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Alzheimer’s disease (AD) is a neurodegenerative disorder that affects more
than 37 million people worldwide. Current drugs for AD are only symp-
tomatic, but do not interfere with the underlying pathogenic mechanisms of
the disease. AD is characterized by the presence of ß-amyloid (Aβ) plaques,
neurofibrillary tangles, and neuronal loss. The identification of the molecu-
lar determinants underlying AD pathogenesis is a fundamental step to design
new disease-modifying drugs. Recently, a specific impairment of transforming-
growth-factor-β1 (TGF-β1) signaling pathway has been demonstrated in AD
brain. The deficiency of TGF-β1 signaling has been shown to increase both
Aβ accumulation and Aβ-induced neurodegeneration in AD models. The
loss of function of TGF-ß1 pathway seems also to contribute to tau pathol-
ogy and neurofibrillary tangle formation. Growing evidence suggests a neu-
roprotective role for TGF-β1 against Aβ toxicity both in vitro and in vivo
models of AD. Different drugs, such as lithium or group II mGlu recep-
tor agonists are able to increase TGF-β1 levels in the central nervous sys-
tem (CNS), and might be considered as new neuroprotective tools against
Aβ-induced neurodegeneration. In the present review, we examine the ev-
idence for a neuroprotective role of TGF-β1 in AD, and discuss the TGF-
β1 signaling pathway as a new pharmacological target for the treatment
of AD.

Introduction

Alzheimer’s disease (AD) is the most common cause of
dementia in the elderly, affecting approximately 10%
of individuals by 65 years of age and 47% by 85 years
of age. It is mainly characterized by memory loss, with
disoriented behavior and impairments in language, com-
prehension, and spatial skills also characterizing this dis-
order. Neuropsychiatric symptoms, such as agitation and
psychosis are also frequent in people with AD, and are
a common precipitant of institutional care [1]. The eco-
nomic burden of AD is massive; in the United States
alone, the annual cost care for patients with AD is ap-
proximately 150 billion of USD [2]. However, the num-

ber of therapeutic options for AD remains severely lim-
ited. Currently marketed drugs for AD (i.e., the acetyl-
cholinesterase inhibitors, donepezil, rivastigmine, and
galantamine, and the NMDA receptor antagonist, me-
mantine) provides mainly symptomatic short-term ben-
efit, without affecting the underlying pathogenic mech-
anisms [3]. Therefore, much effort is now directed to
find treatments that effectively counteract the progres-
sion of AD. The comprehension of the molecular mech-
anisms underlying AD is therefore an essential step
for the identification of new targets and the design of
disease-modifying drugs able to slow down or even stop
the degenerative processes and the resulting memory
loss.
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AD is characterized by the presence of extracellular ag-
gregates of β-amyloid (Aß) in the senile plaques, intracel-
lular aggregate of tau protein in the neurofibrillary tan-
gles (NFT), and progressive neuronal loss. Different hy-
potheses have been proposed to understand the role of
Aβ or tau protein in the pathophysiology of AD. The
expression pattern of NFT in AD brain strongly corre-
lates with the clinical onset and severity of dementia, but
molecular genetics supports a primary role for Aß in the
cascade of events leading to neuronal death in AD [4].
Oligomeric species composed of aggregated Aβ are be-
lieved to exert toxic effects on synaptic and cellular func-
tions, finally leading to neurodegeneration.

In vitro studies have shown that Aß causes neuronal
death via multiple mechanisms, which include mem-
brane ion channel opening [5], radical oxygen species
formation [6], amplification of NMDA toxicity [7,8], and
cell cycle activation in differentiated neurons [9–13]. Fur-
thermore, Aβ is known to promote the phosphoryla-
tion of tau protein and the subsequent formation of
NFT through the activation of the two kinases, that is,
the cyclin-dependent kinase 5 (CDK5) and the glycogen
synthase kinase 3β (GSK-3β) [14–16]. In this scenario,
tau hyperphosphorylation and NFT formation might be
placed within the same molecular cascade initiated by Aβ,
which leads to progressive synaptic loss, and, finally, to
neuronal death.

In vivo studies have also been carried out for the analy-
sis of neurotoxicity by Aß, but evidence is less consistent
as compared to in vitro studies. Only a few transgenic mice
overexpressing Aß show neuronal loss, perhaps because
the lifespan of mice is too short for a full development
of the death cascade [17]. Injection of Aß into the ro-
dent brain causes a damage restricted to the injection site
at best [18–20]. We can hypothesize that neurotoxicity
of Aß in vivo is limited by the presence of endogenous
protective factors that may be lacking in the AD brain
[21–23]. One possible candidate is transforming-growth-
factor β1 (TGF-β1). Transgenic mice lacking TGF-β1
show enhanced neuronal susceptibility to different neu-
rotoxic insults [24].

