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Nonalcoholic steatohepatitis (NASH) is associated with increased liver-related mor-
tality. Disturbances in hepatic lipid homeostasis trigger oxidative stress and inflam-
mation (ie, lipotoxicity), leading to the progression of NASH. This study aimed at
identifying whether silibinin may influence the molecular events of lipotoxicity in
a mouse model of NASH. Eight-week-old db/db mice were fed a methionine-
choline deficient (MCD) diet for 4 weeks and treated daily with silibinin (20 mg/kg
intraperitoneally) or vehicle. Liver expression and enzyme activity of stearoyl-CoA
desaturase-1 and acyl-CoA oxidase, and expression of liver fatty acid-binding pro-
tein were assessed. Hepatic levels of reactive oxygen species, thiobarbituric acid-
reactive substances (TBARS), 3-nitrotyrosine (3-NT), inducible nitric oxide synthase
(iNOS), and nuclear factor kappa B (NFkB) activities were also determined. Silibinin
administration decreased serum alanine aminotransferase and improved liver stea-
tosis, hepatocyte ballooning, and lobular inflammation in db/db mice fed an MCD
diet. Gene expression and activity of stearoyl-CoA desaturase-1 were reduced in
db/db mice fed an MCD diet compared with lean controls and were increased by
silibinin; moreover, silibinin treatment induced the expression and activity of acyl-
CoA oxidase and the expression of liver fatty acid-binding protein. Vehicle-treated
animals displayed increased hepatic levels of reactive oxygen species and TBARS,
3-NT staining, and iNOS expression; silibinin treatment markedly decreased reactive
oxygen species and TBARS and restored 3-NT and iNOS to the levels of control mice.
db/db mice fed an MCD diet consistently had increased NFkB p65 and p50 binding
activity; silibinin administration significantly decreased the activity of both subunits.
Silibinin treatment counteracts the progression of liver injury by modulating lipid
homeostasis and suppressing oxidative stress–mediated lipotoxicity and NFkB acti-
vation in experimental NASH. (Translational Research 2012;159:477–486)
Abbreviations: AOX ¼ acyl-CoA oxidase; ALT ¼ alanine aminotransferase; FFA ¼ free fatty
acid; iNOS ¼ inducible nitric oxide synthase; L-FABP ¼ liver-fatty acid binding protein;
MCD ¼methionine-choline deficient; NAFLD ¼ nonalcoholic fatty liver disease; NASH ¼ nonal-
coholic steatohepatitis; NFkB ¼ nuclear factor kappa B; NO ¼ nitric oxide; PCR ¼ polymerase
chain reaction; RNS¼ reactive nitrogen species; ROS¼ reactive oxygen species; SD¼ standard
diet; SCD-1 ¼ stearoyl-CoA desaturase 1; TBARS ¼ thiobarbituric acid-reactive substances;
3-NT ¼ 3-nitrotyrosine
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AT A GLANCE COMMENTARY

Salamone F, et al.

Background

NASH is associated with increased liver-related

mortality. No pharmacologic treatment has been

shown to be effective for NASH. Polyphenols

can modulate the molecular pathways involved in

liver steatogenesis and are able to counteract oxi-

dative stress and inflammation.

Translational Significance

We demonstrated that silibinin exerts antisteatotic

effects because of changes in liver expression of

key enzymes involved in lipid homeostasis. More-

over, silibinin counteracts liver injury progression

via antioxidant and anti-inflammatory activity. On

the basis of these findings, there is a significant mo-

lecular rationale for the use of silibinin in patients

with NASH.
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Nonalcoholic fatty liver disease (NAFLD) is a chronic
metabolic disorder with significant impact on all-cause
mortality.1 NAFLD is independently associated with the
features of the metabolic syndrome,2,3 having insulin
resistance as a common metabolic determinant.4

