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Silibinin, a natural plant flavonolignan is the main active constituent found in milk thistle
(Silybum marianum). It is known to have hepatoprotective, anti-neoplastic effect, and
suppresses lipid accumulation in adipocytes. Objective of this study was to investigate
the effect of silibinin on adipogenic differentiation and thermogenic capacity of human
adipose tissue derived mesenchymal stem cells. Silibinin (10 μM) treatment, either at the
beginning or at the end of adipogenic differentiation, resulted in an increase of SIRT-1,
PPARα, Pgc-1α, and UCPs gene expression. Moreover, silibinin administration resulted
in a decrease of PPARγ, FABP4, FAS, and MEST/PEG1 gene expression during the
differentiation, confirming that this compound is able to reduce fatty acid accumulation
and adipocyte size. Our data showed that silibinin regulated adipocyte lipid metabolism,
inducing thermogenesis and promoting a brown remodeling in adipocyte. Taken
together, our findings suggest that silibinin increases UCPs expression by stimulation
of SIRT1, PPARα, and Pgc-1α, improved metabolic parameters, decreased lipid mass
leading to the formation of functional adipocytes.

Keywords: silibinin, brown adipocyte, thermogenesis, adipocyte, lipid metabolism, stem cells differentiation,
human adipose tissue derived mesenchymal stem cells

INTRODUCTION

Obesity is characterized by hypertrophic adipocytes producing low adiponectin and increased
tumor necrosis factor α (TNF-α) levels, which are associated with insulin resistance (Cantley, 2014;
Moreno-Indias and Tinahones, 2015). On the other hand, adipose tissue can also suppress weight
gain and metabolic disease through the action of specialized, heat-producing adipocytes (Harms
and Seale, 2013). To date, two types of adipose tissue are known to exist: white (WAT) and brown
(BAT) adipose tissue.WAT is widely distributed throughout the body, whereas BAT is present only
in limited parts of the body such as interscapular, axillary, superior cervical, and perirenal regions.
The physiological significance of these adipose tissues is completely different: WAT functions to
store energy excess as fat, whereas BAT serves to consume energy excess as heat (thermogenesis)
(Kajimura and Saito, 2014). Furthermore, brown adipocytes contain more capillaries compared to
white adipocytes and their brown color is due to the presence of many mitochondria in the cell
(Nam and Cooper, 2015).
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In brown fat, the heat-generating pathway is the futile
cycle of proton pumping through the actions of uncoupling
protein 1 (UCP1) (Rousset et al., 2004). In cells expressing
UCP1, the oxidation of lipids and carbohydrates results in the
extraction of high-energy electrons, which flow down the electron
transport chain (ETC) as protons are pumped across the inner
mitochondrial membrane. Thus, much of the chemical energy
generated by substrates oxidation in brown fat cells triggers a
futile proton cycle leading to heat generation (Shabalina et al.,
2013).

The biomedical interest in brown adipocytes focused on the
capacity of these cell types to counteract metabolic disease,
including obesity and type 2 diabetes (Poher et al., 2015). Brown
adipocytes are located in specific areas and express constitutively
high levels of thermogenic genes, whereas inducible ‘brown-like’
adipocytes, also known as beige cells, have a white fat phenotype
and produce heat in response to various activators. Many genes
and pathways regulating brown and beige adipocyte biology
have now been identified, providing a variety of promising
therapeutic targets for metabolic disease (Masella et al., 2012;
Cohen and Spiegelman, 2015). Several natural and synthetic
compounds have been shown to be actively involved in such
pathways and among these, silibinin seems to be a very promising
agent. Recent studies have demonstrated that silibinin, a natural
plant flavonolignan has an anti-adipogenic effect on 3T3-L1
cells (Kim et al., 2009) and suppresses lipid accumulation in
adipocytes. In particular, a previous report showed that silibinin
regulates underlying signaling for hypertrophy and hyperplasia
in adipocyte, and anti-adipogenic effect of silibinin was exerted
on early adipogenic stage during adipogenesis via cell cycle
arrest (Suh et al., 2015). Most of the studies utilized murine
3T3-L1 cell line for examination of adipocyte development as
these cells readily accumulate lipid upon differentiation (Christy
et al., 1989; Ntambi and Young-Cheul, 2000; Burton et al.,
2002). However, with the discovery of human adipose tissue
derived mesenchymal stem cells (ASCs; Zuk et al., 2001), this
multi-potent lineage has become the main focus for analyzing
changes during differentiation (DeLany et al., 2005; Yu et al.,
2010).

Objective of this study was to investigate the effect of
silibinin on adipogenic differentiation and thermogenic capacity
of human adipose tissue derived mesenchymal stem cells.

