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Abstract

In this paper we address the decision problem for a fragment of unquantified formulae of real analysis,
which, besides the operators of Tarski’s theory of reals, includes also strict and non-strict predicates
expressing comparison, monotonicity, concavity, and convexity of continuous real functions over possibly
unbounded intervals.

The decision result is obtained by proving that a formula of our fragment is satisfiable if and only if it
admits a parametric “canonical” model, whose existence can be tested by solving a suitable unquantified
formula, expressed in the decidable language of Tarski’s theory of reals and involving the numerical
variables of the initial formula plus various other parameters.

This paper generalizes a previous decidability result concerning a more restrictive fragment in which
predicates relative to infinite intervals or stating strict concavity and convexity were not expressible.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Formalization of mathematics in computerized environments has received increasing attention
in the last few years, in part under the impulse of applications in program and hardware
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verification. This, in particular, is the case for the real numbers and real analysis, due to their
important applications in the verification of floating point hardware and hybrid systems. In this
connection, among others, we cite the work on theorem proving with the real numbers using
a version of the HOL theorem prover (Harrison, 1998), the mechanization of real analysis
in Isabelle/HOL (Fleuriot, 2000), in PVS (Gottliebsen, 2001), and with the interactive proof
system IMPS (Guttman and Thayer, 1993), the ongoing efforts with the Mizar system (Bonarska,
1990; Muzalewski, 1993), the attempt to formalize Cauchy’s integral theorem and integral
formula in the EtnaNova proof-verifier (Schwartz et al., in preparation; Cantone et al., 2003;
Omodeo and Schwartz, 2002), the extension of symbolic computation tools with some theorem
proving capabilities (see, for instance, Analytica (Clarke and Zhao, 1992; Bauer et al., 1998) and
Mathpert (Beeson, 1990)), and so on.

To keep within reasonable limits the amount of details that a user must provide to a verification
system in proof sessions, it is necessary that the verifier has a rich endowment of decision
procedures, capable of formalizing “obvious” deduction steps. Thus, a proof verifier for real
analysis should include in its inferential kernel a decision procedure for Tarski’s elementary
theory of reals (Tarski, 1951) as well as efficient decision tests for more specialized subtheories
such as the existential theory of reals (Heintz et al., 1993), the theory of bounded and stable
quantified constraints (Ratschan, in press), and other even more specific classes of constraints.

In some situations, one may also need to reason about real functions, represented in the
language as interpreted or uninterpreted function symbols.1 However, one must be aware that
the existential theory of reals extended with the interpreted symbols log 2, π , ex , and sin x is
undecidable (Richardson, 1968). On the other hand, it has been shown in Macintyre and Wilkie
(1996) that the first-order theory of the real numbers extended with the exponential function
ex is decidable, provided that Schanuel’s conjecture in transcendental number theory holds
(Chudnovsky, 1984, Chapter 3, pp. 145–176).

The existential theory of reals has been extended in Cantone et al. (1987) with uninterpreted
continuous function symbols, function sum, function point evaluation, and with predicates
expressing comparison, monotonicity (strict and non-strict) and non-strict convexity of functions.
More precisely, the language considered there, denoted as RMCF (theory of Reals with
Monotone and Convex Functions), consists of the propositional combinations of atoms of the
following form:

t1 = t2, t1 > t2,
F1 = F2, F1 > F2,

Up(F)[t1,t2], Strict Up(F)[t1,t2],
Down(F)[t1,t2], Strict Down(F)[t1,t2],

Convex(F)[t1,t2], Concave(F)[t1,t2],

where the t’s denote numerical expressions (built up from real constants and variables by means
of the standard arithmetic operators) and the F’s denote functional expressions (built up from
function symbols by means of the additive arithmetic operator, where function symbols are
supposed to range over continuous real functions). In particular, functional predicates of the form
F1 = F2 and F1 > F2 refer to the whole real axis, whereas the remaining functional predicates
are restricted to given bounded closed intervals.

1 Interpreted function symbols have a predefined interpretation (e.g., the exponential and the sine functions, ex and
sin x , respectively), whereas uninterpreted function symbols have no predefined meaning attached to them and therefore
they can be interpreted freely (e.g. the “generic” function symbols f and g).
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In this paper a more expressive extension of RMCF is considered and proved to be decidable.
More specifically, the extended theory, denoted by RMCF+, includes the same predicates and
constructs as RMCF plus the following new predicates:

Strict Convex(F)[t1,t2], Strict Concave(F)[t1,t2],

with the obvious intended meaning. Also, in RMCF+, most of the predicates can be restricted
to either bounded or unbounded closed intervals. The only exception is the predicate F1 > F2,
which, for technical reasons, can only be restricted to bounded intervals.

Our decidability result will be obtained by exhibiting a chain of four effective and satisfiability
preserving reduction steps which, starting from an initial formula ϕ of RMCF+, produces at the
end another formula ϕ with no function symbols, expressed in the unquantified language of
Tarski’s theory of reals and involving the numerical variables of ϕ plus various other parameters.
Since ϕ and ϕ are equisatisfiable, it is possible to establish whether ϕ is satisfiable by testing
for satisfiability the (syntactically) simpler formula ϕ, using any decision procedure for Tarski’s
existential theory of reals (cf. Heintz et al., 1993).

To be a little bit more specific, our result is based on the fact that an RMCF+-formula
ϕ is satisfiable if and only if it admits a parametric “canonical” model, which can be built
up by suitably enriching any real model of the associated function-free formula ϕ. As we
will see, canonical models map function symbols into piecewise linear functions, perturbed
by quadratic or exponential functions. The technique of using piecewise linear functions to
decide the satisfiability problem for a fragment of real analysis was originally introduced in
Cantone et al. (1987). Here we extend it by allowing perturbations with quadratic and exponential
functions, so as to be able to decide also formulae involving Strict Convex and Strict Concave
literals, over any interval.

Our work is somewhat related to the quite systematic study in Friedman and Seress (1989,
1990) of the decision problem in elementary analysis for sentences of the form (∀ f ∈ F)ϕ, where
F is a family of functions from R into R, or from I = [0, 1] into I , and ϕ is a sentence involving
the predicate symbols >, <, = on R (or I ), and the unary function symbol f . Depending on
the family F and the form of the sentence ϕ, various decidability and undecidability results are
provided in Friedman and Seress (1989, 1990). In particular, when F is the family of continuous,
or differentiable, or infinitely many times differentiable, or analytic functions, and ϕ is a Σ1- or
Π1-sentence,2 then (∀ f ∈ F)ϕ is decidable. In addition, if F is the set of continuous and strictly
monotone increasing (decreasing) functions, then (∀ f ∈ F)ϕ is decidable for any first-order
sentence ϕ involving the unary function symbol f .

In particular, our result is comparable with the class of formulae (∀ f ∈ F)ϕ studied in
Friedman and Seress (1989) in the case in which ϕ is a Π1-sentence and F is the family of
continuous functions on R. Such a class is much less expressive than the ones studied in Cantone
et al. (1987) and in the present paper. This is immediately evident on observing that its decision
problem can readily be stated as the satisfiability problem for propositional combinations of
atoms of the following simple forms:

x1 = x2, x1 > x2, f (x1) = x2,

where x1, x2 denote numerical variables and f is the only function symbol allowed.

2 We recall that Σ1- and Π1-sentences have respectively the forms (∃x1) · · · (∃xk )ϕ0 and (∀x1) · · · (∀xk )ϕ0, where ϕ0
is quantifier-free.
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The paper is organized as follows. In Section 2 we give the precise syntax and semantics of
the theory RMCF+. A satisfiability test for RMCF+ is presented in Section 3 and its soundness
is proved in Section 4. Finally, in Section 5 we draw our conclusions and hint at some possible
extensions. An appendix on convex functions concludes the paper.

2. The language RMCF+: Syntax and semantics

In this section we introduce the language RMCF+ (augmented theory of Reals with Monotone
and Convex Functions) and define its intended semantics.

2.1. Syntax

The language RMCF+ has two types of symbols, namely numerical variables, denoted by
x, y, . . ., and unary function symbols, denoted by f, g, . . .. Numerical variables are supposed
to range over the set R of real numbers, whereas function symbols range over continuous real
functions on R.

In addition, RMCF+ includes the interpreted numerical constants 0 and 1 and the interpreted
function symbols 0 and 1.

The language also includes two distinguished symbols, −∞,+∞, which are restricted to
occur only within “range defining” parameters, as stated in the following definitions.

Definition 1. NUMERICAL TERMS are defined recursively as follows:

– every numerical variable x, y, . . . or constant 0,1 is a numerical term;
– if t1, t2 are numerical terms, then so are (t1 + t2), (t1 − t2), (t1 · t2), and (t1/t2);
– if t is a numerical term and f is a function symbol, then f (t) is a numerical term.

An EXTENDED NUMERICAL VARIABLE (resp. TERM) is a numerical variable (resp. term) or one
of the symbols −∞ and +∞.

FUNCTIONAL TERMS are defined recursively as follows:

– every uninterpreted function symbol f, g, . . . or interpreted function symbol 0 and 1 is a term;
– if F1,F2 are functional terms, then so are (F1 + F2) and (F1 − F2).