In the present review, we examine the role of TGF-β1
in AD pathogenesis prior to discussing the rationale for
considering TGF-β1signaling as a new target for neuro-
protection in AD.

TGF-β1 Signaling Pathway: Smad
and Non-Smad Dependent Pathways

TGF-β1 is a member of TGF-beta superfamily, which con-
sists of several groups of highly conserved multifunctional

cell–cell signaling proteins of key importance in the con-
trol of tissue homeostasis [25].

The TGF-β subfamily includes three isoforms in mam-
mals, TGF-β1, 2, and 3, which are important modula-
tors of cell survival, inflammation, and apoptosis [26],
and also exert a central role in immune suppression, and
repair after injury [27]. The three TGFβs are all syn-
thesized as homodimeric proproteins (proTGFβ) that are
around 400 amino acids in size and products of sep-
arate genes. The proTGFβs are cleaved intracellularly
by furin into a larger C-terminal proregion also known
as latency-associated peptide (LAP), and a shorter N-
terminal active peptide, which forms the mature homod-
imers (25 kDa). LAP remains noncovalently associated
with the mature TGFβ 25-kDa dimer before the complex
is secreted [28]. The association between the TGF-β1, 2,
and 3 prodomains (LAPs) and the corresponding mature
growth factors prevents signaling through the TGF-β high
affinity receptors [29]. Thus, TGF-bioactivity requires
dissociation from LAP, a process termed latent TGF-β
activation.

Extracellular activation of TGF-β is a critical but in-
completely understood process in vivo. In particular, an
important and unresolved issue in TGF-β biology regards
the connection between matrix incorporation and acti-
vation of the latent TGF-β. A variety of molecules, from
protons to different proteases, such as plasmin and trom-
bospondin, have been described as latent TGFβ activators
[30]. It seems that inactive TGF-β stored in tissues can be
activated in response to injury and subsequent extracel-
lular matrix perturbations. After TGF-β is released from
its latency-associated peptide, it becomes able to initiate
its diverse cellular responses by binding to, and activat-
ing specific cell surface receptors that have intrinsic ser-
ine/threonine kinase activity.

All three TGF-β isoforms interact with a high-
affinity transmembrane receptor complex consisting of
the activin-like kinase 5 (ALK5)/TGF-β type I receptor
and the TGF-β type II receptor (TβRII) subunits [25] (see
Figure 2). Several studies have demonstrated that ligand
binding to TβRII induces the assembly of type I and type
II receptors into complexes with the subsequent phos-
phorylation and activation of ALK5, which then prop-
agates the signal inside the cell through the phospho-
rylation of receptor-regulated Smads (R-Smads: Smad2,
Smad3, Smad5, and Smad8). The interaction between
R-Smads and (ALK5)/TGF-β type I receptor is facili-
tated by the Smad anchor for receptor activation (SARA)
[31]. Phosphorylated R-Smads form heteromeric com-
plexes with Smad4. These complexes accumulate in the
nucleus, where they regulate gene expression in a cell-
type-specific and ligand dose-dependent manner through
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interactions with transcription factors and specific pro-
moter elements of target genes.

Smad6 and Smad7 are inhibitory Smads, which are
known to counteract the signaling of R-Smads through
different mechanisms [25]. Inhibitory Smads bind to ac-
tivated type I receptors, thus inhibiting the phosphoryla-
tion and the following nuclear translocation of R-Smads.
Furthermore, they can recruit E3-ubiquitin ligases target-
ing the receptor complex to the ubiquitin degradation
pathway with the following inhibition of TGF-β/Smad
signaling cascade.

Recent evidence suggests that TGF-β1 can also ex-
ert its biological effects through the activation of smad-
independent pathways such as the extracellular-regulated
kinase (ERK) pathways [32,33], the nuclear factor κB
(NF-κB) pathway [34], and the phosphatidylinositol-3-
kinase (PI3K)/Akt pathway [35].

Role of TGF-β1 in the Brain and in AD

In the central nervous system (CNS) TGF-β2 and 3 iso-
forms account for almost all the TGF-β immunoreactivity,
while TGF-β1 expression has been found to be constitu-
tive only in the meninges and choroid plexus and, most
importantly, in some specific brain regions such as the
hippocampus and the cortex [36]. Interestingly, TGF-β1
expression and release increase significantly in response
to CNS lesions. Astrocytes and microglia seem to be the
major sources of TGF-β1 in the injured brain [37], and
several studies have shown that TGF-β1 induction during
injury exerts a central role in preventing neurodegenera-
tion [24,36].

