
not a human readable string. No query “a—la—google” are
allowed in such kind of networks, and they result to be
not so usable, indeed.

Some recent works [1][2] focused their interest on
introducing a certain amount of semantic in P2P overlays,
allowing query to become more readable and understand-
able by users, while trying to maintain good performance
in terms of resource availability, recall and robustness.

In particular, SETS [1] uses a hybrid P2P network
where all nodes are spread into a predefined number of
clusters (topic segments), depending on the kind of re-
sources they are sharing, and a network manager (a super-
peer) in responsible of periodically reassigning nodes to
each cluster in order to maintain consistency. The main
issue of SETS is that the reliability and performance
of the network is devoted to a single super-peer, which
represents a possible point of fault. On the other hand,
the number of clusters is an arbitrary value and it is not
clear how it impacts on performance.

A completely different approach is used in GES [2].
No super-peer is in charge of creating clusters of similar
nodes and network management is completely distributed.
Each peer decides to link some other peer depending on
a similarity index, after a handshake phase. Queries are
forwarded using a hybrid algorithm: if a peer does not
have links to relevant nodes, it forwards the query along
a random path. Otherwise, the most relevant neighbour
is selected as next hop. The matter with GES is that
network management requires additional messages to be
exchanged among neighbours. As in SETS, also in GES
resources are represented by a Vector Space Model[13],
in terms of vectors of TF-IDF coefficients.

I1l1. PROSA: A BRIEF INTRODUCTION

As stated above, PROSA is a P2P network based
on social relationships. More formally, we can model
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PROSA as a directed graph:
PROSA = (P, L, Py, Label) (1)

P denotes the set of peers (i.e. vertexes), £ is the set
of links [ = (s,t) (i.e. edges), where ¢ is a neighbour of
s. For link I = (s,t), s is the source peer and ¢ is the
target peer. All links are directed.

In P2P networks the knowledge of a peer is represented
by the resources it shares with other peers. In PROSA the
mapping P : P — C, associates peers with resources. For
a given peer s € P, Py (s) is a compact description of the
peer knowledge (PK - Peer Knowledge).

Relationships among people are usually based on sim-
ilarities in interests, culture, hobbies, knowledge and
so on. Usually these kind of links evolve from simple
“acquaintance-links” to what we called “semantic—links”.
To implement this behaviour three types of links have
been introduced: Acquaintance-Link (AL), Temporary
Semantic-Link (7'SL) and Full Semantic-Link (F'SL).
TSLs represent relationships based on a partial knowledge
of a peer. They are usually stronger than ALs and weaker
than F'SLs.

In PROSA, if a given link is a simple AL, it means
that the source peer does not know anything about the
target peer. If the link is a F'SL, the source peer is aware
of the kind of knowledge owned by the target peer (i.e.
it knows the Py (¢), where t € P is the target peer).
Finally, if the link is a T'SL, the peer does not know the
full P.(t) of the linked peer; it instead has a Temporary
Peer Knowledge (7"P:) which is built based on previously
received queries from the source peer. Different meanings
of links are modelled by means of a labelling function
Label: for a given link [ = (s,t) € L, Label(l) is a
vector of two elements [e, w]: the former is the link label
and the latter is a weight used to model what the source
peer knows of the target peer; this is computed as follow:

e ife=AL=>w=10
o ife=TSL=w=TP,
o if e=FSL = w= Pyt)

In the next two sections, we give a brief description
of how PROSA works. A detailed description of PROSA
can be found in [3].

A. Peer Joining to PROSA

The case of a node that wants to join an existing
network is similar to the birth of a child. At the beginning
of his life a child “knows” just a couple of people (his
parents). A new peer which wants to join, just looks for n
peers at random and establishes ALs to them. These links
are ALs because a new peer doesn’t know anything about
its neighbours until he doesn’t ask them for resources.
This behaviour is quite easy to understand: when a baby
comes to life he doesn’t know anything about his parents.
The PROSA peer joining procedure is represented in
algorithm 1.
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Algorithm 1 JOIN: Peer s joining to PROSA(P, £, Py, Label)

