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Abstract
Mathematical and computational models are increasingly used to help interpret biomedical data produced by
high-throughput genomics and proteomics projects. The application of advanced computer models enabling the
simulation of complex biological processes generates hypotheses and suggests experiments. Appropriately inter-
faced with biomedical databases, models are necessary for rapid access to, and sharing of knowledge through data
mining and knowledge discovery approaches.
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INTRODUCTION
Revolutions in biotechnology and information tech-

nology have produced enormous amounts of data and

are accelerating the process of knowledge discovery of

biological systems. These advances are changing the

way biomedical research, development and applica-

tions are conducted. Clinical data complements bio-

logical data, enabling detailed descriptions of both

healthy and diseased states, as well as disease progres-

sion and response to therapies. The availability of data

representing various biological states, processes and

their time dependencies enables the study of biolo-

gical systems at various levels of organization, from

molecules to organism and even up to the population

level [3–5]. Multiple sources of data support a rapidly

growing body of biomedical knowledge, however,

our ability to analyze and interpret this data lags far

behind data generation and storage capacity.

Mathematical and computational models are increas-

ingly used to help interpret biomedical data produced

by high-throughput genomics and proteomics pro-

jects. The application of advanced computer models

enabling the simulation of complex biological pro-

cesses generates hypotheses and suggests experiments.

Computational models are set to exploit the wealth of

data stored on biomedical databases through text

mining and knowledge discovery approaches.

Modeling is the human activity consisting of

representing, manipulating and communicating

real-world daily life objects. As one can easily realize,

there are many ways to observe an object or, equiva-

lently, there are many different observers for the

same object. Any observer has ‘different views’ of

the same object, i.e. ‘there is no omniscient observer

with special access to the truth’. Each different

observer collects data and generates hypothesis that

are consistent with the data. This logical process is

called ‘abduction’. Abduction is not infallible,

though; with respect to a scientific unknown, we

are all blind.

A system is a collection of interrelated objects. For

example, a biological system could be a collection of

different cellular compartments (e.g. cell types) spe-

cialized for a specific biological function (e.g. white

and red blood cells have very different commitments).

An object is some elemental unit upon which obser-

vation can be made but whose internal structure is

either unknown or does not exist. The choice of

the elemental unit defines the representation scale of

the system. A model is a description of a system in
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terms of constitutive objects and the relationships

among them, where the description itself is, in gen-

eral, decodable or interpretable by humans.

Generally speaking, a system is an unknown ‘black

box’ (S) which, under a specific external stimulus

(input E) produces a response (output R) [19].

Using this general definition, one can identify three

primary scientific uses of models [12]: (i) synthesis or

knowledge discovery; to use the knowledge of

inputs E and outputs R to infer system characteris-

tics; (ii) analysis and prediction; to use the knowledge

of the parts and their stimuli (i.e. the inputs E) to

account for the observed response (i.e. the output R)

and eventually, to predict response to different

stimuli. (iii) Instrumentation or device; to design an

‘alternative system’ (i.e. hardware or software), able

to reproduce the input–output relationship with the

best possible adherence to the studied system.

Secondary uses of models account for conceptual

frameworks to design new experiments, methods to

summarize or synthesize large quantities of data, tools

to discover relationships among objects.

In this article, we analyze models and modeling

processes specific for the biology. We mainly focus

on the use of models aiming at the points (i) and

(ii) as tools for knowledge discovering in biology.

The mathematical methods used in modeling bio-

logical systems vary according to different steps of the

process. We focus on the mathematical representa-

tion of the system. However, other important steps

in the modeling processes are parameters fitting and

model selection. We will not analyze the mathem-

atical methods in those two important aspects as

these would require separate review papers.

Methods for parameters fitting refer to wide area of

mathematical optimization, whereas methods for

model selection mainly use statistical techniques.

On top of these, sensitivity analysis and phase–

space analysis of the models may be required.

Interested readers may find more information in

these references: [11, 15, 20].

Models for technical use are formal models, but

the strategy for building them is quite different and

therefore, we leave them out of the present discus-

sion. In the following we will refer to this type of

models as Black Box Models (BBM). It is worth

pointing out that, as we will mention later on, alter-

native systems can be considered parts of a large

model to account for effects whose origin can be

neglected without compromising the understanding

of the whole phenomena.