Definition 2. An ATOMIC FORMULA or ATOM of RMCF+ is an expression having one of the
following forms:

t1 = t2, t1 > t2
(F1 = F2)[T1,T2], (F1 > F2)[t1,t2]

Up(F1)[T1,T2], Strict Up(F1)[T1,T2],

Down(F1)[T1,T2], Strict Down(F1)[T1,T2],

Convex(F1)[T1,T2], Strict Convex(F1)[T1,T2],

Concave(F1)[T1,T2], Strict Concave(F1)[T1,T2],

where t1, t2 stand for numerical terms, F1,F2 stand for functional terms, and T1, T2 stand for
extended numerical terms such that T1 6= +∞ and T2 6= −∞.

We will freely write t1 ≤ t2 (resp. t1 ≥ t2) as a shorthand for t1 < t2 ∨ t1 = t2 (resp.
t1 > t2 ∨ t1 = t2).

Definition 3. A FORMULA of RMCF+ is any propositional combination of atoms by means of
logical connectives such as ∧,∨,¬,−→, and so on.
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Remark 1. Notice that explicit quantification, either existential or universal, is not allowed in
the language RMCF+, and thus first-order logic over real closed fields is not captured by the
fragment RMCF+. �

For any RMCF+-formula ϕ, we denote by Num(ϕ) and Fun(ϕ) the collections of numerical
and function symbols occurring in ϕ, respectively.

2.2. Semantics

Now we define the intended semantics of RMCF+.

Definition 4. A (REAL) ASSIGNMENT M for the language RMCF+ is a map defined over terms
and formulae of RMCF+ as follows:

Definition of M over RMCF+-terms.

– Mx ∈ R, for every numerical variable x ;
– M0 = 0, M1 = 1, M(+∞) = +∞, and M(−∞) = −∞;
– M f is a continuous real function over R;
– M0 and M1 are respectively the null function and the constant function of value 1, i.e.
(M0)(r) = 0 and (M1)(r) = 1, for every r ∈ R;

– M(t1 ⊗ t2) = Mt1 ⊗Mt2, for every composite numerical term t1 ⊗ t2, where ⊗ ∈

{+,−, ·, / };
– M( f (t)) = (M f )(Mt), for every function symbol f and numerical term t ;
– M(F1 ⊕ F2) is the real function (MF1)⊕ (MF2), where ⊕ ∈ {+,−}, i.e.
(M(F1 ⊕ F2))(r) = (MF1)(r)⊕ (MF2)(r), for every r ∈ R.

Definition of M over RMCF+-formulae.

(In the following, t1, t2 will stand for numerical terms, T1, T2 for extended numerical terms, and
F1,F2 for functional terms.)

– M(t1 = t2) = true, iff Mt1 = Mt2;
– M(t1 > t2) = true, iff Mt1 > Mt2;
– M(F1 > F2)[t1,t2] = true, iff either Mt1 > Mt2, or Mt1 ≤ Mt2 and (MF1)(r) > (MF2)(r),

for every r ∈ [Mt1,Mt2];
– M(F1 = F2)[T1,T2] = true, iff either MT1 > MT2, or MT1 ≤ MT2 and (MF1)(r) = (MF2)(r)

for every r ∈ [MT1,MT2]
3;

– MUp(F1)[T1,T2] = true (resp. MStrict Up(F1)[T1,T2] = true), iff either MT1 ≥ MT2, or
MT1 < MT2 and the function MF1 is monotone non-decreasing (resp. strictly increasing) in
the interval [MT1,MT2];

– MDown(F1)[T1,T2] = true (resp. MStrict Down(F1)[T1,T2] = true), iff either MT1 ≥ MT2, or
MT1 < MT2 and the function MF1 is monotone non-increasing (resp. strictly decreasing) in
the interval [MT1,MT2];

– MConvex(F1)[T1,T2] = true (resp. MStrict Convex(F1)[T1,T2] = true), iff either MT1 ≥ MT2,
or MT1 < MT2 and the function MF1 is convex (resp. strictly convex) in the interval
[MT1,MT2];

3 For simplicity, we are using the interval notation [α, β] even for the cases in which α = −∞ and/or β = +∞.
Furthermore, we are assuming that −∞ < r < +∞, for every r ∈ R.
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– MConcave(F1)[T1,T2] = true (resp. MStrict Concave(F1)[T1,T2] = true), iff either MT1 ≥

MT2, or MT1 < MT2 and the function MF1 is concave (resp. strictly concave) in the interval
[MT1,MT2];

– logical connectives are interpreted in the standard way; thus, for instance, M(ϕ1 ∧ ϕ2) =

Mϕ1 ∧Mϕ2, M(ϕ1 ∨ ϕ2) = Mϕ1 ∨Mϕ2, and so on, for all RMCF+-formulae ϕ1 and ϕ2.

Let ϕ be an RMCF+-formula and let M be a real assignment for the language RMCF+. We
say that M is a (REAL) MODEL for ϕ, provided that Mϕ = true. If ϕ has a model, then it is
RMCF+-SATISFIABLE (or just SATISFIABLE), otherwise it is UNSATISFIABLE. If ϕ is true in
every RMCF+-assignment, then ϕ is an RMCF+-THEOREM (or just a THEOREM).

Remark 2. Stated in a slightly more standard way, an RMCF+-formula ϕ is RMCF+-satisfiable
if its existential closure ϕ∃ is satisfiable in the standard model of R, whereas it is RMCF+-true
if its universal closure ϕ∀ is satisfiable in the standard model of R. For the sake of completeness,
we recall that given a formula ϕ involving the free variables x1, . . . , xn , the formulae ϕ∃ and ϕ∀

are respectively defined as (∃x1) · · · (∃xn)ϕ and (∀x1) · · · (∀xn)ϕ. �

Let ϕ1 and ϕ2 be RMCF+-formulae. We say that ϕ1 and ϕ2 are EQUISATISFIABLE if either
both of them are unsatisfiable, or both of them are satisfiable. In addition, we say that ϕ1 and ϕ2
are EQUIVALENT if they have the same RMCF+-models.

Finally, the SATISFIABILITY PROBLEM for RMCF+ (abbreviated s.p.) is the problem
of determining whether any given RMCF+-formula is satisfiable or not; likewise, the
THEOREMHOOD PROBLEM for RMCF+ is the problem of determining whether any given
RMCF+-formula is a theorem of RMCF+ or not.

Plainly the s.p. and the theoremhood problem for RMCF+ are equivalent. Indeed, a formula
ϕ of RMCF+ is satisfiable if and only if its negation ¬ϕ (which is an RMCF+-formula) is not a
theorem of RMCF+.

We will solve the s.p. for RMCF+ by exhibiting an algorithmic test which not only recognizes
the satisfiability of RMCF+-formulae, but also produces descriptions of RMCF+-models in the
case of satisfiable RMCF+-formulae.

2.3. A few remarks on the expressivity of the language RMCF+

First of all, we remark that the choice of including in the language RMCF+ only the
interpreted numerical constants 0 and 1 and the functional constants 0 and 1 is somewhat
arbitrary. Indeed, any rational numerical constant and any rational constant function can easily
be expressed in RMCF+.

Concerning integer numerical constants, let p be any integer. If p > 0 then p can be expressed
by the numerical term 1+ · · · + 1︸ ︷︷ ︸

p times

, whereas if p < 0 then it can be expressed by the term

0− (1+ · · · + 1︸ ︷︷ ︸
|p| times

). Plainly, every rational number p/q , where p and q 6= 0 are integers, is readily

expressible by a numerical term of the language RMCF+, since RMCF+ allows the formation
of the quotient of any two numerical terms.

Rational constant functions can be expressed as follows. Let r = p/q be a rational number,
where p and q 6= 0 are integers. Then, it is an easy matter to check that a function symbol f is
constrained to be the constant function r by the following RMCF+-formula, which for later use
we denote by Is constant( f, r):
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Up( f )[−∞,+∞] ∧ Down( f )[−∞,+∞] ∧ f (x) = r,

where x is any numerical variable.
We also remark that we could have left out from the language RMCF+ even the numerical

constants 0, 1, and the functional constants 0, 1. Indeed, these are easily expressed as z0, z1, f0,
and f1, respectively, by the following RMCF+-conjunction:

z0 = z0 + z0 ∧ z1 = z1 · z1 ∧ z1 6= z0 ∧ Is constant( f0, z0) ∧ Is constant( f1, z1).

Concerning uninterpreted constants, numerical ones are readily available as numerical
variables, whereas constant functions are expressed by RMCF+-formulae of the form
Is constant( f, z).

Next, we give a few examples of theorems which could be proved automatically by means of
a decision test for RMCF+.

Example 1. A strictly convex curve and a concave curve defined over the same interval can meet
in at most two points.

A formalization of the above statement is the universal closure of the following formula:(
Strict Convex( f )[T1,T2] ∧ Concave(g)[T1,T2] ∧

3∧
i=1

f (xi ) = g(xi )

∧

3∧
i=1

T1 ≤ xi ≤ T2

)
−→ (x1 = x2 ∨ x1 = x3 ∨ x2 = x3),

whose theoremhood can be tested by showing that the following RMCF+-formula is
unsatisfiable:

Strict Convex( f )[T1,T2] ∧ Concave(g)[T1,T2] ∧

3∧
i=1

f (xi ) = g(xi )

∧

3∧
i=1

T1 ≤ xi ≤ T2 ∧ x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3. �

A second example is:

Example 2. If g is a linear function, then a function f defined over the same domain of g is
strictly convex if and only if f + g is strictly convex.