Require: PROSA(P, L, Py, Label), Peer s
1: RP «— rnd(P,n) {Randomly selects n peers}
2: P — P Us {Adds s to set of peers}
3 L— LU{(s,t),Vt € RP} {Links s with peers in RP}
4: Yt € RP = Label(s,t) « [AL, (] {Labels links as AL}

B. PROSA dynamics

In order to show how PROSA works, we need to define
the structure of a query message. Each query message is
a quadruple:

QIW = (qldv q, S, nr) (2)

where gid is a unique query identifier to ensure that
a peer does not respond to a query more then once; ¢
is the query, expressed according to the used knowledge
model'; s € P is the source peer and n,. is the number of
required results. PROSA dynamic behaviour is modelled
by Algorithm 2 and is strictly related to queries. When
a user of PROSA asks for a resource on a peer s, it
builds up a query ¢ and specify a certain number of
results he wants to obtain n,.. This is equivalent to call
EzxecQuery(PROSA, sq, 1y ).

Algorithm 2 ExecQuery: query g originating from peer s, executed
on cur
Require: PROSA(P, L, Py, Label)
Require: cur € P, gm € QueryMessage
1: Result «—
if cur # sq then
UpdateLink(PROSA, cur, sq, q)
end if
(Result,nRes) < ResourcesRel(PROSA, q, cur, n.)
if nRes = 0 then
f — Select Forwarder(PROSA, cur, q)
if f# 0 then
9: EzecQuery(PROSA, f, qm)
10:  end if
11: else
12:  SendMessage(sq, cur, Result)
130 L — LU(sq,cur)
14:  Label(sq, cur) « [FSL, Py(cur)]
15:  if nRes < n, then

N RN

16: {- Semantic Flooding -}

17: for all ¢t € Neighborhood(cur) do
18: rel — PeerRelevance(Px(t), q)
19: if rel > Threshold then

20: gm — (qid, q, 34, nr — nRes)
21: EzecQuery(PROSA, t, gm)
22: end if

23: end for

24:  end if

25: end if

The first time ExzecQuery is called, cur is equal to
sq and this avoids the execution of instruction num-
ber 3. Next calls of EzxecQuery, i.e. when a peer re-
ceives a query forwarded by another peer, use function
UpdateLink, which updates the link between current

LIf knowledge is modelled by Vector Space Model, for example, g is a
state vector of stemmed terms. If knowledge is modelled by ontologies,
q is an ontological query, and so on
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peer cur and peer sq, if necessary. If s, is an unknown
peer for cur, a new T'SL link is added having as weight a
Temporary Peer Knowledge(7'P) based on the received
query message. Note that a T'P;, can be considered as a
“good hint” for the current peer, in order to gain links
to other remote peers. It is really probable that the query
would be finally answered by some other peer and that the
requesting peer will download all resources that matched
it. It would be useful to record a link to that peer, just
in case that kind of resources would be requested in the
future by other peers. If cur has already a T'SL link to
54, the corresponding TPV (Temporary Peer Vector) in
the list is updated. If the link from cur to s, is a F'SL,
no updates are performed.

The relevance of a query with respect to the re-
sources hosted by cur is evaluated calling function
ResourcesRel. Two possible cases can hold:

« If none of the hosted resources has a sufficient rele-
vance, the query has to be forwarded to another peer
f, called “forwarder”. This peer is selected among
cur neighbours by the function Select Forwarder,
using the following procedure:

- Peer cur computes the relevance between query
q and the weight of each links connecting itself
to the neighbourhood.

- It selects the link with the highest relevance, if
any, and forward the query message to it.

- If the peer has neither F'SLs nor T'SLs, i.e. it
has just ALs, the query message is forwarded
to one link at random.

This procedure is described in Algorithm 2, where
the subsequent forwards are performed by means of
recursive calls to ExecQuery.

« If the peer hosts resources with sufficient relevance
with respect to ¢, two sub-cases are possible:

- The peer has sufficient relevant documents to
full-fill the request. In this case a result message
is sent to the requesting peer and the query is
no more forwarded.