This article is organized as follows: in the next two

sections (Models of Systems and The Modeling

Process), we describe the types of models and the

modeling processes in scientific investigations in a

general context; then in the next section (Models

in Biology: Scales and Complexity) we go more spe-

cific and talk about models in biology and medicine;

few examples of models are briefly shown in the

section ‘Tools and Applications’; finally we draw

our ‘Conclusions’ in the last section.

MODELSOF SYSTEMS
Not all scientific models are expressed in a precise,

numerical and quantitative way. Actually, one can

identify four different types of models: verbal

models, conceptual or diagrammatic models, physical

models and formal models.

In this article, we focus mainly on diagrammatic

and formal models and we concentrate on the model

building process.

Verbal models
In verbal models the system is described in words.

These models, based on observations, usually evi-

dence in a simple way the objects and relations

among the objects in the system. A verbal model is

a rough and sometime ambiguous qualitative repre-

sentation of the knowledge of the system. These

kinds of models are used in the first approach to

the analysis of biological system.

Conceptual or diagrammatic models.
In conceptual or diagrammatic models the system is

described by a graphical representation of the objects

and the relationships describing the underlying dy-

namical processes. To develop these kind of models

the understanding of the available data needs to be

sufficient to have a detailed (even if not exhaustive)

idea of the objects (or entities) and relations. A con-

ceptual model (CM) represents ‘concepts’ (objects or

entities) and relationships between them. In com-

puter science, CM are also referred to as domain

models. A CM is expressly independent from the

design and free from implementation concerns.

The aim of a CM is to convey the meaning of

terms and concepts used by ‘domain experts’ to ra-

tionalize the problem and to find relationships

among the different concepts. The CM aims to clar-

ify the meaning of the usually ambiguous terms to

minimize as much as possible problems arising from
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different interpretations of terms and concepts. If a

‘domain ontology’ is available, then the meaning of

the variety of terms used should be linked to it. Once

the domain concepts have been modeled, the model

becomes a stable basis for subsequent development of

applications in that specific domain. Furthermore,

the concepts behind the conceptual model can be

mapped to physical design or implementation con-

structs using either manual or automated code gen-

eration approaches.

A conceptual model can be described using vari-

ous notations, such as Unified Modeling Language

(UML) [34, 9], Object Modeling Technique (OMT)

for object modeling [32], or Information Engineer-

ing or Integration Definition for Information Mod-

eling (IDEF1X) for Entity Relationship Modeling

[6]. In UML notation, the conceptual model is

often described with a class diagram in which classes

represent concepts, associations represent relation-

ships between concepts and role-type of an associ-

ation represents role types taken by instances of the

modeled concepts in various situations.

Physical models
In physical models the representation is done using a

mock-up of a real system or object (like a scale

model of an aircraft or of a ship). These type of

models are mostly of interest for engineers. They

are widely used when the properties of the system

are almost ‘scale-invariant’, i.e. independent from the

size of the physical model built to represent the real

system to produce smaller-scale prototypes.

Formal models
Formal models represent the knowledge of the

system using mathematical structures. The mathem-

atical representation of the model depends on the

knowledge of the system, on some modeling choices

(for instance, the spatial scale of representation) and

the aim of the modeling process. There are a large

variety of mathematical/computational methods that

can be used and the selection of the proper one fol-

lows rules that are often matters of experience. At a

first glance, there are few questions one may ask

to address the choice of the proper mathematical/

computational method. Those questions are mainly

related to the description of the system with respect

to its different parts or components, the physical vari-

ables space and time, the type of relations between

objects and the object representation perse. In systems

biology, a system is viewed as an assembly of

different parts or compartments (i.e. organs) with

different functions. In this case, ‘Compartment

models’ are widely used and each compartment

may pick a different mathematical representation.

Models can also represent physical variables in

different ways. Besides, the model may or not con-

sider the evolution of the system with respect to time

(dynamic versus static models). Time can be treated

as continuous or discrete variable (time-continuous

versus time-discrete models). Likewise, spatial distri-

bution of objects in each compartment may or

not be relevant (spatially-heterogeneous versus

homogeneous models). Finally, similar objects

may be treated as individuals or taken in bulk

(particle models versus population models). In the

first case, individual objects are identified by a

unique state or by a large, but finite number of

states (one-state particle versus finite-state automata).

Lastly, the relations between objects can be described

as deterministic or stochastic rules (deterministic

versus stochastic models).