An increased expression of TGF-β1 has been observed
with age [37], and a protective role has been suggested for
this neurotrophic factor in longevity [38]. Aging is char-
acterized by an increased level of proinflammatory mark-
ers such as IL-6, TNF-α or IL-1β [38,39]. This state of sub-
clinical chronic inflammation has been called “inflamm-
ageing,” and seems to be involved in the pathogenesis of
several age-related disorders such as cancer, diabetes, car-
diovascular pathologies, and AD [39]. The protective role
of TGF-β in aging and longevity has been suggested by in

vitro and in vivo studies [40,41]. Increased plasma levels
of bio-active TGF-β1 have been found in both male and
female centenarians as compared to younger control sub-
jects [41]. Similar results have been obtained by Forsey
et al. [42] in octogenarian and nonagenarian subjects.
Salvioli et al. [38] have also proposed that this age-related
increase of TGF-β1 might counteract the proinflamma-
tory status observed during aging, thus preventing the
development of age-related disorders such as cancer and
AD.

Changes in TGF-β1 serum and cerebrospinal fluid
(CSF) levels have also been analyzed in AD. In particular,
increased TGF-β1 levels have been found in CSF of AD
patients [43,44], whereas a reduction of both its active
(25 kDa) and inactive (50 kDa) forms has been reported
in AD plasma [45].

Recently, a single nucleotide polymorphisms (SNPs) at
codon +10 (T(C) and +25 (G/C) that affects the levels
of expression of TGF-β1 has been associated with an in-
creased conversion of mild cognitive impairment (MCI)
in AD [46]. We have recently investigated the same poly-
morphism in healthy controls (HC) and AD patients. Pre-
liminary data suggest that both the +10 C allele and the
CC genotype are overrepresented in AD when compared
to HC, and, that CC genotype might act as a risk factor
for the development of late-onset AD (LOAD), indepen-
dently of apolipoprotein status (unpublished results).

Many reports also describe a significant impairment of
TGF-β1 signaling in AD brain [23,47–50]. The study by
Tesseur et al. [48] strongly points to a causal role for
of TGF-β signaling dysfunction in age-dependent neu-
rodegeneration and AD pathogenesis (Figure 1). The au-
thors found that the expression of TGF-β type II receptor
(TβRII) by neurons is reduced very early in the course
of AD, and this alteration seemed to be specific for AD
and was not observed in other neurodegenerative con-
ditions such as Parkinson’s disease, frontotemporal de-
mentia, or Lewy body dementia. The authors also found
that a deficiency of TGF-β signaling, in a mouse model
of AD, promoted both Aβ deposition and neuronal loss
[48]. Moreover, Tesseur et al. [48] have shown that the

Figure 1 Hypothetical role of TGF-ß1 in AD pathogenesis. Alterations of

TGF-β1 signaling in AD: (1) a reduced expression of the neuronal TGF-β

type II receptor, (2) a dysfunction of Smad signaling, (3) a reduction in

TGF-β1 plasma levels, (4) an increased occurrence of TGF-ß1 CC genotype

which can promote the conversion of MCI into AD. All alterations might

lead to Aβ accumulation and neurofibrillary tangles (NFT) formation with

ensuing neurodegeneration.
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impairment of TGF-β signaling in neuroblastoma cells re-
sulted in neuritic dystrophy and increased levels of se-
creted Aβ and β-secretase-cleaved soluble amyloid pre-
cursor protein. These data suggest that a deficiency of
TGF-β/TβRII signaling axis might exert a pathogenetic
role in AD, depriving cortical neurons of trophic sup-
port, and finally promoting Aβ-induced neurodegener-
ation (see Figure 1).

However, the role of TGF-ß1 in AD pathophysiology
is not unequivocal, and conflicting results have been re-
ported recently. TGF-ß1 is known to induce the expres-
sion of the APP gene in several different cell culture sys-
tems [51,52] and might thus increase Aß production. The
co-expression of TGF-ß1 in transgenic AD mice acceler-
ates the deposition of Aß in cerebral blood vessels [53],
and transgenic mice overexpressing TGF-ß1 develop AD-
like vascular alterations [54]. In addition, vessel-derived
TGF-ß1 has been suggested to contribute to inflamma-
tory processes in the AD brain [55,56]. Town et al. [57]
have recently found that blocking TGF-β-Smad 2/3 sig-
naling reduces cerebrovascular β-amyloid deposits and
Aβ abundance in Tg2576 mice, and these events result in
promotion of Smad1/5/8 signaling with increased infil-
tration of Aβ-containing peripheral macrophages around
cerebral vessels and β-amyloid plaques.