Let Linear( f )[T1,T2] be a new predicate standing for

Convex( f )[T1,T2] ∧ Concave( f )[T1,T2].

Notice that if M is a real assignment for RMCF+, then M Linear( f )[T1,T2] = true if and only if
the function M f is linear in the interval [MT1,MT2].4 Therefore the statement of Example 2 is
formalized by the universal closure of the following formula:

Linear(g)[T1,T2] −→
(
Strict Convex( f )[T1,T2]←→ Strict Convex( f + g)[T1,T2]

)
,

4 Likewise, a constant function f can be characterized by the formula Up( f )[T1,T2]
∧ Down( f )[T1,T2]

.
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whose theoremhood is equivalent to the unsatisfiability of the following RMCF+-formula:

Linear(g)[T1,T2] ∧ ¬
(
Strict Convex( f )[T1,T2]←→ Strict Convex( f + g)[T1,T2]

)
. �

Another more interesting example is the following:

Example 3. Let f and g be two real functions which take the same values at the endpoints of a
closed interval [a, b]. Let us also assume that f and g are respectively strictly convex and linear
in [a, b]. Then f (c) < g(c) holds at each internal point c of the interval [a, b].

A possible formalization of the above statement is given by the universal closure of the formula:(
Strict Convex( f )[x1,x2]∧ Linear(g)[x1,x2] ∧

2∧
i=1

f (xi ) = g(xi )

)
−→ (∀x)(x1 < x < x2 −→ f (x) < g(x)),

which, by way of straightforward quantifier manipulations, is logically equivalent to the universal
closure of the formula(

Strict Convex( f )[x1,x2]∧ Linear(g)[x1,x2] ∧

2∧
i=1

f (xi ) = g(xi )

)
−→ (x1 < x < x2 −→ f (x) < g(x)),

whose theoremhood is in turn equivalent to the unsatisfiability of the following RMCF+-
formula:

Strict Convex( f )[x1,x2]∧ Linear(g)[x1,x2] ∧

2∧
i=1

f (xi ) = g(xi )

∧ x1 < x ∧ x < x2 ∧ ¬( f (x) < g(x)). �

We stress the fact that one cannot expect that any deep theorem of real analysis can be directly
expressed in the language RMCF+, and therefore automatically proved. Indeed, our result is to
be regarded as just one more step towards the mechanization of the “obvious”, which is basic for
the realization of powerful interactive proof verifiers in which the user assumes control only for
the more challenging deduction steps (such as the instantiation of quantified variables), otherwise
leaving the burden of the verification of small details to the system.

The rest of the paper will be devoted to the presentation of a satisfiability test for RMCF+.

3. A satisfiability test for RMCF+

We shall prove our main decidability result via a series of satisfiability preserving reduction
steps which will reduce the s.p. for RMCF+ to the s.p. for Tarski’s existential theory of reals.5

From the decidability of Tarski’s (existential) theory of reals (cf. Tarski (1951) and Heintz et al.
(1993)), the decidability of RMCF+ then follows immediately.

We use the following reduction steps:

(1) reduction to conjunctions of basic literals (first normal form);

5 We recall that Tarski’s theory of reals is the collection of true sentences about real numbers in the first-order language
with individual variables, the constants 0 and 1, addition, multiplication, and equality.
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(2) negative and dual literals removal (second normal form);
(3) explicit evaluation of functions over domain variables and guessing of equalities and

inequalities among domain variables6 (third normal form);
(4) functional literals removal (fourth normal form).

The purpose of the first two reduction steps is to simplify RMCF+-formulae from a pure
syntactical point of view, by eliminating nested terms and reducing complex formulae to flat
conjunctions (first normal form), and by eliminating negative literals as well as literals of type
Down, Strict Down, Concave, and Strict Concave, which can readily be expressed by literals of
the remaining types (second normal form).

Numerical variables, which occur as arguments of function symbols or as interval bounds,
play an important role in the third normal form. Such variables are called domain variables. In
the third normal form, all function symbols need to be evaluated over all domain variables and,
additionally, all possible equalities and inequalities among domain variables need to be guessed
(through a very large disjunction). As will be argued later, such a reduction step may be very
expensive and therefore needs particular attention, to keep unnecessary combinatorial explosions
under control.

Knowledge of all equalities and inequalities which hold among the domain variables is very
important for the fourth reduction step, which eliminates from a given conjunction in third normal
form all functional literals, namely the ones of type

y = f (x), ( f = g + h)[z1,z2], ( f > g)[w1,w2], Up( f )[z1,z2],

Strict Up( f )[z1,z2], Convex( f )[z1,z2], Strict Convex( f )[z1,z2],

without affecting satisfiability. All such literals are eliminated by expressing them by means of
elementary Tarski’s relationships among the functional images of the (finitely many) domain
variables. Since such relationships can be tested for satisfiability by any decision procedure for
Tarski’s existential theory of reals, decidability of the theory RMCF+ follows.

3.1. First reduction step: Normalization

The first reduction step eliminates nested terms and complex boolean combinations of literals
in favor of conjunctions of literals. It is based on the following general normalization process (cf.
Cantone et al. (1987)).

Let T be an unquantified first-order theory, with equality =, individual variables x1, x2, . . .,
function symbols f1, f2, . . ., and predicate symbols P1, P2, . . ..

Definition 5. A formula ϕ of T is a NORMALIZED FLAT CONJUNCTION if it is a conjunction of
literals of the kinds:

x = y, x 6= y, x = f (x1, . . . , xn), P(x1, . . . , xn), ¬P(x1, . . . , xn),

where x, y, x1, . . . , xn are variables, f stands for a function symbol, and P stands for a predicate
symbol.

The following result is elementary:

6 Cf. Definition 8.
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Lemma 1. Let ϕ be a formula of T . Then there is an effective procedure for constructing a
formula of the form ψ1 ∨ · · · ∨ ψk such that:

– each ψi is a normalized flat conjunction, for i = 1, . . . , k; and
– ϕ and ψ1 ∨ · · · ∨ ψk are equisatisfiable.

Proof. See Lemmas 2.2 and 2.4 in Cantone et al. (1987). �

In view of the previous lemma, if F is the collection of all normalized flat conjunctions of T ,
then we have:

Corollary 1. The s.p. for T is reducible to the s.p. for F, in the sense that a solution to the latter
yields a solution to the former. �

We now go back to the language RMCF+.

Definition 6 (First Normal Form). An RMCF+-formula ϕ is in FIRST NORMAL FORM if it is a
conjunction involving only literals of the following types:

x = y + w, x = y · w,
x > y, y = f (x),

±( f = g + h)[z1,z2], ±( f > g)[w1,w2],

±Up( f )[z1,z2], ±Strict Up( f )[z1,z2],

±Down( f )[z1,z2], ±Strict Down( f )[z1,z2],

±Convex( f )[z1,z2], ±Strict Convex( f )[z1,z2],

±Concave( f )[z1,z2], ±Strict Concave( f )[z1,z2],

(1)

where x, y, w,w1, w2 stand for numerical variables or constants, z1, z2 for extended numerical
variables,7 and f, g, h for function symbols, and where, for an atom A, the expression ±A
denotes both literals A and ¬A.

By RMCF+1 we denote the collection of all RMCF+-formulae in first normal form.

Corollary 1 and the equivalences

( f1 = f2 − f3)[z1,z2] ←→ ( f2 = f1 + f3)[z1,z2],

( f1 = f2)[z1,z2] ←→ ( f1 = f2 + 0)[z1,z2],

t1 = t2 − t3 ←→ t2 = t1 + t3,
t1 = t2 ←→ t1 = t2 + 0,

t1 = t2/t3 ←→ (t3 6= 0) ∧ (t2 = t1 · t3),
t1 6= t2 ←→ (t2 > t1) ∨ (t1 > t2),
t1 ≯ t2 ←→ (t1 = t2) ∨ (t2 > t1),

easily yield the following result, which summarizes the first reduction step:

Lemma 2. The s.p. for RMCF+ is reducible to the s.p. for RMCF+1 . �

Hence, it will be sufficient to solve the s.p. for RMCF+1 -conjunctions.

7 We recall that from Definition 2 we have z1 6= +∞ and z2 6= −∞.



D. Cantone et al. / Journal of Symbolic Computation 41 (2006) 763–789 773

3.2. Second reduction step: Removal of negative literals and dual literals

The second normal form results on eliminating negative literals as well as literals of types
Down, Strict Down, Concave, and Strict Concave from formulae in first normal form.

Definition 7 (Second Normal Form). An RMCF+1 -conjunction ϕ is in SECOND NORMAL FORM

if it is a conjunction involving only positive literals of the following types:

x = y + w, x = y · w,
x > y, y = f (x),

( f = g + h)[z1,z2], ( f > g)[w1,w2],

Up( f )[z1,z2], Strict Up( f )[z1,z2],

Convex( f )[z1,z2], Strict Convex( f )[z1,z2],

(2)

where x, y, w,w1, w2 stand for numerical variables or constants, z1, z2 for extended numerical
variables, and f, g, h for function symbols.

We denote by RMCF+2 the collection of all RMCF+-formulae in second normal form.