According to the different modeling choices, one

can get single versus multicompartments models,

including transport, evolutionary differential equa-

tions versus algebraic equations or spatial partial dif-

ferential equation, differential equations versus

difference equations, ordinary differential equations

(ODE) versus partial differential equations (PDE),

kinetic methods, agent-based methods (ABM) or

cellular automata (CA) versus ODE or PDE; deter-

ministic methods (ODE or PDE, etc.) versus stochas-

tic methods (stochastic ODE and PDE).

Statistical and artificial intelligence-based models
A statistical model is a formalization of the relation-

ships between variables (i.e. object’s measurable

characteristics) in the form of mathematical equa-

tions, the only difference with the mathematical

models described above is that in statistics, all vari-

ables and/or parameters of the model include a level

of uncertainty. When the relationship between two

objects is too complex to be easily guessed, one can

resort to probabilistic measures and statistical or arti-

ficial intelligence methods to reproduce the response

relationship (see e.g. refs. [21, 22, 37]). In these kind

of models, the detailed analysis of the system com-

ponents is usually ignored because, the objective of

the model is limited to reproduce the system stimu-

lus/response relation. Examples of this approach are

the lumped models using equivalent circuits, neural

network, etc.
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THEMODELING PROCESS
The modeling process consists of the following steps:

(i) model implementation consisting in describing by

a formal language the objects/relationships identified

in the system under study using a mathematical

structure and/or a computer code; (ii) use the

model to forecast the system behavior and (iii) evalu-

ate the model adherence to reality by matching pre-

dictions with available data.

To find a good model is an issue. Modeling is a

hard problem in itself and failure is not a rare event.

The modeling procedure is a process in itself that

follows a semi-formal set of rules. The methodology

lean on four macro steps [31]: (i) understand the

problem, i.e. clearly define the questions one asks

to the model; (ii) devise a plan for solving the prob-

lem, i.e. define a series of steps to be put in practice

to find an adequate model of the system under in-

vestigations. This step includes knowledge and data

acquisition from field experts and literature, model

structure, model hypothesis, conceptual model,

choosing the appropriate mathematical formalism,

solving the formal model, get the results, check

model results matching to available data and so on;

(iii) execute the plan, i.e. perform the steps in (ii) and

(iv) check the correctness of the answer and eventu-

ally refine the model. This last point is a major test to

evaluate the hypothesis formulated when setting the

model.

As mentioned before, we are mostly interested in

models for the analysis and predictions. For these

models, the classical description of modeling process

is shown in Figure 1. It is worth to mention that the

schema illustrated in Figure 1 does not have the pre-

tense to be the most general one: it is a general ap-

proach that can be used in the analysis and

predictions models.

Model objectives
As we already pointed out, a proper definition of the

model objectives is a fundamental step as it implies a

certain level of comprehension of the problem. The

reason for building a model should by clear and a

proper clarification of the objective must answer to

major questions: (i) what is the system to be mod-

eled; (ii) what are the major questions to be ad-

dressed by the model; (iii) How good must the

model be and to what it will be compared with?

(iv) How we will analyze and use the model output?

All these questions need to be clarified before we

proceed in searching the current knowledge on the

system we wish to model, as some informations may

be more relevant than the others.

Current knowledge
A second crucial step in the modeling process is to

collect the knowledge on the system under investi-

gation. This is conducted by consulting the scientific

literature, including experimental reports and/or

discussing with field-experts. In the biomedical

field, data sets of literature record (e.g. Pubmed)

can highly facilitate the task of browsing the vast

amount of information available nowadays. In this

respect, methods of data mining and data extraction

may be very useful [17].

Model structure
A model is a representation of a real system and has

its own structure. For the sake of manageability the

model structure should include, of all the acquired

knowledge, only those considered to be relevant for

the purpose of the study (‘Realism’); the level of

details of the model results should also be determined

a priori (‘Precision’); finally, a model can be general,

that is applicable to other similar systems or specific

to the system of interest (‘Generality’). Realism,

Precision and Generality are competing properties.

Each of these properties trades-off against the other

two. Deciding a model structure is to find a proper

balance between those competing properties, which

satisfy the model objectives. Decision on the model

structure is crucial for defining the model hypothesis,

diagrammatic model construction and mathematical

formulation.