Overall data from the literature seem to suggest that
TGF-ß1 can promote Aβ deposition in cerebral blood
vessels, but reduces Aβ accumulation in the brain
parenchyma [23]. In particular, it has been demonstrated
that a modest increase in astroglial TGF-β1 production in
aged transgenic mice expressing the human beta-amyloid
precursor protein (hAPP) results in a 50% reduction of
Aβ load in the hippocampus, and a decrease in the num-
ber of dystrophic neurites [58].

Deficiency of TGF-ß1 signaling is also involved in tau
pathology and NFT formation. Luterman et al. [59] found
that low levels of TGF-ß1 mRNA negatively correlated
with NFT in the AD brain, thus suggesting that a defi-
ciency of TGF-ß1 might also contribute to the cascade
of events that result in the development of NFT-bearing
neurons. The relationship between tau hyperphosphory-
lation and TGF-ß1 signaling has been recently studied
in the temporal lobe in AD [50]. Interestingly, NFT can
sequester phosphorylated Smad3 in AD brain, thus pre-
venting its translocation into the nucleus and the induc-
tion of gene transcription [50].

Other groups report an impairment of Smad-
dependent TGF-ß1 signaling in AD brain [47,49], with
an aberrant localization of phosphorylated Smad2 to the
cytoplasm rather than the nucleus of hippocampal neu-
rons and a specific colocalization with amyloid plaques
and NFT. These data suggest a dysfunction of Smad sig-
naling in AD brain, and, interestingly, a recent in vitro

study has demonstrated that Aβ can inhibit TGF-ß1 sig-
naling by inducing the expression of Smad 7 [60].

Taken together, these data might explain the paradox
observed in the AD brain, where TGF-ß1 levels in CSF are
found to be high; however, this neurotrophic factor might
not exert its neuroprotective action for an impairment of
Smad signaling (Figure 1).

Smad proteins are also implicated in initiation and
maintenance of neuronal differentiation and synaptic
plasticity, and TGF-ß1 is a well-known inhibitor of cell
proliferation that may contribute to keep postmitotic
neurons in a differentiated state [32]. The reduced func-
tion of TGF-ß1 signaling in AD might therefore contribute
to a re-expression of cell cycle proteins in neurons, and
the resulting activation of the cell cycle, which is consid-
ered as an early event in AD pathogenesis [61–64].

We believe that a deficiency in TGF-ß1 signaling might
exert a central role in AD pathogenesis via different
mechanisms that finally lead to Aβ accumulation and/or
NFT formation with an ensuing neurodegeneration
(Figure 1).

Neuroprotective Effects of TGF-β1
against Aβ-Induced Neurodegeneration

TGF-ß1 is known to protect neurons against a diverse
number of insults, including excitotoxicity, hypoxia, is-
chemia, and deprivation of trophic factors [23,36,65,66].
Several studies have suggested that TGF-ß1 also exerts a
neuroprotective role against Aβ toxicity by selectively in-
terfering with different steps of the Aß-induced death cas-
cade. In cultured neurons, estrogen-stimulated release of
TGF-ß1 from glial cells [67] or application of recombinant
TGF-ß1 [68–71] reduces Aß-induced neurodegeneration.

We have recently studied the neuroprotective effects of
endogenous TGF-β1 signaling in the rat brain after intrac-
erebral injection of synthetic Aß [35]. Aß injection into
the dorsal hippocampus produced only a small extent of
neuronal loss in the pyramical layer of the CA1 region.
However, Aß neurotoxicity was amplified by i.c.v. injec-
tion of SB431542, which behaves as a selective inhibitor
of the activin-like kinase 5 (ALK5) TGF-β type I receptor
[72].

Different molecular mechanisms have been implicated
in the neuroprotective effects of TGF-β1 against Aß tox-
icity. TGF-β1 receptors are expressed both in glial cells
and neurons [65], and, therefore TGF-β1 might exert its
protective effects by acting on both cell types.