Let ϕ1 be an RMCF+1 -conjunction. By, firstly, repeatedly applying the rewrite rules in Block
1 of Table 1 to ϕ1 and, secondly, the rewrite rules in Block 2, one obtains a formula ϕ′1 not
involving either negated functional literals or literals of type Down, Strict Down, Concave, and
Strict Concave. Hence, by using simple arithmetic manipulations and transforming to disjunctive
normal form, it can easily be seen that ϕ′1 can be effectively transformed into a disjunction of
RMCF+2 -conjunctions. Thus, we can conclude that

Lemma 3. The s.p. for RMCF+1 is reducible to the s.p. for RMCF+2 . �

3.3. Third reduction step: Explicit evaluation of functions over domain variables and guessing
of all equalities and inequalities among domain variables

Numerical variables, which occur as arguments of function symbols or as interval bounds,
play an important role in the third normal form. Such variables are called domain variables (see
the definition below). In the third normal form, all function symbols need to be evaluated over
all domain variables and, additionally, all possible equalities and inequalities among domain
variables need to be “guessed” by means of a very large disjunction.

Equalities and inequalities among the domain variables will be used in the fourth reduction
step to express all functional literals in terms of elementary relationships among the functional
images of the domain variables.

For the sake of accuracy, we give the following definitions.

Definition 8. Let ϕ be an RMCF+2 -conjunction. A DOMAIN VARIABLE for ϕ is any numerical
variable which either occurs in ϕ as the argument of some function symbol (for instance, x in
y = f (x)) or occurs as a range parameter within some literal in ϕ of the types ( f = g + h)[z1,z2],
( f > g)[w1,w2], Up( f )[z1,z2], Strict Up( f )[z1,z2], Convex( f )[z1,z2], or Strict Convex( f )[z1,z2].

The collection of the domain variables for ϕ is denoted by Dom(ϕ).

Then the third normal form is defined as follows:

Definition 9 (Third Normal Form). An RMCF+2 -conjunction ϕ is in THIRD NORMAL FORM if
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Table 1
Rewrite rules for transforming RMCF+1 -conjunctions into second normal form formulae

Block 1

¬( f = g + h)[z1,z2] 7→ 11 ∧ (y1 6= y2)

¬( f > g)[w1,w2] 7→ 1′1 ∧ y1 ≤ y2
¬Up( f )[z1,z2] 7→ 12 ∧ y1 > y2

¬Strict Up( f )[z1,z2] 7→ 12 ∧ y1 ≥ y2
¬Down( f )[z1,z2] 7→ 12 ∧ y1 < y2

¬Strict Down( f )[z1,z2] 7→ 12 ∧ y1 ≤ y2
¬Convex( f )[z1,z2] 7→ 13 ∧ A > B

¬Strict Convex( f )[z1,z2] 7→ 13 ∧ A ≥ B
¬Concave( f )[z1,z2] 7→ 13 ∧ A < B

¬Strict Concave( f )[z1,z2] 7→ 13 ∧ A ≤ B

Block 2

Down( f )[z1,z2] 7→ ( f + g = 0)[z1,z2] ∧ Up(g)[z1,z2]
Strict Down( f )[z1,z2] 7→ ( f + g = 0)[z1,z2] ∧ Strict Up(g)[z1,z2]

Concave( f )[z1,z2] 7→ ( f + g = 0)[z1,z2] ∧ Convex(g)[z1,z2]
Strict Concave( f )[z1,z2] 7→ ( f + g = 0)[z1,z2] ∧ Strict Convex(g)[z1,z2]

where

11≡ (z1 ≤ x ≤ z2) ∧ y1 = f (x) ∧ y2 = g(x)+ h(x)
1′1≡ (w1 ≤ x ≤ w2) ∧ y1 = f (x) ∧ y2 = g(x)
12≡ (z1 ≤ x1 < x2 ≤ z2) ∧

∧2
i=1 yi = f (xi )

13≡ (z1 ≤ x1 < x2 < x3 ≤ z2) ∧
∧3

i=1 yi = f (xi )

A≡
y2 − y1
x2 − x1

B ≡
y3 − y1
x3 − x1

and where the x’s and y’s are newly introduced variables.

(a) for every domain variable x and function symbol f occurring in ϕ, a literal of the form
y = f (x) is present in ϕ, for some numerical variable y;

(b) the domain variables of ϕ lie on a CHAIN in ϕ w.r.t. the relation <, in the sense that
if x1, . . . , xn are the distinct domain variables of ϕ, then there exists a permutation π of
(1, . . . , n) such that the literals xπ(i) < xπ(i+1) are in ϕ, for i = 1, . . . , n − 1.

We denote by RMCF+3 the collection of all RMCF+-conjunctions in third normal form.

Let ϕ2 be an RMCF+2 -conjunction. Condition (a) of Definition 9 can easily be forced by
adding to ϕ2, if needed, a literal of the form y = f (x), for every domain variable x and function
symbol f in ϕ2, with y standing for a newly introduced variable. Let ϕ′2 be the resulting formula.
It is clear that ϕ2 and ϕ′2 are equisatisfiable. The size of ϕ′2 is at most quadratic in the size of ϕ2.

Next, for any finite set S, let Eq(S) and Ch(S) be, respectively, the collection of all equivalence
relations on S and the collection of all chains on S.8

8 Given a finite set S, by a chain on S we mean any binary relation ≺ of cardinality |S| − 1 whose transitive closure is
a total ordering on S.



D. Cantone et al. / Journal of Symbolic Computation 41 (2006) 763–789 775

Let ϕ′′2 be the formula∨
∼ in Eq(Dom(ϕ′2))

≺ in Ch(Dom(ϕ̃′2))

(
ϕ̃′2 ∧

∧
x, y ∈ Dom(ϕ̃′2)
such that x ≺ y

x < y

)
,

where ϕ̃′2 denotes the formula obtained by identifying ∼-equivalent variables in ϕ′2.
It can be checked that the conjunction

ϕ̃′2 ∧
∧

x, y ∈ Dom(ϕ̃′2)
such that x ≺ y

x < y (3)

is in third normal form, for every ∼ in Eq(Dom(ϕ′2)) and every ≺ in Ch(Dom(ϕ̃′2)). Moreover, it
can easily be verified that ϕ′2 and ϕ′′2 are equisatisfiable. Hence, we have:

Lemma 4. The s.p. for RMCF+2 is reducible to the s.p. for RMCF+3 . �

It should be noticed that the third reduction step is particularly expensive and special care
must be taken in implementing it to limit unnecessary combinatorial explosion. Indeed, for a
given finite set S of size n, there are exactly Bn distinct equivalence relations over S, where Bn is
the n-th Bell number. Additionally, the number of all chains on a set S of size n is n!. Therefore,
in the worst we can expect that the above reduction of a RMCF+2 -conjunction ϕ with n distinct
domain variables can generate a formula involving O(n! · Bn) = O(n! · n · en) disjuncts of type
(3),9 each of which must first undergo the fourth reduction step, as described in the next section,
and then subjected to a decision test for Tarski’s existential theory of reals.

In practice, inequality literals present in the initial RMCF+2 -conjunction ϕ can cut down
considerably the number of disjuncts of type (3) that need to be generated in the reduction phase
to the third normal form. This is briefly illustrated with the following simple example. Let ϕ be
the following (unsatisfiable) RMCF+2 -conjunction10:

Up( f )[−∞,+∞] ∧ Down( f )[−∞,+∞]
∧ x1 = f (x1) ∧ x3 = f (x3) ∧ z = g(x2) ∧ x1 < x2 ∧ x1 < x3. (4)

Then Dom(ϕ) = {x1, x2, x3}, so that Dom(ϕ) admits the following B3 = 5 distinct equivalence
relations:

{{x1}, {x2}, {x3}}

{{x1}, {x2, x3}}

{{x1, x2}, {x3}}

{{x1, x3}, {x2}}

{{x1, x2, x3}}.

Only the first two equivalence relations are compatible with the inequalities x1 < x2∧x1 < x3 in
ϕ, so that the last three can be discarded. In addition, relatively to the first equivalence relation,

9 We have used the estimate Bn = O(n · en) directly implied by de Bruijn’s asymptotic formula for Bell numbers (cf.
de Bruijn (1981), pp. 102–109).
10 The unsatisfiability of (4) follows immediately on observing that its first four conjuncts imply the equality x1 =

x3 which, together with its last conjunct x1 < x3, yields a contradiction. Furthermore, we recall that the literal
Down( f )[−∞,+∞] in ϕ is to be intended as a shorthand for ( f + g = 0)[−∞,+∞]∧Up(g)[−∞,+∞], for a fresh function
variable g.
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only the two chains x1 < x2 < x3 and x1 < x3 < x2 are compatible with the inequalities
x1 < x2 ∧ x1 < x3, whereas relatively to the second equivalence relation we have only the
compatible chain x1 < x2. Hence (4) is equisatisfiable with the following disjunction of three
RMCF+3 -conjunctions in third normal form:

(ψ ∧ x1 < x2 ∧ x2 < x3) ∨ (ψ ∧ x1 < x3 ∧ x3 < x2) ∨ (ψ{x3/x2} ∧ x1 < x2),

where ψ is the closure of ϕ w.r.t. Definition 9(a) and ψ{x3/x2} is the formula obtained by
replacing all (free) occurrences of x3 in ψ by x2.