Hypotheses
The next step in the modeling process is to translate

objectives and current knowledge we wish to

include in the model in a list of specific working

hypothesis. These are usually verbal statements, but

could also be quantitative relationships. Working

hypotheses are the basis of the model we are going

to built and model results will depend on them. In

doing the cycle refinement of model, the starting

hypothesis should be critically, repeatedly analyzed.

Conceptual model
The conceptual model is a graphical representation

of the relevant system knowledge and model object-

ives that have been identified in the hypotheses. In

the conceptual model compartments, objects and
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relations will be described in a diagram where the set

of objects are fully clarified and relations bounded.

Mathematical formulation
This is usually the trickiest part of the modeling pro-

cess, requiring the choice of a mathematical struc-

ture, which is appropriate for the model objectives

and is able to describe in quantitative form the

hypotheses. This step of the process requires a certain

level of mathematical sophistication and, more im-

portantly, it requires to define vague concepts and

loose relations in strict mathematical terms. Notice-

ably, model objectives play an important role

because, a detailed description of the biological

system may turn out to be useless if not required

by the model objectives.

Choosing a mathematical formulations is a map-

ping of the model into the mathematical domain to

obtain a formal model. A good formal model must

be a compromise between the competing properties

of any model (Realism, Precision and Generality)

and should take into account some specificity of

Figure 1: The description of the modeling process. The top part of the figure refers to the formulation of the
model, i.e. identification of the model objectives; collection of the current knowledge about the biological system
under investigation; choosing the most appropriate model structure to satisfy the model objectives; translate
objectives and knowledge into model hypotheses; draw a conceptual model; identify mathematical technique and
develop the formal model. Central part of the figure refers to calibration i.e. estimating and fitting model param-
eters. Finally, the bottom of the figure refers to analysis and evaluation, i.e. comparison of the model results against
experimental data sets and analysis of discrepancies.
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the mathematical domain. Accordingly, we can

identify the major properties of formal models as

follows: ‘relevance’, capturing the essential properties

of the phenomenon; ‘computability’, transfer model

hypothesis into a mathematical/computational infra-

structure that can be solved to give the desired results

with the required precision; ‘understandability’,

offering a conceptual framework for thinking about

the scientific domain; ‘extendibility’, allowing the

inclusion of additional real-world objects in the

same mathematical scheme. Taking into account

the biological complexity, a very detailed model of

a biological system may work out to be unsuitable to

automatic resolution, i.e. not computable (for in-

stance, too many equations to be solved or too

many unknown parameters to be estimated); in con-

trast, a too simplistic model may not be able to ac-

count for the complexity of the biological system of

interest.

A good formal model must be understandable by

domain experts so that they could use it for their

own quantitative reasoning. Finally, as biology is a

fast growing science, extensibility is an important

characteristic for biological models. When new ob-

jects and relations in the system are derived from

laboratory experiments, it should be easy to extend

the model with minor changes in the mathematical

structure.

In most cases models are equipped with just one

mathematical structure of those mentioned previ-

ously. However, there are also ‘hybrid’ models

where different mathematical structures are used in

combination but also models which add to a detailed

description of the system of interest other types of

models (e.g. BBM), which mimic the effects of other

systems interlinked with the one under

investigations.

We will describe some hybrid models in the sec-

tion ‘Tools and Applications’.

Frommathematical formulation to the
numerical solution
Only very simple models can be analyzed analytically

(i.e. by algebraic derivation of the system properties).

In most cases the model is either directly imple-

mented as a computer code (i.e. the algorithm-like

in ABM) or equations must be solved numerically.

Even if there are a variety of methods for solving

equations, transferring equations into computer

code is a possible source of error and appropriate

method to avoid errors due to numerical instabilities

need to be carefully chosen. Models of biological

systems can involve scores of dynamic variables and

thousands of parameters, especially when spatial pro-

cesses are investigated. In this respect, checking the

computer results to match available data is not a triv-

ial exercise.

Parameter estimation and tuning
Once the model formulation has been translated on a

computer, a further step is necessary before a simu-

lation can be run. Complex models usually contain

many parameters whose numerical value must be

determined. In biology this may not be an easy

task as numerical values of parameters, if directly

measurable, are often known with a large uncer-

tainty. Methods for parameter fitting are mainly

based on optimization techniques that minimize

the difference between real experimental data and

model output. There are a variety of techniques ran-

ging from stochastic methods and gradient descent

methods [11]. In some cases, specific experiments

may be required for estimating parameters (see e.g.

the model of influenza described in ref. [30]).