- The peer has a certain number of relevant
documents, but they are not enough to full-
fill the request (i.e. they are < n,). In this
case a response message is sent to the peer s,
specifying the number of matching documents.
The message query is forwarded to all the links
of cur neighbourhood whose relevance with the
query is higher than a given threshold (semantic
flooding). The number of matched resources is
subtracted from the number of total requested
documents before each forward step.

When the requesting peer s, receives a response mes-
sage it presents the results to the user. If the user decides
to download a certain resource from another peer, the
requesting peer contacts the peer owning that resource
asking for download. If download is accepted, the re-
source is sent to the requesting peer.
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IV. TOPOLOGICAL PROPERTIES

Algorithms described in section 111 are inspired by the
way social relationships among people evolve, in the hope
that a network based on those simple rules could naturally
become a small-world. That of being a small-world is one
of the most desirable properties of a P2P network, since
resource retrieval in small-worlds is really efficient. This
is mainly due to the fact that small-world networks have
a short Average Path Length (APL) and a high Clustering
Coefficient (CC). APL is defined as the average number
of hops required to reach any other node in the network:
if APL is small, all nodes of the network can be easily
reached in a few steps starting from whichever other node.

CC can be defined in several ways, depending on the
kind of “clustering” you are referring to. We used the
definition given in [6], where the clustering coefficient of
a node is defined as:

En.real

Cc’ﬂ En,tot (3)
where n’s neighbours are all the peers to which n
as linked to, E, ,cq; iS the number of edges between
n’s neighbours and E, ;o is the maximum number of
possible edges between n’s neighbours. Note that if & is in
the neighbourhood of n, the vice-versa is not guaranteed,
due to the fact that links are directed. The clustering

coefficient of the whole network is defined as:

1
cC = W > ca, 4)

nev

i.e. the average clustering coefficient over all nodes.

The CC is an estimate of how strongly nodes are
connected to each other and to their neighbourhood. In
particular, the definition given in Equation 3 measures
the percentage of links among a node neighbours with
respect to the total possible number of links among them.

In the following two subsections we show that PROSA
has both a small APL and a considerable high CC.

A. Average path length

Since we are focusing on topological properties of a
PROSA network to show that it is a small-world (i.e.
that queries in PROSA are answered in a small amount
of steps), we estimate the APL as the average length of
the path traversed by a query. It is interesting to compare
the APL of PROSA with the APL of a correspondent
random graph, since random graphs usually have a really
small average path length.

Given a graph G(V, E) with |V| vertexes (nodes) and
|E| edges (links) among nodes, the correspondent random
graph is a graph G,.,q which has the same number of
vertexes (nodes) and the same number of edges (links) of
G, and where each link between two nodes exist with a
probability p.

Note that the APL of a random graph can be calculated
using equation (5), as reported in [14], where |V| is the
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number of vertexes (nodes) and | E| is the number of edges
(links).

log [V]
log (IV1/1E]) ©)

Figure 1 shows the APL for PROSA and the corre-
spondent random graph for different number of nodes in
the case of 15 performed queries per node. The APL for
PROSA is about 3.0, for all network sizes, while the APL
for the correspondent random graph is between 1.75 and
2.0: the average distance among peers in PROSA seems
to be independent from the size of the network. This is
quite common in real small-world networks.

APL =

4 T T T T

G—© PROSA
351 OO RANDOM | _|

Average Path Length
™
&
T
1

L L L L L L L
&00 400 600 800 1000

#of nodes

Figure 1. APL for PROSA and random network

It is also interesting to analyse how APL changes when
the total number of performed queries increases. Results
are reported in Figure 2, where the APL is calculated for
windows of 300 queries, with an overlap of 50 queries.
Note that the APL for PROSA decreases with the number
of performed queries. This behaviour heavily depends on
the facts that new links among nodes arise whenever a
new query is performed (TSLs) or successfully answered
(FSLs). The higher the number of performed queries, the
higher the probability that a link between two nodes does
exist.

— 200 nodes| |
400 nodes
— - 600 nodes

Average Path Length

L L L L L L L
0 5000 10000 15000 20000

Number of performed queries

Figure 2. Running averages of APL for PROSA with different network
size

B. Clustering Coefficient

The clustering (or transitivity) of a network is a
measure of how strongly nodes are connected to their
neighbourhood. Since links among nodes in PROSA are
established as a consequence of query forwarding and
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answering, we suppose that peers with similar knowledge
will be eventually linked together. This means that usually
peers have a neighbourhood of similar peers, and having
strong connections with neighbours could really speed—up
resource retrieval.