We observe that if we had reduced ϕ to third normal form without the above described
optimization, we would have obtained a disjunction of 13 distinct RMCF+3 -conjunctions.

3.4. Fourth reduction step: Removal of functional literals

The last step will reduce the s.p. for RMCF+3 to the s.p. for the unquantified Tarski’s theory
of reals.

This is the more delicate step, since it uses a model-theoretic result needing a quite elaborate
verification. Our reduction is based on the fact that any RMCF+3 -conjunction ϕ3 is satisfiable if
and only if it is satisfied by a “canonical” model “̂ ” in which each function symbol g in ϕ3 is
modeled by a continuous real function ĝ : R→ R having the form:

ĝ(ξ) =


γ

g
0 · `

g
0(ξ)+ α

g
0 · e0(ξ) if ξ ∈ ] −∞, v̂1[

`
g
j (ξ)+ α

g
j · q j (ξ) if ξ ∈ [̂v j , v̂ j+1[, for j = 1, . . . , r − 1

γ
g

r · `
g
r (ξ)+ α

g
r · er (ξ) if ξ ∈ [̂vr ,+∞[,

(5)

where

• v1, v2, . . . , vr are the domain variables of ϕ3, in the order induced by the literals of type x < y
in ϕ3;
• γ

g
0 , γ

g
r and αg

j , for j = 0, 1, . . . , r , are new real parameters associated to the function symbol
g;
• the functions `g

i are linear, for i = 0, 1, . . . , r , and satisfy

· `
g
j−1(̂v j ) = lg

j (̂v j ), for 1 < j < r ,

· γ
g
0 · `

g
0 (̂v1) = `

g
1 (̂v1) and `g

r−1(̂vr ) = γ
g

r · `
g
r (̂vr );

• the functions e0 and er are exponential and satisfy

· e0(̂v1) = 0, and
· er (̂vr ) = 0;

• the functions q j are quadratic and satisfy q j (̂v j ) = q j (̂v j+1) = 0, for j = 1, . . . , r − 1.

In other words, the function ĝ is a piecewise linear function, with junction points at
v̂1, v̂2, . . . , v̂r , exponentially perturbed at intervals ] − ∞, v̂1[ and [̂vr ,+∞[, and quadratically
perturbed at intervals [̂v j , v̂ j+1[, for j = 1, . . . , r − 1.11

The technique of using piecewise linear functions to decide the satisfiability problem for a
fragment of real analysis is drawn from Cantone et al. (1987). Here we extend it by exponential

11 Observe that canonical models, as we have defined them, are closed under addition, but not under multiplication. For
such a reason they are not suited for dealing with literals of the form f = g · h, with f , g, and h function symbols.
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and quadratic perturbations so as to be able to decide also formulae involving Strict Convex
and Strict Concave literals over any interval. Other kinds of perturbations could serve the same
purpose, but we think that the above choice is the most natural.

At this point, a basic question is: how can we test an RMCF+3 -conjunction for satisfiability by
a canonical model?

We will exhibit below a constructive way to associate to any given RMCF+3 -conjunction ϕ3
another formula ϕ′3 in the unquantified language of Tarski’s theory of reals, such that

• if ϕ3 is satisfiable (by any real model), then ϕ′3 is satisfiable; and
• if ϕ′3 is satisfiable, then ϕ3 is satisfiable by a canonical model.

In other words, we will show how to eliminate all functional literals from ϕ3.
More precisely, the fourth reduction step proceeds as follows. Again, let ϕ3 be an RMCF+3 -

conjunction and let v1, . . . , vr be its domain variables in the order induced by the literals of
type x < y in ϕ3. We define an INDEX MAP ind : Dom(ϕ3) ∪ {−∞,+∞} 7−→ {1, 2, . . . , r} as
follows:

ind(z) =

1 if z = −∞
l if z = vl , for some l ∈ {1, . . . , r}
r if z = +∞.

As the domain variables of ϕ3 lie on a chain with respect to the relation <, the intervals
appearing in all functional atoms in ϕ3 of type Up( f )[z1,z2], Strict Up( f )[z1,z2], Convex( f )[z1,z2],
Strict Convex( f )[z1,z2] (with ind(z2) ≤ ind(z1), z1 6= −∞, and z2 6= +∞), ( f > g)[w1,w2] (with
ind(w2) < ind(w1)), and ( f = g + h)[z1,z2] (with ind(z2) < ind(z1)) are mapped either into the
empty set or into a single point by any model which satisfies all literals in ϕ3 of the form x < y.
Hence they are vacuously true in any such model, so that we can drop them from ϕ3, without
affecting satisfiability.

For each domain variable vi and function symbol f , let y f
i be a numerical variable such that

the literal y f
i = f (vi ) is in ϕ3.12 Let us introduce new numerical variables γ f

0 , γ
f

r , and α f
j , with

j = 0, 1, . . . , r , for each function symbol f in ϕ3.
Let ϕ′3 be the conjunction of all arithmetical literals in ϕ3, namely all literals in ϕ3 of type

x = y + w , x = y · w, and x > y. We now show that by further adding suitable arithmetical
literals to ϕ′3, we can turn it into a formula equisatisfiable with ϕ3. This is done as follows.

(1) For each literal x = f (vi ) occurring in ϕ3, with i ∈ {1, . . . , r}, add the literal

x = y f
i (6)

to ϕ′3.

[Clearly, the literal x = y f
i can play the role of the literal x = f (vi ).]

(2) For each literal ( f = g + h)[z1,z2] occurring in ϕ3 and for i ∈ {ind(z1), . . . , ind(z2)} and
j ∈ {ind(z1), . . . , ind(z2)− 1}, add the following literals

y f
i = yg

i + yh
i , (7)

α
f
j = α

g
j + α

h
j (8)

to ϕ′3.

12 By the closure property in Definition 9(a), it is always possible to find such variables y f
i .
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Moreover, if z1 is the constant −∞, add the literals

α
f

0 = α
g
0 + α

h
0 , (9)

γ
f

0 = γ
g
0 + γ

h
0 (10)

to ϕ′3.
Also, if z2 is the constant +∞, add the literals

α
f

r = α
g
r + α

h
r , (11)

γ
f

r = γ
g

r + γ
h
r (12)

to ϕ′3.
[Literals of types (7), (10), and (12) force the linear part of a canonical model f̂ of f

in the interval [̂z1, ẑ2] to be equal to the sum of the linear parts of ĝ and ĥ, according to
(5). Likewise, literals of type (8) and literals of types (9) and (11) do the same job with the
quadratic and the exponential parts, respectively, of the functions f̂ , ĝ, and ĥ.]

(3) For each literal ( f > g)[w1,w2] occurring in ϕ3 and for j ∈ {ind(w1), . . . , ind(w2)− 1}, add
the literals

(y f
j − yg

j ) > |α
f
j | + |α

g
j |, (13)

(y f
j+1 − yg

j+1) > |α
f
j | + |α

g
j | (14)

to ϕ′3.13

Notice that the literals added in this case force the conditions y f
j > yg

j , for j ∈
{ind(w1), . . . , ind(w2)}.

[Literals of types (13) and (14) are intended to force the linear part of f̂ to be far enough
from the linear part of ĝ in the interval [ŵ1, ŵ2], so that even after being perturbed by
quadratic functions, the function f̂ is greater than ĝ in the interval [ŵ1, ŵ2].]

(4) For each monotonicity literal of type Up( f )[z1,z2] or Strict Up( f )[z1,z2] occurring in ϕ3 and
for j ∈ {ind(z1), . . . , ind(z2)− 1}, add the literals

(y f
j+1 − y f

j )
≥/> 4|α f

j | (15)

to ϕ′3, where ≥/> is the relation ≥, in the case of literals of type Up( f )[z1,z2], but is the
relation >, in the case of literals of type Strict Up( f )[z1,z2].

Moreover, if z1 is the constant −∞, then also add the literals

γ
f

0
≥/> 0, (16)

γ
f

0
≥/> α

f
0 (17)

to ϕ′3.
Likewise, if z2 is the constant +∞, then add the literals

γ
f

r
≥/> 0, (18)

α
f

r + γ
f

r
≥/> 0 (19)

to ϕ′3.

13 It should be clear that literals of type (13) and (14) are to be intended as shorthand for suitable numerical RMCF+-
formulae, not involving the absolute value operator. The same remark applies also to literals of type (15).
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Notice that the literals added in this case force the conditions y f
j+1

≥/> y f
j , for

j ∈ {ind(w1), . . . , ind(w2)− 1}.
[Literals of types (15)–(19) force the derivative of f̂ to be non-negative or strictly positive,

whichever must be the case, in the interval [̂z1, ẑ2], according to whether we are dealing with
an Up or a Strict Up literal.]

(5) For each convexity literal of type Convex( f )[z1,z2] or Strict Convex( f )[z1,z2] occurring in ϕ3
and for i ∈ {ind(z1), . . . , ind(z2)−1} and j ∈ {ind(z1)+1, . . . , ind(z2)−1}, add the literals

0 ≥/> α
f

i , (20)

α
f
j ≥

1
4

[
y f

j − y f
j+1 + (y

f
j − y f

j−1 − 4α f
j−1)

v j+1 − v j

v j − v j−1

]
(21)

to ϕ′3. Here ≥/> stands for the relation ≥, in the case of literals of type Convex( f )[z1,z2],
but stands for the relation >, in the case of literals of type Strict Convex( f )[z1,z2].