However, a model can contain parameters that

cannot be estimated a priori. In these cases one can

have an a posteriori estimation. This means that the

values of the parameters can be estimated by another
model made ad hoc just to fit the data available [14,

29].

Model validation and cyclic refinement
Comparison of model results, or simulations are the

final part of the modeling process. The general goal

of a model is to reproduce data from observation or

from experiments (descriptive models) or to predict

the result of new observations or experiments (pre-

dictive models). Obviously, results need to be vali-

dated according to model’s objectives. In some cases,

a qualitative agreement between model results and

experimental data is adequate, in other cases, a quan-

titative agreement is necessary. It is a common prac-

tice for model validation to require the model results

to be validated against independent data sets. Model

results that fail to fit the experimental data set not-

withstanding changes in the model-free parameters,

suggest a further model refinement. In this respect, in

the way back and forth between model refinement

and data validation one can discover interesting

properties of the system of interest. The process

itself leads to discovering of new knowledge.
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MODELS INBIOLOGY: SCALESAND
COMPLEXITY
As already pointed out, any natural phenomena can

be observed at different scales thus, in describing the

phenomenon by conceptual and quantitative models

one needs to choose to appropriate scale to describe

the experimental data available.

However, in almost all complex natural phenom-

ena there are aspects that cannot be even observed at

just one scale of description (either temporal or spa-

tial). To study these specific facets of reality, multi-

scale models that represent objects and relationships

on different levels of abstraction are required.

Choosing a scale depends on which aspects of the

phenomena, from ‘micro’ to ‘macro’, one is inter-

ested to analyze. In physics this is already a well

defined approach that originates from different re-

search areas, and the distinction between different

scales is based upon the characteristic lengths of ob-

jects and the characteristic time of the phenomena

under investigation. For instance, microphysics refers

to areas of physics that study phenomena, which take

place on the microscopic scale (length scales <1 mm),

such as: molecular physics, atomic physics, nuclear

physics and particle physics.

In the life sciences the definition of a scale is a bit

more ambiguous. A basic unit available for defining a

scale is the ‘cell’ with no regard to its physical di-

mension. Starting from this, one can define different

scales: the ‘sub-cellular’ or ‘intra-cellular’ scale, the

‘cellular’, mesoscopic or ‘inter-cellular scale the

‘macroscopic scale’ and the ‘populations scale’.

Models developed at sub-cellular scale deal with

the evolution of the physical and biochemical state of

a single cell. This scale involves genes, proteins and

signals in cell nucleus and surface, which regulate the

evolution of the cell and any signaling processing

operations of the cells enabling cell crosstalk.

Modeling the overall activity of a single cell is a

very hard problem as many biological details of this

activity are unknown.

Biologists and modelers have joined forces to de-

velop and use mathematical and computer science

techniques in modeling sub-cellular phenomena.

Interested readers can find plenty of references in

the scientific literature [13].

In the cellular scale, one is interested in describing

the evolution of a system consisting of a large

number of different interacting cells and molecules.

Cell interactions are regulated by signals emitted and

received by cells through complex recognition

processes. Cellular scale is thus highly connected

with the sub-cellular scale but, modeling at this

scale, one may forget the details of single cell

models and consider them as BBM. The areas of

mathematical methods and tools involved in this

description refer to statistical mechanics, cellular

automata, lattice gas and other similar approaches.

The ‘macroscopic scale’ include tissues, organs

(i.e. a collection of tissues joined in structural unit

to serve a common function), systems (i.e. a group of

organs working together to perform a certain task)

and organism.

In this scale, one is interested in describing the

dynamical behavior of observable quantities, in

most cases, the concentrations of various entities

(cells or molecules). Tissues are usually described

using techniques originating from physical continu-

ous systems, i.e. ordinary or partial differential equa-

tions or moments of kinetic equations. In describing

organs, a model is required to describe both the main

tissue and the sporadic tissues but also, and most im-

portantly, the biological function. To model a

system, one is required to consider a network of

organs that perform a specific task. Depending on

the modeling goal the model of a biological system

can be arranged with different levels of details.

Organs can be fully described in their components

or simply as BBM performing a given task.