In Figure 3 the CC of PROSA for different number
of performed queries is reported, for a network of 200
nodes. Note that the clustering coefficient of the network
increases when more queries are performed. This means
that nodes in PROSA usually forward queries to a small
number of other peers so that their aggregation level
naturally gets stronger when more queries are issued.
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03

Clustering Coefficient

0.25—

02+ —
L 1

L L L L L L L L L L
0 5000 10000 15000 20000 25000 30000

# of queries

Figure 3. Clustering Coefficient for PROSA

It could be interesting to compare PROSA clustering
coefficient with that of a corresponding random graph.
The clustering coefficient of a random graph with |V|
vertexes (nodes) and | E| edges (links) can be computed
using equation 6.

|E|
VI-(VI-1) ©
Figure 4 shows the CC for PROSA and a correspondent
random graph for different network sizes, in the case of 15
performed queries per node. The CC for PROSA is from
2.5 to 6 times higher that that of a correspondent random
graph, in accordance with CC observed in real small-
world networks. This result is quite simple to explain,
since nodes in PROSA are linked principally to similar
peers, i.e. to peers that share the same kind of resources,
while being linked to other peers at random. Due to the
linking strategy used in PROSA, it is really probable that
neighbours of a peer are also linked together, and this
increases the clustering coefficient.
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Figure 4. Clustering coefficient for PROSA and the corr. random graph
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V. PROSA PERFORMANCES

Topological properties reported in the previous section
are sufficient to state that PROSA naturally evolves to
a small-world only by means of query forwarding and
link updating. This is an important result on his own,
since many recent studies are focusing on the problem of
building small-world networks with given features.

Nevertheless, since we are mainly interested on using
PROSA for resource sharing, it is of the most impor-
tance to investigate its performance in resource searching
and retrieval. In this section we report some interesting
measures on PROSA, showing how the same algorithms
which contribute to obtain a small-world structure also
guarantees a fast and effective retrieval of shared re-
sources.

A. Answer Delay

The “answer delay” is defined as the time a user has
to wait after a query is issued in order to obtain the first
answer. In P2P resource sharing systems, answer delay
can be also measured by the so—called “Query deepness”.

Query deepness is defined as the length of the path
traversed by a query during searching; it is strictly related
with the existing time interval between the time when the
query is issued and the time when answers to the query
are obtained. If queries do ideally require almost the same
amount of time to be processed by a node, the higher the
query deepness is, the longer an user has to wait to obtain
an answer.

In P2P resource sharing applications a low query deep-
ness is a desirable feature, since it heavily impacts on
the quality of service observed by users: obtaining all
resources matching a given query only after twenty or
thirty seconds is worst than obtaining the first twenty or
thirty percent of results in a couple of seconds, waiting a
bit longer for the remaining results.

Since paper about SETS and GES do not report any
values about query deepness, figure 5 reports the average
query deepness measured for different network sizes for
PROSA and a random walk strategy. Reported measures
for each network size are performed on the same network.
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‘ ‘ ‘ ) | X | L |

400
Network size (number of nodes)

Figure 5. Average query deepness

As showed in figure 5, the average query deepness for
PROSA is about one half that of a random walk, for all
network sizes. This means that nodes in PROSA are able
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to find the most convenient nodes to forward a query to,
sensibly lowering the average delays of answers: random
walk is not the best strategy for query forwarding in
a non-random network like PROSA is. Note also that
the global effect of a low query deepness measured on
PROSA is obtained through simple local choices made
by each node, looking only at properties of nodes in his
neighbourhood.

B. Query Recall

One of the most used quality measure for P2P retrieval
system is the “recall”, defined as the average percentage
of resources retrieved by each query over the total amount
of matching resources available in the network. So if
a query matches N resources in the network, and it
is eventually returned K resources, with K < N, the
obtained recall is .