Moreover, if z1 is the constant −∞, then add the literal

0 ≥/> α
f

0 (22)

to ϕ′3 and, provided that z2 6= v1, also add the literal

y f
2 − y f

1 + 4α f
1

v2 − v1
≥ γ

f
0 − α

f
0 (23)

to ϕ′3.
Likewise, if z2 is the constant +∞, then add the literal

0 ≥/> α
f

r (24)

to ϕ′3 and, provided that z1 6= vr , also add the literal

α
f

r + γ
f

r ≥
y f

r − y f
r−1 − 4α f

r−1

vr − vr−1
(25)

to ϕ′3.
[Literals of types (20), (22), and (24) force the second derivative of f̂ to be piecewise non-

negative or strictly positive in the interval [̂z1, ẑ2], whichever must be the case, according to
whether we are dealing with a Convex or a Strict Convex literal. Instead, the purpose of
literals of types (21), (23), and (25) is to force the left derivative of f̂ to be (strictly) smaller
than or equal to the right derivative on the junction points contained in the interval [̂z1, ẑ2].]

Notice that the formula ϕ′3 constructed by the above steps belongs to Tarski’s existential theory
of reals.

3.5. Decidability of RMCF+

The soundness of the fourth reduction step is entailed by the following lemma, whose proof
will be the main subject of the next section.

Lemma 5. The RMCF+3 -formula ϕ3 is equisatisfiable with ϕ′3. �

An immediate consequence of Lemma 5 is the following reduction result.
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Lemma 6. The s.p. for RMCF+3 is reducible to the s.p. for Tarski’s existential theory of reals. �

The soundness of all reduction steps, proved in Lemmas 2–4 and 6, together with the decidability
of Tarski’s existential theory of reals yields our main result:

Theorem 1. The s.p. for RMCF+ is solvable. �

4. Soundness of the fourth reduction step

In this section we prove Lemma 5, thereby proving the soundness of the fourth reduction step.
Let ϕ3 and ϕ′3 be as in Section 3.4.

4.1. From ϕ3 to ϕ′3

Let us first assume that ϕ3 is satisfied by a real model M.

Remark 3. To enhance readability we write x and f in place of Mx and M f , respectively, for
each numerical variable x and function symbol f in ϕ3. �

Using the model M, we shall construct another real assignment M′ which satisfies ϕ′3. We start
by putting

M′x =Def x, for each numerical variable x in ϕ3.

Observe that all literals in ϕ′3 involving only “old” numerical variables occurring in ϕ3 are
correctly modeled by M′. This is plainly true for those numerical literals also occurring in ϕ3.
Concerning the remaining literals, we notice that if x = f (vi ) is in ϕ3, then x = f (vi ). Likewise,
y f

i = f (vi ), so that x = y f
i , implying that literals in ϕ′3 of type (6) are correctly modeled by M′.

Moreover, the truth in M′ of all literals of the form (7), introduced in ϕ′3 to handle literals of type
( f = g + h)[z1,z2], follows easily from the closure properties of ϕ3 and the fact that M satisfies
ϕ3.

Next we show how to extend M′ over the numerical variables γ f
0 , γ

f
r , and α f

j , for j =
0, 1, . . . , r , introduced in connection with the function symbols f in ϕ3.

As before, let v1, . . . , vr be the distinct domain variables in the order induced by ϕ3. Notice
that from the closure properties of ϕ3, we have v1 < · · · < vr .

Let ξ−1 < ξ0 < · · · < ξr < ξr+1 be fixed real numbers such that ξ−1, ξ0 < v1, ξr , ξr+1 > vr ,
and v j < ξ j < v j+1, for j = 1, . . . , r − 1.

For notational convenience, we put

v0 = ξ−1, vr+1 = ξr+1, y f
0 = f (ξ−1), y f

r+1 = f (ξr+1), for f in Fun(ϕ3).

We also write 1vi =Def vi − vi−1 and 1y f
i =Def y f

i − y f
i−1, for i = 1, . . . , r + 1 and

f ∈ Fun(ϕ3).
For j = 0, 1, . . . , r and f ∈ Fun(ϕ3), let

δ
f
j =Def f (ξ j )−

y f
j + (ξ j − v j )

1y f
j+1

1v j+1

 .
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Fig. 1. Geometric interpretation of the quantities δ f
j .

These quantities have the following geometric interpretation (see Fig. 1). If P f
j denotes the point

(v j , y f
j ), Q f

j denotes the point (ξ j , f (ξ j )), and R f
j denotes the point with abscissa ξ j on the

straight line through P f
j and P f

j+1, then δ f
j is the signed distance of Q f

j from R f
j .

Next, let ε > 0. Define M′ over the variables γ f
0 , γ

f
r , and α f

j , for j = 0, 1, . . . , r , by putting

M′α f
j =Def εδ

f
j , for j = 0, 1, . . . , r , and

M′γ f
i =Def

1y f
i+1

1vi+1
, for i ∈ {0, r}.

It is convenient to extend the notation introduced in Remark 3 to the newly defined variables
too. Thus, we shall denote by α

f
j and γ

f
i the values M′α f

j and M′γ f
i , respectively, with

j = 0, 1, . . . , r and i ∈ {0, r}.
We show next that by a proper choice of the value of ε, the assignment M′ can also be forced

to satisfy all literals in ϕ′3 of types (8)–(25), introduced during the fourth reduction step.

Literals of type (8)–(12). If the literal ( f = g + h)[z1,z2] occurs in ϕ3 and j ∈ {ind(z1), . . . ,

ind(z2)− 1}, then f = g + h holds in [v j , v j+1]. Thus, since ξ j ∈ [v j , v j+1], we have

δ
f
j = δ

g
j + δ

h
j , which implies α f

j = α
g
j + α

h
j . One can show similarly that if z1 = −∞

then α f
0 = α

g
0 + α

h
0 and γ f

0 = γ
g
0 + γ

h
0 , and that if z2 = +∞ then α f

r = α
g
r + α

h
r and

γ
f
r = γ

g
r + γ

h
r . Hence, M′ satisfies all literals in ϕ′3 of type (8)–(12).

Literals of type (13)–(14). If the literal ( f > g)[w1,w2] occurs in ϕ3 and j ∈ {ind(w1), . . . ,

ind(w2)−1}, then f > g holds in [v j , v j+1], so that y f
j − yg

j > 0 and y f
j+1− yg

j+1 > 0.
Hence, if the constant ε > 0 is sufficiently small, then the following inequalities must
hold

|α
f
j | + |α

g
j | = |εδ

f
j | + |εδ

g
j |

= ε ·
(
|δ

f
j | + |δ

g
j |

)
< min

(
(y f

j − yg
j ), (y

f
j+1 − yg

j+1)
)
.
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Therefore all literals in ϕ′3 of type (13)–(14) are also satisfied by M′.
Literals of type (15)–(19). If the literal Up( f )[z1,z2] occurs in ϕ3 and j ∈ {ind(z1), . . .,

ind(z2)−1}, then f is increasing in [v j , v j+1]. Hence,1y f
j+1 = f (v j+1)− f (v j ) ≥ 0.

If 1y f
j+1 = 0, then δ f

j = 0, so that |α f
j | = |εδ

f
j | ≤

1
41y f

j+1 plainly holds. On the

other hand, if1y f
j+1 > 0, then, provided that ε > 0 is sufficiently small, we have again

|α
f
j | = |εδ

f
j | ≤

1
41y f

j+1. Thus, in any case, M′ can be forced to satisfy literals in ϕ′3 of
type (15).

If z1 = −∞, then f is increasing in [v0, v1], so that γ f
0 =

1y f
1

1v1
≥ 0, showing that

literals in ϕ′3 of type (16) are correctly modeled by M′. If1y f
1 = 0, then α f

0 = 0, which

plainly yields γ f
0 ≥ α

f
0 . On the other hand, if 1y f

1 > 0, then, provided that ε > 0 is
small enough, we have

γ
f
0 =

1y f
1

1v1
≥ εδ

f
0 = α

f
0 .

Thus, in any case, provided that ε > 0 is small enough, M′ will also satisfy the literals
in ϕ′3 of type (17).

Likewise, if z2 = +∞, we can show that M′ can be forced to satisfy all literals in ϕ′3
of type (18) and (19), by taking ε > 0 small enough.

The case of literals in ϕ3 of type Strict Up( f )[z1,z2] can be handled similarly.

Literals of type (20)–(25). If the literal Convex( f )[z1,z2] occurs in ϕ3 and i ∈ {ind(z1), . . .,
ind(z2)− 1}, then f is convex on [vi , vi+1]. Hence, since vi < ξi < vi+1, we have

f (ξi )− f (vi )

ξi − vi
≤

f (vi+1)− f (vi )

vi+1 − vi
=
1y f

i+1

1vi+1
,

which implies εδ f
i ≤ 0, proving that M′ satisfies all literals in ϕ′3 of type (20).