Connections between organs (like lymphatic vessels)

can be described physically (dynamical description of

the fluid motion in the vessels) or simply considering

the flux and the time required to move portions of

fluid from different organs, i.e. though law of

transport.

Finally, in the population scale, one is interested in

describing the dynamics of the populations with re-

spect to one or more characteristics. Models of

epidemics or population controls are well known

models at this scale. Population dynamics is ex-

tremely complex because the effects of all previously

mentioned scales and the effects of the environment

on a single organism can modify the overall dynamic

of the populations. In this class of models, a single

organism can or cannot be described in detail, ac-

cording to the size of the populations one is required

to describe. In both cases, changes of the major char-

acteristics of a single organism must be taken into

account. For example, to describe the response of a

population to large-scale vaccinations (as required in

influenza epidemics), one does not describe in detail

any single organism but it may be required to
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consider the age structure of the population and the

effects of environments. At variance for small size

populations, like modeling the effect of a new vac-

cine for a small trial, a sufficiently detailed description

of the organism and the effect of the vaccine on each

organism should be required. A variety of different

techniques are available for these classes of models. In

the former case, one uses both, ordinary or stochastic

differential equations to describe the populations

dynamics or agent-based models (simple agents

representing a single organism) to study the result-

ing complex phenomena. In the latter case, a

more detailed description of the organism is

required and the population dynamics may eventu-

ally be extracted from the dynamic response of each

organism.

Complexity and multiscale models
Living organisms are complex systems. Using a ‘clas-

sical’ definition, a complex system is a system com-

posed of different interconnected parts that, as a

whole, exhibit one or more properties which do

not obviously arise from the properties of the

individual parts. System complexity may be either a

‘disorganized complexity’ or an ‘organized complex-

ity’. In the former case complexity arises from a very

large number of parts, whereas in the latter case,

complexity is intrinsic to the system, eventually

with a limited number of parts, and its connections

rules.

In living organisms both situations occurs. A living

organism is formed by a collection of different parts

which are, each of them, organized complex systems.

Cells, organs, systems of the human body are each of

the complex systems.

As an example, the immune system is one of the

very complex one where complexity arises both

from a very large number of parts (organs), constitu-

ents (cells and molecules) and rules hierarchically

connecting different scales of the parts.

Models including many scales of a phenomenon

are now requested both for knowledge discovery and

drug discovery. In life sciences not only an entire

living organism, but also parts of the organism are

too complex to be represented in a single, precise,

multiscale model. The resulting model would cer-

tainly not be computable. Thus, one is forced to

break the conceptual model in a set of models

describing only part of the phenomenon (like a

single organ, or a definite scale) and connect their

outcomes [16]. To link models at different scales is a

not an easy task. Phenomena occurring at different

scales have usually different characteristic time scales

and models’ output should be properly fitted.

Interested readers are referred to another study [3]

in this issue.

TOOLSANDAPPLICATIONS
Whether we investigate the growth and interactions

of an entire population, the evolution of DNA

sequences, the inheritance of traits, the spread of dis-

ease or the immune system response to a pathogen,

biological systems are marked by change and adap-

tation. Even when they appear to be constant and

stable, it is often the result of a balance of tendencies

pushing the systems in different directions. The

choice of the mathematical approach depends on

the biological system one would like to model. In

this section, we sketch several applications of math-

ematical techniques that have been effective in

reproducing and in providing new insights of a par-

ticular biological problem.

Due to their incredible complexity, models that

deal with an entire biological system are, to date,

very few and actually incomplete. Instead there are

several mathematical models that act toward single or

group of components of a biological system.

Tools for bioinformatics and systems
biology
Signaling network has a key role in cellular physi-

ology and therefore, it has been widely studied in

several organisms. This is due mainly because all cells

interact and respond to the environment in which

they live. The bad news is that such networks are

very complex due to their combinatorial explosion

nature. For this reason, frameworks for mapping

signal-transduction networks that avoids the com-

binatorial explosion in some way are particularly

needed. In ref. [35], a framework for mapping, visu-

alization and automatic model creation of

signal-transduction networks is presented, along

with an example of its use to compile the, presently,

most comprehensive map of the yeast MAP kinase

network.