NAFLD includes a wide spectrum of histologic lesions
ranging from nonalcoholic fatty liver to nonalcoholic
steatohepatitis (NASH).5 NASH is characterized by he-
patocellular damage (ie, ballooning and inflammation)
and may have a fibrogenic evolution leading to liver-
related morbidity and mortality.1 Patients with NASH
have increased liver content of free fatty acids (FFAs)
derived from adipose tissue lipolysis and hepatic de
novo lipogenesis.6 An imbalance in the production
and scavenging of reactive oxygen species (ROS) and
reactive nitrogen species (RNS), mainly derived from
mitochondrial FFA oxidation, can cause hepatocyte
injury and may trigger the activation of inflammatory
signaling (eg, nuclear factor kappa B [NFkB]) in the
liver.7,8

Several pharmacologic treatments have been pro-
posed for NASH, but currently available drugs have
been reported to have limited efficacy and safety.9 Ex-
perimental studies suggest that some natural polyphe-
nols may be effective in counteracting oxidative stress
and inflammation inNASH.10 Silibinin is a polyphenolic
compound contained in silymarin, a mixture of flavono-
lignans extracted for milk thistle (Silybum marianum)
seeds, widely used as hepatoprotectant, although its
molecular effects are not fully understood. Potent scav-
enging properties have been demonstrated in hepatic
and non-hepatic cells;11,12 several in vivo studies
showed that silibinin may exert beneficial effects in
different types of liver injury13,14 and in diabetes and
its complications.15

Previous clinical findings evidenced the efficacy of
silibinin on insulin resistance and liver injury, assessed
by surrogate markers, in patients with NASH;16 the im-
provement of liver histology after silibinin treatment
was recently reported in a multicenter randomized con-
trolled trial.17 However, the molecular mechanisms as-
sociated with the hepatoprotective activity of silibinin
in NASH remain to be elucidated. The current study
aimed at clarifying whether silibinin may favorably af-
fect lipogenesis, oxidative stress, and NFkB activation
in a mouse model of NASH. To this aim, we examined
the effects of silibinin administration in db/db mice fed
a methionine-choline deficient (MCD) diet, an experi-
mental model combining the features of the metabolic
syndrome with the histologic pattern of NASH.18,19 db/
db mice fed an MCD diet partially conserve the db/db
phenotype, mainly increased visceral adiposity,19 while
developing hepatocellular injury and inflammation
typical of the MCD diet.18,19
METHODS

Animals and treatments. Eight-week-old male
BKS.Cg-m1/1 Leprdb/J (db/db) obese mice and
8-week-old male heterozygous db/m lean control mice
were purchased from Charles River Laboratories
(Calco, Italy). Animals were maintained in a
temperature- and light-controlled facility and permitted
ad libitum consumption of water; db/db mice were fed
an MCD diet (ICN Biomedicals, Costa Mesa, Calif)
for 4 weeks; db/m mice were fed an MCD diet
supplemented with methionine and choline (ICN
Biomedicals), that is, a standard diet (SD), for the
same period. Mice were distributed in 3 groups:
Group I included 8 db/m mice fed a control diet and
treated with vehicle (db/m 1 SD); group II included 8
db/db mice fed an MCD diet and treated with vehicle
(db/db 1 MCD); group III included 8 db/db mice fed
an MCD diet and treated with silibinin (db/db 1
MCD 1 silibinin). Silibinin dihydrogen succinate
(Indena, Milan, Italy) was dissolved in saline and
administered daily intraperitoneally at a dosage of
20 mg/kg of body weight. This dosage has been
showed to be safe both in healthy volunteers20 and in
patients with chronic hepatitis C.21,22 Treatment was
administered for a 4-week period; at the end of
treatment, animals were sacrificed after an overnight
fast. Blood and liver samples were processed and
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stored for further analysis. All procedures were carried
out in accordance with the ‘‘Italian Guidelines for the
Care and Use of Laboratory Animals,’’ and the article
conforms to the relevant ethical guidelines for animal
research.

Histopathology and immunofluorescence. Formalin-
fixed, paraffin-embedded sections of hepatic tissue
were stained with hematoxylin–eosin using standard
procedures. Liver sections were also stained with
Masson’s trichrome. NAFLD lesions were blindly
evaluated following the NAFLD activity score.
Immunofluorescence with 3-nitrotyrosine (3-NT)
(Chemicon Inc, Pittsburgh, Pa) antibody was
performed on liver sections using standard protocols.