TGF-β1 has a constitutive role in the suppression
of inflammation, and appears to control the degree of
microglial activation in the CNS [24]. Inhibition
of TGF-β1 in different models of neurodegenerative
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disorders is associated with local inflammation mediated
by macrophage/microglia and T cells [24,73]. Inflamma-
tory responses elicited by elevated Aβ peptides play an
important role in the progression of AD, and microglia
activation is an early event in AD pathogenesis and can
be already detected in patients with MCI [74]. Aß can
activate microglia to release proinflammatory cytokines
such as IL-1β, IL-6, and TNF-α [75], which can contribute
to neuronal death in the AD brain. Interestingly, several
studies have demonstrated that TGF-β1 reduces microglia
activation and promotes the degradation of Aβ by the mi-
croglia [58,76,77].

TGF-β1 might also affect neuronal survival through
other mechanisms because it acts synergistically with
other neurotrophins and is required for a full neuro-
protective activity of nerve growth factor (NGF), brain-
derived neurotrophic factor (BDNF), and glial-derived
neurotrophic factor (GDNF) [78–80]. The levels of BDNF
and its receptor, tropomyosin receptor kinase B (TRKB),
are reduced in the AD brain, and deficiency of BDNF sig-
naling has been related to neurodegeneration and cogni-
tive dysfunction in AD [81,82]. Interestingly, TGF-β1 en-
hances the expression of BDNF and TrkB in rat neuronal
cultures [83].

It might be possible that the contemporary failure of
both BDNF and TGF-β1 signaling in the AD brain en-
hances neuronal vulnerability to Aß, thus accelerating
the progression of AD.

Finally, a component of the neuroprotective action of
TGF-β1 is mediated by the activation of neuronal TGF-
β receptors. TGF-β1 is known to prevent apoptotic cell
death in neurons through the inhibition of caspase-3 ac-
tivation [84]. In addition, TGF-β1 maintains mitochon-
drial membrane potential and increases the expression
of antiapoptotic proteins, such as Bcl-2 and Bcl-xl [68].
TGF-β1 can also activate the extracellular-regulated ki-
nase (ERK) pathway in hippocampal neurons, thus pro-
moting the phosphorylation and subsequent inhibition of
the proapoptotic protein, Bad [85]. Furthermore, TGF-
β1 can increase the transcriptional activity of the anti-
apoptotic transcriptional factor, NF-kappaB, through the
PI3K/Akt and ERK signaling pathways [86].

TGF-β1 Interferes with the Death
Triggered by Aβ in Neurons: From Cell
Cycle Inhibition to the Rescue of the Wnt
Pathway

The process of neuronal death triggered by Aß pro-
ceeds along an aberrant re-activation of the cell cycle
[10,11,13]. Cell cycle in proliferating cells depends on
the sequential activation of cyclin (Cyc)/cyclin depen-

dent protein kinases (CDKs), which control the transi-
tion through the different phases of the cycle [87]. Aß
activates the cell cycle in neurons by inducing the se-
quential expression of different cell cycle proteins usually
functioning in proliferating cells, such as cyclin D1, phos-
phorylated retinoblastoma protein (ppRB), cyclin E, and
cyclin A, which are necessary for G1/S transition, and S
phase progression [10]. Reactivation of the cell cycle is an
obligatory step in the apoptotic pathway evoked by Aß,
suggesting that an ectopic S phase triggers the signal for
neuronal death. DNA replication has also been demon-
strated in neurons from AD brains [88], providing the in

vivo counterpart of in vitro findings.
Recent studies suggest that cell cycle activation in neu-

rons leads to a pathological DNA replication performed
by a noncanonical enzymatic machinery, which finally
contributes to generation of a death signal in neurons
[11,13]. As opposed to proliferating cells, neurons that
enter the S phase in response to Aβ fail to express DNA
polymerase-α (DNA pol-α), which has an essential role in
the canonical DNA synthesis [11], but overexpress DNA
polymerase-β (DNA pol-β), a repair enzyme that only oc-
casionally performs de novo DNA synthesis. DNA pol-β is
an error-prone enzyme and, therefore, the aberrant DNA
synthesis induced by Aβ might contribute to the signal to
trigger neuronal apoptosis. The extension of DNA replica-
tion performed by DNA pol-β is critical for the activation
of a death signal that is mediated by an increased expres-
sion of p53, a major sensor of DNA damage in eukaryotic
cells [11,12,13,89].