It is well known that the explosion of data origi-

nated from biology has made it increasingly import-

ant to provide metadata along side the core data

itself. The concept of metadata derives from cart

catalogs and libraries by describing the contents
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and context of data files, the quality of the original

data/files is greatly increased. This metadata may

comprise domain-specific information as described

by minimal information checklists meant to enable

accurate data reuse or may be ontological in nature,

specifying more precisely the kind of entities under

consideration. The Minimum Information Required

in the Annotation of Models Registry (http://www

.ebi.ac.uk/miriam) provides unique, perennial and

location-independent identifiers for data used in

the biomedical domain. In [18], the authors describe

the new Identifiers.org service (http://identifiers.org)

that is built upon the information stored in the

Registry and which provides directly resolvable

identifiers, in the form of Uniform Resource

Locators (URLs). In the same context, the Systems

Biology Graphical Notation (SBGN) facilitates

the representation and exchange of complex biolo-

gical knowledge in a concise and unambiguous

manner [36].

Of specific importance are the major synthetic biol-

ogy platforms, for managing the data, which is used to

create synthetic biological systems and to provide

mechanisms to begin the process of creating standar-

dized data, algorithms and methodologies for syn-

thetic biology. Here we mention System Biology

Workbench (http://sourceforge.net/projects/sbw/),

TinkerCell (http://sourceforge.net/ projects/tinker-

cell), Kappa and all the tools there provided (http://

kappalanguage.org/), SBGN (http://www.sbgn.

org/), SBML (http://sbml.org/), Synthetic Biology

Open Language (http://www.sbolstandard.org/),

Clotho (http://clothocad.org/) and BEL

Framework $ http://belframework.org/)

Next generation sequence analysis has become an

important task both in laboratory and clinical

settings. SeqAlto [25] is a new algorithm for

read alignment. It is about to 10� faster than exist-

ing algorithms, while retaining high accuracy and

the ability to align reads with large (up to 50 bp)

indels.

Proteins execute and coordinate cellular functions

by interacting with other biomolecules. Among these

interactions, protein–protein (including peptide-

mediated), protein–DNA and protein–RNA inter-

actions cover a wide range of critical processes and

cellular functions. Multi-VORFFIP [33] is a tool to

predict protein-, peptide-, DNA- and RNA-binding

sites in proteins. One of its features is the web inter-

face to facilitate the use of the method and analysis of

predictions to non-expert end-users.

Applications
Immunology
The role of mathematical modeling in immunology,

one of the most complex fields in biology, were

recognized early, beginning from the 1960s and

the 1970s. Since then, mathematical models have

been used in various domains of immunology [23].

One of the major issues in vaccine and other im-

munologic approaches’ research is the testing of the

relevant biological variables when each experiment

lasts �1 year. One clear example is the scheduling of

prolonged vaccinations. It is desirable to reduce as

much as possible the number of vaccine administra-

tions, e.g. to reduce the risk of side effects in humans.

In ref. [26] the authors describe the use of a math-

ematical model based on ABM that faithfully repro-

duce in silico the behavior of a cancer-preventive

vaccination, suggesting a possible optimized vaccine

schedule [27] and highlighting certain critical issues.

In particular, although vaccinations could be reduced

in numbers without sacrificing efficacy, the intensity

of early vaccinations was a key determinant of

long-term tumor prevention needed for predictive

utility in the model. Moreover, long-term studies

confirmed predictions of in silico modeling in which

an immune plateau phase, once reached, could be

maintained with a reduced number of vaccinations;

revealing that the accuracy of mathematical model-

ing of early immune responses is critical. This key

example shows that an integrated in vivo^in silico
approach could improve both mathematical and bio-

logical models of cancer immunoprevention. An ex-

ample of both qualitative analysis of the asymptotic

behavior and numerical simulations using nonlinear

ODEs is given by the authors [2], where the math-

ematical modeling of the mammary carcinomaim-

mune system competition elicited by an external

stimulus is presented. A model for keloid formation

triggered by virus, their malignant effects and

immune system competition have been described

using a mathematical model developed by kinetic

theory of active particles described in a previous

study [1].

In ref. [28] the authors present a mathematical

model to analyze the co-stimulatory effects of

anti-CD137 monoclonal antibody (mAb) for the

melanoma treatment upon synergistic adoptive trans-

fer of activated OT-1 T cells. The reported in vivo
experiments show that a single administration of

anti-CD137 mAb plus activated OT1 T cells is suf-

ficient to completely reject the B16-OVA, whereas
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single components or not activated OT1 T cells have

no success. The in silico experiments performed with

the presented computational model show very good

agreement with their in vivo counterpart. As many

aspects of CD137 molecule biology are still not

fully understood and the investigating of these as-

pects requires many difficult and expensive wet lab

experiments, the model is a good candidate for

becoming a predictive tool.