Biochemical analyses. Blood glucosewasmeasured by
ACCU-CHEK (Roche Diagnostics, Milan, Italy). Serum
aspartate aminotransferase, alanine aminotransferase
(ALT), and serum insulin were determined using
a multichannel autoanalyzer (Abbott Diagnostics,
Milan, Italy). Thiobarbituric acid-reactive substances
(TBARS) were measured by a TBARS assay kit
(Cayman, Ann Arbor, Mich).

ROSmeasurement. ROS generation was determined in
tissue homogenates by using 2’,7’-dichlorodihydrofluor-
oscein diacetate as a probe. Dichlorodihydrofluorescein
diacetate formation was determined fluorometrically
with a Hitachi F-2000 (Hitachi Ltd, Tokyo, Japan) fluo-
rescence spectrophotometer at excitation wavelength of
488 nm and emission wavelength of 525 nm at 37�C.

Western blot analysis. Whole liver homogenates
were processed for Western blot analysis, and protein
levels were visualized by immunoblotting with anti-
bodies against the inducible nitric oxide synthase
(iNOS) (Chemicon, Temecula, Calif). Briefly, 30 mg
protein was separated by sodium dodecyl sulphate-
polyacrylamide gel electrophoresis and transferred
to a nitrocellulose membrane (Amersham Inc,
Piscataway, NJ) using a semidry transfer apparatus
(Bio-Rad, Hercules, Calif). Membranes were incubated
with a 1:1.000 dilution of specific antibody overnight
with constant shaking. The filters were then washed
and subsequently probed with goat anti-rabbit
antibodies labeled with IRDye 680 (1:10.000 dilution,
LI-COR Biosciences, Lincoln, Neb), and hybridization
signals were detected with the Odyssey Infrared
Imaging System (LI-COR Biosciences). Densitometric
analysis was then performed and normalized with
relative actin (Chemicon).

RNA extraction and real-time polymerase chain
reaction. Total RNA was extracted by homogenizing
snap-frozen liver samples in TRIzol reagent
(Invitrogen, Milan, Italy). Quantitative real-time
polymerase chain reaction (PCR) was performed in
7900HT Fast Real-Time PCR System (Applied
Biosystems, Foster City, Calif), using the EXPRESS
SYBR GreenER qPCR SuperMix with Premixed ROX
(Invitrogen). The following primer sequences were
used: acyl-CoA oxidase (AOX) forward 50-CTTG
TTCGCGCAAGTGAGG-30, reverse 50-CAGGATCC
GACTGTTTACC-30; liver-fatty acid binding protein
(L-FABP) forward 50-GTGGTCCGCAATGAGTTC
AC-30, reverse 50-GTATTGGTGATTGTGTCTCC-30;
and stearoyl-CoA desaturase 1 (SCD-1) forward 50-
TGGGTTGGCTGCTTGTG-30, reverse 50-GCGTGG
GCAGGATGAAG-30. Reactions were performed in
a 20-mL mixture containing cDNA, specific primers of
each gene, and the SYBRR GreenER qPCR SuperMix.
The specific PCR products were detected by the
fluorescence of SYBR Green, the double-stranded
DNA binding dye. The relative mRNA expression
level was calculated by the threshold cycle value of
each PCR product and normalized with that of
GAPDH by using the comparative 2^DD threshold
cycle method.