In addition, if the literal Convex( f )[z1,z2] occurs in ϕ3 and j ∈ {ind(z1) +

1, . . . , ind(z2)−1}, then f is convex on [v j−1, v j+1]. In order to prove that M′ satisfies
all literals in ϕ′3 of type (21), it is enough to show that

ε

(
δ

f
j + δ

f
j−1

1v j+1

1v j

)
≥

1
4

(
1y f

j
1v j+1

1v j
−1y f

j+1

)
. (26)

As shown above, δ f
j−1, δ

f
j ≤ 0. If δ f

j−1 = δ
f
j = 0, then (26) follows by observing

that the convexity of f and Lemma 7 in the Appendix yield
1y f

j
1v j
≤

1y f
j+1

1v j+1
. On the

other hand, if δ f
j−1 < 0, then, by Lemma 8 in the Appendix,

1y f
j

1v j
<

1y f
j+1

1v j+1
, so that

1y f
j
1v j+1
1v j
−1y f

j+1 < 0. Hence, for ε > 0 sufficiently small, the inequality (26) holds.

The case in which δ f
j < 0 can be handled similarly.

If z1 = −∞, then f is convex on [v0, v1], so that δ f
0 ≤ 0, showing that M′ satisfies

literals in ϕ′3 of type (22). If in addition z2 6= v1, then much as in the previous case it
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can be shown that ε(δ f
0 + 4

δ
f

1
1v2

) ≥
1y f

1
1v1
−

1y f
2

1v2
holds for ε > 0 sufficiently small, so

that also literals in ϕ′3 of type (23) are correctly modeled by M′.
The case in which z2 = +∞ is completely analogous to the previous one.
Finally, literals in ϕ3 of type Strict Convex( f )[z1,z2] can be handled in much the same

way as literals of type Convex( f )[z1,z2].

The preceding discussion implies that, provided that ε > 0 is chosen small enough, the
assignment M′ satisfies ϕ′3.

4.2. The converse: From ϕ′3 to ϕ3

Let us now assume that ϕ′3 is satisfied by a real model M′.
Using M′, we shall construct a canonical model M which satisfies ϕ3. We begin by putting

Mx =Def M′x, for each numerical variable x in ϕ3.

For notational convenience, let y denote the value M′y, for each y ∈ Num(ϕ′3).
We next show how to define M over the function symbols of ϕ3.
For each f ∈ Fun(ϕ3) and i ∈ {1, . . . , r−1}, let s f

i , ε
f

i : [0, 1] −→ R and pi : [vi , vi+1] −→

[0, 1] be the real functions defined by

s f
i (ξ) = y f

i + ξ1y f
i+1, for ξ ∈ [0, 1],

ε
f

i (ξ) = 4α f
i · ξ(1− ξ), for ξ ∈ [0, 1],

pi (η) =
η − vi

1vi+1
, for η ∈ [vi , vi+1],

where, as before, v1, . . . , vr are the distinct domain variables of ϕ3 (in the order induced by ϕ′3)

and 1y f
i+1 and 1vi+1 denote the quantities (y f

i+1 − y f
i ) and (vi+1 − vi ), respectively.

Then, for each f ∈ Fun(ϕ3) define the following real function f over R

f (η) =


y f

1 + α
f
0 (1− eη−v1)− γ

f
0 (v1 − η) if η ∈ ] −∞, v1[

s f
i (pi (η))+ ε

f
i (pi (η)) if η ∈ [vi , vi+1[, i = 1, . . . , r − 1

y f
r + α

f
r (1− evr−η)+ γ

f
r (η − vr ) if η ∈ [vr ,+∞[,

and put

M f =Def f .

It can easily be seen that each function f is continuous in R and differentiable in R \
{v1, . . . , vr }. In addition, f (vi ) = y f

i holds, for i = 1, . . . , r .
We next verify that M satisfies all literals in ϕ3.

Literals of type x = f (vi ). Let the literal x = f (vi ) occur in ϕ3, for some i ∈ {1, . . . , r}.
Then ϕ′3 must contain the literal x = y f

i , so that Mx = x = y f
i = f (vi ) = M( f (vi )),

proving that M satisfies the literal x = f (vi ).
Literals of type ( f = g + h)[z1,z2]. Let the literal ( f = g + h)[z1,z2] occur in ϕ3. We need to

verify that for each η ∈ [Mz1,Mz2] we have:

f (η) = g(η)+ h(η). (27)
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For each i ∈ {ind(z1), . . . , ind(z2)}, the formula ϕ′3 contains the literal y f
i = yg

i + yh
i ,

so that f (vi ) = y f
i = yg

i + yh
i = g(vi )+ h(vi ).

Moreover, for j ∈ {ind(z1), . . . , ind(z2)− 1} and η ∈ ]v j , v j+1[ we have:

f (η) = s f
j (p j (η))+ ε

f
j (p j (η))

= y f
j +1y f

j+1 · p j (η)+ 4α f
j · p j (η) · [1− p j (η)]

= (yg
j + yh

j )+ (1yg
j+1 +1yh

j+1) · p j (η)

+ 4(αg
j + α

h
j ) · p j (η) · [1− p j (η)]

= sg
j (p j (η))+ sh

j (p j (η))+ ε
g
j (p j (η))+ ε

h
j (p j (η))

= g(η)+ h(η),

since α f
j = α

g
j + α

h
j is in ϕ′3 and therefore α f

j = α
g
j + α

h
j .

Furthermore, if z1 = −∞, then (27) holds also in the interval ] − ∞, v1[. Indeed,
for η ∈ ] −∞, v1[ we have

f (η) = y f
1 + α

f
0 (1− eη−v1)− γ

f
0 (v1 − η)

= (yg
1 + yh

1)+ (α
g
0 + α

h
0)(1− eη−v1)− (γ

g
0 + γ

h
0)(v1 − η)

= g(η)+ h(η),

since in this case α f
0 = α

g
0 + α

h
0 and γ f

0 = γ
g
0 + γ

h
0 are in ϕ′3.

Likewise, it can be shown that if z2 = +∞ then (27) holds also in the interval
]vr ,+∞[.

Literals of type ( f > g)[w1,w2]. Let the literal ( f > g)[w1,w2] occur in ϕ3. We need to verify
that f (η) > g(η), for each η ∈ [Mw1,Mw2]. Notice that for each j ∈
{ind(w1), . . . , ind(w2)− 1}, the formula ϕ′3 contains the literals

(y f
j − yg

j ) > |α
f
j | + |α

g
j | and (y f

j+1 − yg
j+1) > |α

f
j | + |α

g
j |,

so that we have (y f
j − yg

j ) > 0, for j ∈ {ind(w1), . . . , ind(w2)}, and f (v j ) = y f
j >

yg
j = g(v j ), for v j ∈ [Mw1,Mw2].

Moreover, for j ∈ {ind(w1), . . . , ind(w2)− 1} and η ∈ ]v j , v j+1[, we have

s f
j (p j (η))− sg

j (p j (η)) = y f
j +1y f

j+1 · p j (η)− yg
j −1yg

j+1 · p j (η)

= (y f
j − yg

j ) · (1− p j (η))+ (y
f
j+1 − yg

j+1) · p j (η)

> (|α
f
j | + |α

g
j |) · (1− p j (η))+ (|α

f
j | + |α

g
j |) · p j (η)

= |α
f
j | + |α

g
j |

≥ |ε
f
j (p j (η))| + |ε

g
j (p j (η))|

≥ ε
g
j (p j (η))− ε

f
j (p j (η)),

where |εh
j (ξ)| ≤ |α

h
j |, for ξ ∈ [0, 1], j ∈ {1, . . . , r − 1}, and h ∈ Fun(ϕ3).
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Thus, we have

f (η) = s f
j (p j (η))+ ε

f
j (p j (η)) > sg

j (p j (η))+ ε
g
j (p j (η)) = g(η),

for η ∈ ]v j , v j+1[ and j ∈ {ind(w1), . . . , ind(w2)− 1}.
Literals of type Up( f )[z1,z2] and Strict Up( f )[z1,z2]. Let the literal Up( f )[z1,z2] occur in ϕ3.

We need to verify that the function f is monotone non-decreasing in the interval
[Mz1,Mz2]. It is enough to show that f has a non-negative first-order derivative in
each interval ]vi , vi+1[ contained in [Mz1,Mz2], with i = 0, . . . , r and where we are
putting v0 = −∞ and vr+1 = +∞.

Let us first consider the case in which j ∈ {ind(z1), . . . , ind(z2) − 1}, namely the
interval ]v j , v j+1[ is contained in [Mz1,Mz2], with j ∈ {1, . . . , r − 1}. Notice that ϕ′3
contains the literal (y f

j+1 − y f
j ) ≥ 4|α f

j |.
For η ∈ ]v j , v j+1[ we have:

D[ f ](η) = D[s f
j (p j )](η)+ D[ε f

j (p j )](η)

=

[
D[s f

j ](ξ)+ D[ε f
j ](ξ)

]
ξ=p j (η)

· D[p j ](η)

= (1y f
j+1 + 4α f

j (1− 2p j (η))) ·
1

1v j+1

≥ 0,

since 1y f
j+1 ≥ 4|α f

j | (see above), |1 − 2p j (η)| ≤ 1 for η ∈ ]v j , v j+1[, and 1v j+1 >

0.14

Next, we consider the case in which the interval ] − ∞, v1[ is contained in
[Mz1,Mz2], i.e. z1 = −∞. In such a case ϕ′3 contains the literals γ f

0 ≥ 0 and γ f
0 ≥ α

f
0 .