The increased expression of p53 in Aβ-treated neurons
in response to DNA damage can promote neuronal death
through different pathways. The activation of a p53/DNA
damage-dependent pathway triggers the execution phase
of apoptotic death via the induction of the proapoptotic
protein Bax and the downregulation of the antiapop-
totic protein Bcl-2 [90]. On the other hand, p53 induc-
tion in Aβ-treated neurons might also activate a slow
degenerative process, which finally leads to NFT forma-
tion. Several genes are under the control of p53 in eu-
karyotic cells [89], and p53 has been shown to induce, in
cultured neurons challenged with Aβ, the expression of
Dickkopf (Dkk-1), a specific antagonist of the Wnt sig-
naling pathway [91]. Wnt signaling has an established
role in maintaining neuronal homeostasis, and GSK-3ß,
the main enzyme involved in tau hyperphosphorylation
[15], is a key component of the Wnt pathway. Activa-
tion of the Wnt pathway leads to the inhibition of GSK-
3ß through a cascade of intracellular reactions, which
involve adaptor proteins such as disheveled (Dvl), and
a multiprotein complex containing GSK-3ß, β-catenin,
axin, and adenomatous polyposis coli (APC) [92]. Inhi-
bition of GSK3ß prevents tau phosphorylation and also
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phosphorylation of ß-catenin, which thus escapes degra-
dation and translocates to the nucleus where it drives the
expression of different genes involved in the regulation
of neuronal survival, such as Bcl-2 and survivin [93].
Accumulated β-catenin can also be targeted to synapses,
where it modulates synaptic strength in response to de-
polarization [94,95].

In this scenario, the p53-dependent induction of Dkk-
1 observed both in AD models and in the AD brain, may
determine a loss of Wnt function, with the following ac-
tivation of GSK-3ß and NFT formation [91,93]. Accord-
ingly, Dkk-1 knockdown prevents tau hyperphosphory-
lation and β-catenin degradation in Aß-treated neurons
[91].

Interestingly, we recently found that TGF-ß1 applied
to cultured cortical neurons challenged with Aβ pre-
vents the abnormal DNA replication, enhances the lev-
els of Ser9-phosphorylated (inhibited) GSK-3β, and pre-
vents β-catenin degradation and tau hyperphosphoryla-
tion, thus attenuating neuronal death. All these effects
were abrogated by the PI3K inhibitor, LY294402, sug-
gesting that TGF-ß1 is protective against Aβ neurotoxi-
city via the activation of the PI3K pathway (Figure 2).
Interestingly, a defect in the PI3K pathway has been as-
sociated with AD [96,97]. Figure 2 also shows the classical
Smad-dependent pathway leading to cell cycle inhibition
in response to TGF-β. Whether this pathway contributes
to cell cycle arrest and neuroprotection under conditions
of a defective PI3K activation (as may occur in AD) is
unknown.

Pharmacological Perspectives

The knowledge of the molecular processes underlying AD
pathogenesis is a fundamental step for the development
of disease-modifying drugs able to counteract the degen-
erative processes in AD.

According to the evidence discussed in the present re-
view, the deficiency of TGF-ß1 signaling seems to be an
early event in AD pathogenesis, which contributes to Aß-
induced neurodegeneration and NFT formation in the AD
brain (see Figure 1). We therefore suggest that the rescue
of TGF-ß1 signaling might be a new strategy to promote
neuroprotection in AD.

Neurotrophic factor therapy represents a difficult chal-
lenge for CNS drug discovery, because protein growth
factors do not cross the blood–brain barrier and require
intracerebral administration to be effective. The implant
of autologous fibroblasts genetically modified to express
human growth factors into selected areas of CNS has been
proposed as a new strategy for the treatment of AD. This
approach has been adopted for NGF in AD, and a phase I

Figure 2 Putative mechanisms underlying the neuroprotective effects

of TGF-β1 against Aβ-induced neurodegeneration. Aβ induces neuronal

death via an early activation of cell cycle, and a late induction of DKK1

leading to an inhibition of the canonical Wnt pathway with ensuing ac-

tivation of GSK-3β. TGF-β1 inhibits cell cycle activation and rescues the

Wnt pathway via a direct activation of the PI3K pathway. Activation of

the classical Smad-dependent pathway leading to an enhanced expres-

sion of cyclin-dependent kinase inhibitors (p21, p27) and cell cycle ar-

rest is also shown (dotted). Whether this pathway may also contribute to

the protective effect of TGF-β1 against Aβ-induced neurodegeneration is

unknown.

clinical trial has shown promising results [98]. Recently,
BDNF gene delivery has also been found to exert sub-
stantial protective effects in AD models and has been pro-
posed as a new potential therapy for AD [99]. However,
central delivery of neurotrophic factors can be proposed
only for a subset of AD patients and cannot be considered
as a suitable approach for general medical practice.