Enzyme activities. Liver AOX activity was measured
spectrophotometrically by following the increase in ab-
sorbance at 263 nm. A molar extinction coefficient of
6700 M21 3 cm21 was used as previously described.23

Liver SCD-1 activity was performed after extraction
and fractionation of long-chain acyl-CoAs by reverse-
phase high-performance liquid chromatography as
previously reported.24 Chromatographically resolved
stearoyl-CoA (C18:0) and oleyl-CoA (C18:1) peaks
were collected and counted in a b-scintillation counter.
The protein content was determined according to the
Bradford method.25

Extraction of nuclear proteins and activity
assays. Nuclei were isolated using the Pierce Isolation
Kit (Thermo Fisher Scientific, Rockford, IL) following
the manufacturer’s instructions. Nuclear extracts were
resuspended in specific buffer, and protein content
was obtained according to the Bradford method. Subse-
quently, activated p50 and p65 were measured by
a specific Trans-AM transcription factor assay kit
(Active Motif, Rixensart, Belgium) according to the
manufacturer’s instructions. In this assay, an
oligonucleotide containing the NFkB consensus site is
attached to a 96-well plate. The active form of
transcription factor contained in nuclear extracts
specifically binds to this oligonucleotide and can be
revealed by incubation with specific antibodies using
enzyme-linked immunosorbent assay technology with
absorbance reading.

Statistical analysis. Statistics were performed by
GraphPad Prism (GraphPad, San Diego, Calif). All re-
sults were expressed as mean 6 standard error of the
mean. One-way analysis of variance with Bonferroni
post hoc analysis was used for parametric data.



Fig 1. Effects of silibinin on metabolic parameters and serum transaminases. (A) Body weight was not signif-

icantly modified by silibinin administration, whereas (B) insulin resistance, as assessed by homeostasis model

assessment-insulin resistance, was improved by the treatment. (C) Serum ALT levels were markedly decreased

in silibinin-treatedmice. (D) Serum aspartate aminotransferasewas unchanged in any group. *P,.05 vs db/m1
SD. **P , .05 vs db/db 1MCD.
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Kruskal–Wallis was used for nonparametric data. P ,
.05 was considered significant.

RESULTS

Effects on serum parameters and liver histology. db/db
mice fed an MCD diet, treated with vehicle, were insu-
lin resistant, as shown by homeostasis model
assessment-insulin resistance index (Fig 1); silibinin
administration decreased fasting glucose and insulin,
leading to normalization of homeostasis model
assessment-insulin resistance (Fig 1). Vehicle-treated
animals had a marked increase of serum ALT
compared with lean controls, whereas aspartate
aminotransferase levels were not modified (Fig 1); in
silibinin-treated mice, ALT levels were significantly
decreased (Fig 1). Consistently with the decrease of
serum ALT, a marked improvement of liver histology
was observed (Fig 2). In particular, liver sections of
db/db mice fed an MCD diet showed severe steatosis
with an azonal pattern (Fig 2), moderate lobular
inflammation, and diffuse hepatocyte ballooning. In
the silibinin group, steatosis, lobular inflammation,
and ballooning degeneration were markedly reduced
(Fig 2); overall, NAFLD activity score was signi-
ficantly decreased in treated animals (Fig 2). Masson’s
trichrome did not show fibrosis in any mice after
4 weeks of MCD diet (data not shown).

Effects on lipid homeostasis, oxidative stress, and NFkB
activation. db/dbmice fed anMCDdiet displayed an im-
paired liver expression of key metabolic enzymes in-
volved in lipid homeostasis. Vehicle-treated animals
had a reduction in hepatic mRNA levels of SCD-1 and
L-FABP, whereas AOX was not modified compared
with lean controls (Fig 3). Of note, silibinin
administration markedly induced gene expression of
SCD-1, L-FABP, and AOX (Fig 3). Likewise, both
SCD-1 and AOX enzymatic activities were increased
after pharmacologic treatment (Fig 3). The level of
TBARS, a marker of lipoperoxidation, was augmented
in vehicle mice and strongly reduced in silibinin-
treated animals despite increased expression of AOX
(Fig 3).



Fig 2. Effects of silibinin on liver histology. (A, B) Hematoxylin–eosin-stained liver sections of db/dbmice fed an

MCD diet showed severe azonal steatosis, diffuse hepatocyte ballooning (arrow), and scattered inflammatory foci

(arrowhead). (C, D) Liver sections of silibinin-treated animals revealed an improvement in liver injury. (E)

NAFLD Activity Score was significantly decreased by the treatment. *P , .05 vs db/m 1 SD. **P , .05 vs

db/db 1 MCD. Magnification: 103 (A, C); 403 (B, D). (Color version of figure is available online.)