1 T T T T ; T

y
05 e 8aE ad/]
cRazed=Easc] 1
;

=4
@
T

/ G—© PROSA H
3 €1 Random Walk |
[ng <+ +¢ Flooding i

I
>
T
uN

Percentage of queries

o
=

T
b=

2 s

o
N
T

| 00’0.@" 4
500 ©
OQ.Q.Q-{)OO &

L
1K 00 - SO0 00O
g . I . I . I . I .
i 02 0.8 1

04 06
Query Recall

Figure 6. Cumulative recall distribution over queries

The cumulative distribution of recall over queries for
PROSA is reported in figure 6 and compared with the
recall distribution of flooding and random walk measured
on the same network. More than 50% of queries in
PROSA have a recall higher than 50%, while the random
walk is able to obtain 50% of recall for less than 10%
of nodes. If we consider that the average processing cost
for PROSA is ever lesser than in random walk, we can
conclude that PROSA is a great improvement over pure
random walk for resource discovery.

C. Processing Cost

Another interesting quality measure for a routing strat-
egy is the so—called “Processing Cost”, defined as the
average number of nodes involved in answering each
query. It is an approximated measure of the average
computational power needed to answer a query, and is
related to network scalability. Having a high Processing
Cost implies that each query is forwarded to a consider-
able percentage of nodes, consuming a high amount of
bandwidth and computational resources. The processing
cost for flooding, for example, is of 100% in a connected
network, since queries are forwarded to all outgoing links
recursively: everybody knows that flooding is not the
optimal solution for bandwidth usage, while being the
optimal one for recall.
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Algorithms for resource searching usually have a differ-
ent processing cost for different values of desired recall.
In GNUTELLA-like systems, for example, the trade-off
between processing cost and recall is managed by fixing
the maximum deepness of a query message, at the price of
a possibly lesser recall, since nodes beyond the prefixed
deepness could actually have relevant documents, but are
not reachable at all.

In both SETS and GES approaches, if a query did
not gather a sufficient amount of answers it is forwarded
along other routing paths, and a flooding-like effect is
obtained. The case of PROSA is a little different. Queries
are possibly forwarded to relevant nodes until the first
matching resource is obtained, and then to all nodes that
are really relevant to the query, till it is possible.

O—O PROSA B
3 &1 Random Walk

04—

Cumulative distribution over queries

20
Processing Cost (number of nodes)

Figure 7. Cumulative distribution of processing cost over queries

Figure 7 reports the cumulative distribution of pro-
cessing cost over successful queries for PROSA and a
random walk strategy for a network with 200 nodes. In
this graph a query is considered “successful” if it obtained
at least one matching resource. Note that more than 90%
or queries are answered in PROSA by visiting less than
4% of the nodes, while a random walk needs to probe
at least 17% of nodes to answer the same percentage of
queries.

These results about processing cost, aside with low
query deepness discussed above, confirm that the routing
strategy implemented by PROSA is powerful and effi-
cient: the majority of queries find matching resources just
two or three hops away, and 90% of them are answered
with at least one resource by probing less than 4% of the
nodes. These features let us assert that scalability would
not be a hard issue for PROSA. Finally, the processing
cost needed to obtain at least one matching resource is
many times lower in PROSA than in SETS and GES, As
showed in [2] and [1], both systems are able to obtain a
recall higher than 90% with a processing cost not lesser
than 50%. This means that half of the network should be
probed in order to obtain a relevant amount of matching
resources, and this would be practically unfeasible in very
large networks.

V1. CONCLUSIONS AND FUTURE WORK

PROSA is a P2P system mainly inspired by social net-
works and behaviours. Topological properties of PROSA
suggest that it naturally evolves to a small-world network,
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with a very short average path length and a high clustering
coefficient. This PROSA emerging behaviour is exploited
in order to implement a fast and efficient query routing
algorithm. Results about query efficiency are confirmed
by simulation results reported. Moreover, in this paper a
comparison of PROSA with other recent algorithms for
P2P semantic resources organisation (such as SETS [1]
and GES [2]) is presented.

Future work includes deeply examining the internal
structure of PROSA networks and studying the emergence
of communities of similar peers.
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