The strong neuroprotective activity of neurotrophic
factors has stimulated the search for small-molecules
drugs that activate neurotrophic factor receptors or po-
tentiate the action of growth factors by affecting their
signaling pathway [100,101]. Along this line, small-
molecule drugs that selectively activate specific elements
of the TGF-β1 signaling pathway have been studied for
the identification of drugs that can be beneficial in AD
[102]. A more feasible approach would be the use of cen-
trally available drugs that are able to increase the local
production of TGF-ß1. Several drugs are known to in-
duce the synthesis and the release of TGF-ß1 in vitro and
in vivo (Table 1).

Estrogen treatment has been shown to reduce the risk
of AD when administered at the time of the menopause
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Table 1 Potential pharmacological approaches to rescue TGF-β1 signaling in AD

Drug Mechanism References

TGF-β1 mimetics Activation of TGF-β1 receptors [102]

Estrogens Increased secretion of TGF-ß1 from astrocytes [67]

Aspirin Increased TGF-ß1 plasma levels in vivo [111,113]

Statins Stimulated TGF-ß1 synthesis and secretion from monocytes [112,113]

Glatiramer Induction of TGF-ß1 synthesis from Th2 type cells and glial cells [116]

Sertraline, paroxetine Increased TGF-ß1 plasma levels in vivo [118,124]

Venlafaxine Stimulated TGF-ß1 production and release from glial cells [119]

Lithium Increased release of TGF-ß1 from astrocytes [See Figure 3]

mGlu2/3 receptor agonists Increased synthesis and secretion of TGF-ß1 from astrocytes [130,131]

and continued over several years [103]. Estrogens ex-
ert strong neuroprotective effects in hippocampal neu-
rons when administered before Aβ treatment [104].
Interestingly, estrogens act as neuroprotectants via an in-
creased secretion of TGF-ß1 from astrocytes [67]. TGF-
ß1 released from astrocytes exposed to 17β-estradiol pre-
vents Aß toxicity in pure neuronal cultures by preventing
the unscheduled activation of the cell cycle [67]. These
data suggest a possible role for TGF-ß1 in the neuropro-
tective activity of estrogen therapy in AD, but further ev-
idence is needed to confirm this hypothesis.

Some cardiovascular drugs, such as aspirin and statins,
can promote TGF-ß1 synthesis and release [105] and, in-
terestingly, both of drugs are known to reduce the risk
of developing AD [106–109]. Aspirin inhibits vascular
smooth muscle cell proliferation via the TGF-ß1 path-
way [110], and higher levels of active TGF-ß1 have been
found in patients with coronary artery disease treated
with aspirin [111]. Pravastatin has been found to in-
crease TGF-ß1 synthesis and secretion in plaque mono-
cytes from atherosclerotic patients [112]. In addition,
the combination of atorvastatin with aspirin in patients
undergoing coronary artery bypass grafting (CABG) has
been shown to decrease the risk of major adverse cardiac
events via the suppression of inflammatory responses and
an increased production of TGF-ß1 [113]. Unfortunately,
no studies have been carried out on the effects of these
drugs on TGF-ß1 synthesis in the CNS.

Interestingly, some drugs used for the treatment of
CNS disorders are known to promote TGF-ß1 synthesis
in the brain. Glatiramer (GA) is a synthetic amino acid
copolymer currently approved for the treatment of multi-
ple sclerosis (MS) that reduces both relapse rate and pro-
gression of disability [114]. Different mechanisms of ac-
tion have been postulated for this drug in humans. Arnon
and Aharoni [115] have demonstrated that glatiramer
in mice induces specific suppressor cells of the T helper
(Th2) type that migrate to the brain where they express
antiinflammatory cytokines such as IL-10 and TGF-ß1 in

addition to BDNF [116]. Furthermore, GA-specific cells
increase the expression of TGF-ß1 from glial cells in the
cerebral cortex and hippocampus, two brain regions that
are strongly implicated in the pathophysiology of AD.
It could be interesting to examine the effects of glati-
ramer treatment on amyloid and tau pathology in AD
models.