Circulatory system
Circulatory system represents a biological system

made of organs that passes nutrients and other com-

ponents to and from cells in the body to help fight

diseases, stabilize body temperature and pH, and to

maintain homeostasis. Diseases associated with this

system, i.e. cardiovascular diseases, have a major

impact in Western countries. Mathematical models

and numerical simulations of cardiovascular system

have been presented and have been demonstrated

to provide help in understanding both their dy-

namics and possible interventions. In a previous

study [10] the authors provide a general overview

of mathematical representation of vascular geome-

tries extracted from medical images, the modeling

blood rheology and the complex multilayer structure

of the vascular tissue, and its possible pathologies and

the mechanical and chemical interaction between

blood and vascular walls.

Population dynamics
In another study [8], the authors describe and analyze

a periodically forced difference equation model for

malaria in mosquitoes that captures the effects of

seasonality and allows the mosquitoes to feed on a

heterogeneous population of hosts. With the inte-

gration of the difference equation model with an

individual-based stochastic simulation model for

malaria in humans, they compare the effects of

insecticide-treated nets (ITNs) and indoor residual

spraying (IRS) in reducing malaria transmission,

prevalence and incidence. They conclude showing

that ITNs are more effective than IRS in reducing

transmission and prevalence, proving also that the

combination of both interventions is more effective

than either intervention alone.

Drug efficacy
Molecular biology is the branch of biology that deals

with the molecular basis of biological activity. This

field share knowledge with other areas of biology

and chemistry, i.e. genetics and biochemistry. Mole-

cular biology provides the understanding of the

interactions between the various systems of a cell,

including the interactions between the different

types of DNA, RNA and protein biosynthesis.

Understanding how drugs and diseases are asso-

ciated in the molecular level, is of critical importance

for better understanding of disease mechanisms and

treatments. Recently in a study [38], the authors

define a network-based gene closeness profile to

relate drug to disease and then develop a Bayesian

partition method to identify drug–gene–disease

co-modules underlying the gene closeness data.

Their mathematical approach and the related simu-

lations are applied to a set consisting of 723 drugs,

275 diseases and 1442 genes. It identified new drug–

disease associations and highlighted their molecular

basis.

Recently in another study [7], the authors deal

with drug resistance that has posed more severe

and emergent threats to human health and infectious

disease treatment. Due to less knowledge about the

underlying mechanisms of drug resistance, wet-lab

only approaches achieved limited success. With the

use of interactome network of Mycobacterium tubercu-
losis and gene expression data which are treated

with two kinds of antibiotics, the authors developed

a mathematical workflow for giving new insights to

bacterial drug resistance that can be gained by a sys-

tematic and global analysis of the bacterial regulation

network.

Microbiology is the field of biology that studies

microscopic organisms i.e. bacteria, viruses, fungi,

prions, protists and prokaryotes. There is a huge

quantity of mathematical modeling contributions to

this kind of biological systems, especially in the ana-

lysis of the dynamics of pathogens. For example, in

ref. [24], the authors use differential equations and

computational models to characterize the invitro kin-

etic behaviors of H5N1 avian, H1N1 seasonal and

H1N1 2009 pandemic influenza virus strains. The

approach provides relevant parameters for identifying

and phenotyping potential pandemic strains.

CONCLUSIONS
Biological systems are complex systems and the

higher levels of complexity arise from collective

behavior and emerging properties at multiple

levels. This requires initially the analysis of large

quantities low level data either acquired by direct
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measurements or by accessing a variety of sources.

These data then need to be integrated into various

network models or multiscale models. Models are a

fundamental step in the scientific discovery. In this

article, we described different types of models that

have been used in biology for knowledge discovery

and predictions. However, building a good model is

a hard task. To help interested readers, we analyzed

in detail the state-of-the-art in modeling. Further-

more, examples of recent models and applications, at

different scales, are included in the final part of the

article.

Key Points

� Description of models and their use.
� Analysis of themodel process: formmodels objectives to model

verification.
� Brief description of recent mathematical models in biological

systems.
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