Translational Research
Volume 159, Number 6 Salamone et al 481
ROS levels were increased in the liver of db/db mice
fed an MCD diet in comparison with lean controls
(Fig 4); silibinin treatment decreased liver ROS to
the levels of lean mice (Fig 4). Consistently, markers
of nitrosative stress were also significantly increased
in the liver of db/db mice fed an MCD diet. Western
blot analysis showed that iNOS expression was 9-
fold increased in vehicle-treated db/db mice fed an
MCD diet (Fig 4). Silibinin treatment restored iNOS
expression to the levels observed in the lean group
(Fig 4). Nitric oxide (NO) is produced endogenously
by iNOS and can rapidly react with superoxide anion
to produce peroxynitrite leading to protein tyrosine-
nitration. Consistently with iNOS results, silibinin
significantly reduced protein nitration as assessed by
immunofluorescence for 3-NT. We found that 3-NT



Fig 3. Effects of silibinin on liver lipid metabolic enzymes and lipid peroxidation. (A, B) Hepatic gene expression

and activity of SCD-1 were reduced in db/db mice fed an MCD diet compared with lean controls; by contrast,

silibinin administration markedly enhanced SCD-1 mRNA levels and enzyme activity. (C, D) Gene expression

and activity of AOX were induced by the treatment with silibinin in db/db mice fed an MCD diet. (E) L-FABP

was reduced in db/db mice fed an MCD diet compared with lean controls and augmented by the treatment; (F)

the levels of TBARS, a marker of lipid peroxidation, were markedly reduced in silibinin-treated animals. *P ,
.05 vs db/m 1 SD. **P , .05 vs db/db 1 MCD.
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is barely detectable in lean mice (data not shown),
whereas a scattered positivity for 3-NT was present
in the liver of vehicle-treated db/db mice fed an
MCD diet (Fig 4). Silibinin treatment resulted in a re-
duction of 3-NT immunofluorescence throughout the
hepatic parenchyma (Fig 4). In agreement with
oxidative-nitrosative stress findings, NFkB activity
measurement showed a marked increase of p50 and
p65 binding activity in vehicle-treated db/db mice
fed an MCD diet compared with lean animals; treat-
ment with silibinin determined a decrease in the activ-
ity of both proinflammatory subunits (Fig 5).



Fig 4. Effects of silibinin on liver oxidative-nitrosative stress. (A) Hepatic ROS were increased in vehicle-treated

db/db mice fed an MCD diet and significantly reduced in silibinin-treated animals. (B, C) RepresentativeWestern

blot and densitometric analysis showing a marked increase of liver iNOS in vehicle mice and restored levels of

iNOS in the silibinin group. (D, E) Immunofluorescence for 3-NT showed scattered positivity throughout the cen-

trolobular zone in db/db mice fed an MCD diet and reduced fluorescence in liver sections of mice treated with

silibinin. *P , .05 vs db/m 1 SD. **P , .05 vs db/db 1 MCD. (Color version of figure is available online.)
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DISCUSSION

Silibinin is a polyphenolic compound contained in si-
lymarin, a mixture of flavonolignans extracted from the
seeds of milk thistle, which is widely used as hepatopro-
tective agent20 and has been reported to exert beneficial
effects in patients with NASH.16,17 NASH pathogenesis
is related to a puzzling crosstalk among liver, muscle,
and adipose tissue about FFA fate, leading to an
increased supply of FFA to the liver, which combined
with de novo lipogenesis determines intrahepatic
accumulation of triglycerides.6 In this study, we
observed that silibinin reduces lipotoxicity in the liver
by modulating the expression and activity of lipid met-
abolic enzymes, a main result of which seems to be the
increase of SCD-1 gene expression and activity. Genetic
or pharmacologic inhibition of SCD-1, the enzyme that
converts saturated fatty acids to monounsaturated fatty
acids, sensitizes cells to saturated fatty acid–induced
death.26 SCD-1 is decreased in the MCD diet model
on both lean26,27 and db/db background,19 and SCD-1
knockout mice on the MCD diet present increased liver
injury compared with SCD-11/1 animals.26 Likewise,