Hence, for η ∈ ] −∞, v1[ we have:

D[ f ](η) = γ f
0 − α

f
0 eη−v1 ≥ γ

f
0 + inf

η∈ ]−∞,v1[
{−α

f
0 eη−v1}

=

{
γ

f
0 − α

f
0 if α f

0 ≥ 0
γ

f
0 otherwise,

so that D[ f ](η) ≥ 0, for η ∈ ] −∞, v1[.
Likewise, it can be shown that if z2 = +∞, then D[ f ](η) ≥ 0, for η ∈ ]vr ,+∞[.
Satisfiability of literals in ϕ3 of type Strict Up( f )[z1,z2] can be shown in much the

same way.
Literals of type Convex( f )[z1,z2] and Strict Convex( f )[z1,z2]. Let the literal Convex( f )[z1,z2]

occur in ϕ3. We need to verify that the function f is convex in the interval [Mz1,Mz2].
In view of Lemma 9 in the Appendix, it is enough to verify that

(a) the second-order derivative of f is non-negative in each interval ]vi , vi+1[

contained in [Mz1,Mz2], for i ∈ {0, . . . , r}, where again we are putting v0 = −∞

and vr+1 = +∞;
(b) D−[ f ](v j ) ≤ D+[ f ](v j ), for each v j ∈ ]Mz1,Mz2[, with j ∈ {1, . . . , r}.

14 We use the following notation: D and D(2) denote respectively the first and second derivative operators, whereas
D− and D+ denote respectively the left and right first derivative operators.
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Concerning (a), let us first consider the case in which an interval ]v j , v j+1[

is contained in [Mz1,Mz2], for some j ∈ {1, . . . , r − 1}. Therefore j ∈
{ind(z1), . . . , ind(z2) − 1}, which implies that ϕ′3 must contain the literal α f

j ≤ 0, so

that α f
j ≤ 0. Hence, for η ∈ ]v j , v j+1[, we have

D(2)
[ f ](η) = −8α f

j ·
(
D[p j ](η)

)2
≥ 0.

Next, we consider the case in which the interval ] − ∞, v1[ is contained in
[Mz1,Mz2], i.e. z1 = −∞. In this case, ϕ′3 must contain the literal α f

0 ≤ 0, so that

α
f
0 ≤ 0. Hence, for η ∈ ] −∞, v1[, we have

D(2)
[ f ](η) = −α f

0 eη−v1 ≥ 0.

The case in which the interval ]vr ,+∞[ is contained in [Mz1,Mz2], i.e. z2 = +∞,
is analogous to the preceding one.

Concerning (b), let v j ∈ ]Mz1,Mz2[. If j ∈ {ind(z1)+1, . . . , ind(z2)−1}, the literal

α
f
j ≥

1
4

[
y f

j − y f
j+1 +

(
y f

j − y f
j−1 − 4α f

j−1

) v j+1 − v j

v j − v j−1

]
occurs in ϕ′3, so that

α
f
j ≥

1
4

[
−1y f

j+1 +

(
1y f

j − 4α f
j−1

) 1v j+1

1v j

]
holds. Hence,

D−[ f ](v j ) =
1y f

j − 4α f
j−1

1v j
≤
1y f

j+1 + 4α f
j

1v j+1
= D+[ f ](v j ).

If z1 = −∞, z2 6= v1, and j = 1, then ϕ′3 contains the literal

γ
f

0 − α
f

0 ≤
y f

2 − y f
1 + 4α f

1

v2 − v1
,

so that

γ
f
0 − α

f
0 ≤

1y f
2 + 4α f

1

1v2

holds and therefore we have

D−[ f ](v1) = γ
f
0 − α

f
0 ≤

1y f
2 + 4α f

1

1v2
= D+[ f ](v1).

Likewise, if z2 = +∞, z1 6= vr , and j = r , it can be shown that D−[ f ](vr ) ≤

D+[ f ](vr ).
Satisfiability of literals in ϕ3 of type Strict Convex( f )[z1,z2] can be shown in much

the same way.

Finally, notice that all purely arithmetic literals occurring in ϕ3 also occur in ϕ′3 and therefore
they are plainly satisfied by M.
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5. Conclusions

We have proved that the satisfiability problem for the theory RMCF+ is solvable. This
result has been obtained by exhibiting a satisfiability preserving chain of four reductions that,
starting from a formula ϕ of RMCF+, produces at the end another formula ϕ′, expressed in the
unquantified language of Tarski’s theory of reals and involving the numerical variables of the
formula ϕ plus various other parameters. In particular, our decidability result has been based on
the fact that the given formula ϕ is satisfiable if and only if it admits a parametric “canonical”
model, which can be built up by suitably enriching any real model of the formula ϕ′.

As seen before, canonical models map function symbols into piecewise linear functions,
perturbed by quadratic or exponential functions. We expect that by using other types of
perturbations together with more sophisticated techniques to control the shape of the functions
involved, other unquantified theories of continuous functions and of differentiable functions with
a derivative operator can be proved decidable.
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Appendix. Convex functions

In this appendix we prove some elementary properties on univariate convex real functions.

Definition 10. A real function f is said to be CONVEX on an interval I , if for any three points
x, y, z in I , with x < y < z,

f (z)− f (x)

z − x
≥

f (y)− f (x)

y − x
.

If the above inequality is always strict, then f is said to be STRICTLY CONVEX on I .

Lemma 7. Let f be a real function on an interval I . For any three distinct points x, y, z ∈ I ,
with x < y < z, the following inequalities are equivalent, in the sense that either all of them
hold, or all of them are false:

(a)
f (z)− f (x)

z − x
�

f (y)− f (x)

y − x

(b)
f (z)− f (y)

z − y
�

f (z)− f (x)

z − x

(c)
f (z)− f (y)

z − y
�

f (y)− f (x)

y − x
,

where �∈ {>,≥}.

Proof. It is enough to observe that (a), (b), and (c) are all equivalent to the inequality

(y − x) · f (z)+ (z − y) · f (x) � (z − x) · f (y). �
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Lemma 8. Let f be a convex function on an interval I . For any w, x, y, z ∈ I such that
w < x < y < z we have

if
f (y)− f (w)

y − w
>

f (x)− f (w)

x − w
then

f (y)− f (w)

y − w
<

f (z)− f (y)

z − y
.

Proof. By our hypothesis and by Lemma 7 above, we have f (y)− f (w)
y−w <

f (y)− f (x)
y−x . Moreover,

since f is convex, f (y)− f (x)
y−x ≤

f (z)− f (x)
z−x . Hence, we get f (y)− f (w)

y−w <
f (z)− f (x)

z−x . �

Lemma 9. Let (a, c] and [c, b) be two bounded or unbounded real intervals, and let g :
(a, c] → R and h : [c, b) → R be two convex functions on their domains. Moreover, let us
assume that

– g(c) = h(c),
– the function g has left derivative D−[g](c) in c, the function h has right derivative D+[h](c)

in c, and D−[g](c) ≤ D+[h](c) holds.

Then, the function f : (a, b)→ R defined as follows

f (x) =

{
g(x) if x ∈ (a, c]
h(x) if x ∈ ]c, b),

is convex in (a, b).

Proof. According to Definition 10, we need to verify that f (ξ3)− f (ξ1)
ξ3−ξ1

≥
f (ξ2)− f (ξ1)
ξ2−ξ1

, for any three
points ξ1, ξ2, ξ3 ∈ (a, b) such that ξ1 < ξ2 < ξ3. W.l.o.g., we can assume that ξ1, ξ2 ∈ (a, c] and
ξ3 ∈]c, b), so that ξ1 < c. By the convexity of g in (a, c], we have

g(ξ2)− g(ξ1)

ξ2 − ξ1
≤

g(c)− g(ξ1)

c − ξ1
. (1)

Again by the convexity of g in (a, c] and by Lemma 7 in the Appendix, we have g(c)−g(ξ1)
c−ξ1

≤

g(c)−g(η)
c−η , for any η ∈ ]ξ1, c[, so that

D−[g](c) = lim
η→c−

g(η)− g(c)

η − c
≥

g(c)− g(ξ1)

c − ξ1
. (2)

Likewise, by the convexity of h in [c, b), we have h(η)−h(c)
η−c ≤

h(ξ3)−h(c)
ξ3−c , for any η ∈ ]c, ξ3[, and

therefore

D+[h](c) = lim
η→c+

h(η)− h(c)

η − c
≤

h(ξ3)− h(c)

ξ3 − c
. (3)

Thus, by (2), (3), and the hypothesis D−[g](c) ≤ D+[h](c), we get

g(c)− g(ξ1)

c − ξ1
≤

h(ξ3)− h(c)

ξ3 − c
. (4)

Relations (1) and (4) can be rewritten as

f (ξ2)− f (ξ1)

ξ2 − ξ1
≤

f (c)− f (ξ1)

c − ξ1
, (5)

f (c)− f (ξ1)

c − ξ1
≤

f (ξ3)− f (c)

ξ3 − c
, (6)
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respectively. Thus, by Lemma 7 in the Appendix, the inequality (6) implies

f (c)− f (ξ1)

c − ξ1
≤

f (ξ3)− f (ξ1)

ξ3 − ξ1
,

which, together with (5), gives our thesis. �
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