Different antidepressants, including tianeptine [117],
sertraline [118], and venlafaxine [119], can increase
TGF-ß1 production. Interestingly, therapeutic concen-
trations of venlafaxine prevent microglial activation,
reduce proinflammatory cytokine secretion, and finally
increase the release of TGF-ß1 in an astroglia–microglia
coculture model [119]. These data suggest that glial cells
can mediate the antiinflammatory effects of antidepres-
sant drugs, but the potential neuroprotective activity of
these compounds has been only partially explored in AD
models. Presymptomatic treatment with the antidepres-
sant paroxetine reduces both amyloid and tau pathology
and also reverses memory impairment in the 3xTgAD
mouse model of AD [120]. This study suggests that an-
tidepressants are neuroprotective activity and may re-
tard the development of AD. Accordingly, a history of
major depression early in life has been considered as
a risk factor for later development of AD [121]. Fur-
thermore, the presence of depressive symptoms signifi-
cantly increases the conversion of MCI into AD [122].
Plasma TGF-ß1 levels are reduced in major depressed pa-
tients and show a significant negative correlation with
the Hamilton Depression Rating Scale (HDRS) [123]. In-
terestingly, different antidepressant drugs, including ven-
lafaxine, paroxetine, and sertraline, significantly increase
circulating TGF-ß1 levels in major depressed patients
[118,124]. A recent study by Kessing et al. (2009) shows
that continued long-term antidepressants treatment is as-
sociated with a reduction in the rate of AD [125], sug-
gesting that it might be worth to assess whether TGF-
β1 signaling is a common target for both depression
and AD.
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Figure 3 Lithium stimulates TGF-β1 release from rat cortical astrocytes.

Rat cortical astrocytes were exposed to 1 mM lithium chloride for 24 h,

and the incubationmediumwas collected forwestern blot analysis (A) and

ELISA assay (B). (A) Representative immunoblot of latent TGF-β1 (about

55 kDa). Protein loading was checked by staining membrane-transferred

proteins with Ponceau’s solution. Values are the means± SEM of 3 deter-

minations;P<0.05 (byone-wayANOVA+Fisher’s LSD test) versuscontrol

(∗). (B) Each bar represents themean± SEMof active TGF-β1protein levels

in the incubation medium. Data are from three different experiments; P<

0.05 (by one-way ANOVA + Fisher’s LSD test) versus control (∗).

Other psychotropic drugs such as lithium ions can also
influence TGF-ß1 production. Recent evidence suggests
that lithium is neuroprotective against a variety of neu-
rodegenerative conditions, including AD [126]. Preva-
lence of AD is lower in patients treated with lithium
[127], and lithium reduces the risk of developing AD
in elderly patients with bipolar disorder [128]. Different
molecular mechanisms have been suggested to explain
the neuroprotective effects of lithium in AD, such as the
reduction of Aβ production or, more important, the inhi-
bition of GSK-3β, which might counteract the loss of Wnt
signaling observed in the AD brain [35,126]. Recently,
we have found that lithium strongly induces the release
of TGF-ß1 from rat cortical astrocytes, as assessed by im-
munoblotting and ELISA assay (unpublished results; see
Figure 3). Hence, our own data suggest that the very
broad neuroprotective activity of lithium might be related
to the induced release of TGF-ß1 from glial cells.

Additional levels of interaction between TGF-ß1 signal-
ing and lithium-regulated pathways have been proposed,
including lithium’s inhibition of Smad3/4-dependent
TGF-ß1 signaling in neurons [129]. This inhibition of
Smad-regulated gene transcription seems to be useful
under specific pathological conditions (e.g., mood dis-
orders) that may benefit from the suppression of plas-
minogen activator inhibitor type-1 (PAI-1) transcription
[129]. The evidence that lithium’s inhibitory effects on
Smad3/4 transcriptional activity are due, at least in part,
to the activation of PI3-K/AKT signaling [129], suggests
that in neurons the activation of the PI3-K/AKT pathway
might be mutually exclusive with the activation of the
Smad-dependent pathway. In other words, the activation

of Smad/non-Smad signaling pathways by TGF-ß1 might
be fine-tuned in a context-dependent manner to result
unchangingly into neuroprotection.

Finally, the production of TGF-ß is enhanced by ago-
nists of group II metabotropic glutamate (mGlu) recep-
tors both in cultured astrocytes [130] and in the mouse
brain [131]. In addition, these drugs protect neurons
grown in the presence of astrocytes against Aß toxic-
ity [132]. It is noteworthy that highly potent and cen-
trally available group II mGlu receptor agonists, such as
LY404039, are under clinical development for the treat-
ment of schizophrenia [133]. We suggest that these drugs
are potential candidates as neuroprotectant agents in AD,
and might be also useful for the treatment of psychosis in
AD (PAD) as an alternative to antipsychotic drugs, which
may increase the risk of cerebrovascular events in de-
mented patients [134].
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