Fig 5. Effects of silibinin on liver NFkB activation. (A, B) Liver NFkB-p50 and p65 binding activities were mark-

edly increased in db/db mice fed an MCD diet compared with lean control mice; silibinin administration signif-

icantly decreased the activities of both subunits. *P , .05 vs db/m 1 SD. **P , .05 vs db/db 1 MCD.
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a decrease in L-FABP is associated with lipotoxicity in
the MCD model28 because of the main role of L-FABP
in FFA cellular disposal.6 Of note, we also found that
AOX expression and activity were induced by silibinin
treatment, thus suggesting it may enhance lipid oxida-
tion. This effect occurs despite a decrease in lipoperox-
idation, as suggested by reduced TBARS levels. It is
well known that in the absence of efficient endogenous
scavenging activity, FFA oxidation may lead to in-
creased levels of ROS and RNS7 and to activation of in-
flammatory pathways, causing the progression of liver
injury from fat to inflammation.8 Oxidative stress is
considered a key phenomenon in the progression from
fatty liver to steatohepatitis.29 Oxidative stress is mir-
rored by the increase of lipid peroxidation products
(ie, malondialdehyde and hydroxynonenal) in patients
with NASH and in animal models.30-32 The
importance of oxidative stress in the pathogenesis of
steatohepatitis is underscored by the use of several
antioxidants, associated with variable success, in
patients with NASH;33 a recent randomized controlled
trial showed the efficacy of vitamin E in counteracting
liver injury progression.34 There is evidence that both
ROS and RNS contribute to hepatocyte damage and
inflammatory/fibrogenic cells activation.34 Among
RNS, peroxynitrite, which is generated from NO and
the anion superoxide, determines cell injury by protein
oxidation and nitrosylation (assessed by 3-NT levels),
which causes dysfunction of several enzymes,35 includ-
ing the components of mitochondrial respiratory
chain.36 The effect of silibinin on nitrosative stress
may explain the efficacy of this compound in preserving
mitochondrial respiration, which has been demon-
strated in a rodent model of iron overload37 and in an-
other model of NASH.38
The cellular redox status is also one of the main stim-
uli for NFkB activation.39 NFkB is the master transcrip-
tion factor in the control of molecular pathways related
to inflammation.39 NFkB activation has been demon-
strated in a number of liver diseases both in humans
and in mice,40 and has been shown in patients with
NASH.41 NFkB activity is directly related to parameters
of oxidative stress in the liver of obese patients.42 Of
note, the use of polyphenolic antioxidants, such as cur-
cumin, determines NFkB inhibition displaying benefi-
cial effects in experimental NASH.10 The inhibition of
NFkB exerts therapeutic effects in different mouse
models of NASH. In the MCD model, adenovirus-
mediated disruption of NFkB, but not genetic inactiva-
tion of tumor necrosis factor-a signaling, protects mice
from the initiation and perpetuation of liver injury.43

I-kappa-B kinase 2 inhibition recently was shown to at-
tenuate liver injury in the orotic acid model of NASH.44

The current study evidenced that the activity of the p50
subunit and of p65 was markedly reduced in silibinin-
treated mice. Consistently with p65 inhibition, silibinin
reverses the expression of iNOS, one of the main p65
downstream targets involved in NO production leading
to nitrosative stress,45 confirming that this polyphenol
also acts as an inhibitor of the iNOS pathway.46

Therefore, our data show that silibinin inhibits ROS/
peroxynitrite/NFkB signaling in this mouse model of
NASH.
CONCLUSIONS

This study indicates that silibinin is able to modulate
liver lipid homeostasis, reduces oxidative-nitrosative
stress, and inhibits NFkB activation, key events in the
pathogenesis of NASH. These findings support



Translational Research
Volume 159, Number 6 Salamone et al 485
a pathophysiologic rationale for the use of silibinin in
preventing liver injury progression in patients with
NASH.
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