MATERIALS AND METHODS

Adipose Stem Cells Isolation and Culture
Adipose tissue sample was obtained from a patient underwent
abdominal plastic surgery (male, 30 years old, 98 kg of body
weight); the subject provided his written consent before inclusion
in the study. Since this is a non-therapeutic trial, it was carried
out with the consent of the subject legally acceptable according
our Italian Government (Legge 675/1996 and DL 196/2003, art.
40. Art 32 Codice Italiano di Deontologia Medica). Adipose
tissue was minced with scissors and scalpels into less than
3-mm pieces and isolation of ASCs proceeded as previously
described (Salomone et al., 2013). Briefly, after gentle shaking

TABLE 1 | PCR primers used in this study.

Gene Primer forward Primer reverse

Adiponectin AGGCTTTCCGGGAATCCAAG CGCTCTCCTTCCCCATACAC

DGAT1 CGCGGACTACAAATGGACGA AACCAGTAAGACCACAGCCG

DLK1 TCCTCAACAAGTGCGAGACC CTGTGGGAACGCTGCTTAGA

FABP4 AAACTGGTGGTGGAATGCGT GCGAACTTCAGTCCAGGTCA

FAS CGGAGGCATCAACCCAGATT GATGGTGGTGTAGACCTTCCG

GAPDH AGACACCATGGGGAAGGTGA TGGAATTTGCCATGGGTGGA

IL6 CTTCTCCACAAGCGCCTTCG CTGGCATTTGTGGTTGGGTC

IRS1 GCAACCAGAGTGCCAAAGTG AGGTCATTTAGGTCTTCAT
TCTGCT

PGC1α GGTGCAGTTTTGCCAAGGAG TTCCTTGGGGTCCAGACAGA

PPARα AAGAGCTTGGAGCTCGGC TGAAAGCGTGTCCGTGATGA

PPARγ AGAGTACGTGGGAGAAATGAC GATGGCCACCTCTTTGCTCT

SIRT1 TGATTGGCACAGATCCTCGAA AAGTCTACAGCAAGGCGAGC

TNF α CTCGAGTCAGATCATCTTCTCG
CACCCCG

GGAATTCTGTTCGTCCTCCT
CACAGGGC

UCP-1 TGTCCTGGGAACAATCACCG TCCAGGATCCAAGTCGCAAG

UCP-2 GCCTCTACAATGGGCTGGTT GAGCATGGTAAGGGCACAGT

UCP-3 AGCCCCCTCGACTGTATGAT ACTTTCATCAGGGCCCGTTT

with equal volume of PBS, the mixture separated into two
phases. The upper phase (containing stem cells, adipocytes, and
blood) after washing with PBS was enzymatically dissociated
with 0.075% collagenase (type I)/PBS for 1 h at 37◦C with
gentle shaking. The dissociated tissue was then mixed with an
equal volume of DMEM (GIBCO-BRL, Japan) supplemented
with 10% FBS and incubated 10 min at room temperature. The
solution then was separated into two phases. The lower phase was
centrifuged at 1500 rpm for 5 min at 20◦C. The cellular pellet
was resuspended in 160 mM NH4Cl to eliminate erythrocytes
and passed through a 40 μm mesh filter into a new tube. The
cells were resuspended in an equal volume of DMEM/10% FBS
and then centrifuged. Isolation resulted in obtaining 7.7 × 106
of adherent cells for a primary culture from 5 g of adipose
tissue (approximately; 1.0 × 105 to 4.6 × 106/1 g) after 7 to
10 days of culture. The cells were suspended in DMEM/10% FBS
plated in concentration 1–5 × 106 cells/75 cm2. The phenotype
of ASCs was evaluated by flow-cytometry analysis (FC500
Beckman Coulter). The ASCs presented as a homogeneous
fibroblastic cell population. Flow-cytometric analysis of passage
4th cells revealed that cells were negative for CD34 and CD45,
and that cells were positive for CD105 and CD90 (Data not
shown).

Differentiation of Human ASCs into
Adipocytes
Adipose tissue derived mesenchymal stem cells (passage 4 to 5)
were plated in a 75-cm2 flask at a density of 1 to 2 × 104 cells and
cultured in DMEM with 10% FBS for 7 days. The medium was
replaced with adipogenic medium, and the cells were cultured for
an additional 7 or 14 days.

The adipogenic media consisted of complete culture medium
supplemented with DMEM-F12 high glucose, 3% (v/v) FBS,
100 nM insulin, 100 nM dexamethasone (Sigma–Aldrich, St.
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FIGURE 1 | (A–B) Lipid droplets accumulation measured by Oil red staining in differentiated cells in presence (B) or absence of silibinin (A). (C) Oil Red staining
measured by spectrophotometer (λ = 490 nm) in undifferentiated cells and after 14 Days of adipogenic differentiation in presence or absence of silibinin. (D) PPARγ

gene expression was evaluated by Real Time PCR. All values are expressed as mean ± SEM of four experiments (n = 4) in duplicate. ∗P < 0.05 vs. undifferentiated;
#P < 0.05 vs. differentiated.

Louis, MO, USA), 0.5 mM isobutylmethylxanthine (Sigma–
Aldrich, St. Louis, MO, USA), 60 μM indomethacin (Sigma–
Aldrich, St. Louis, MO, USA) and transferrin 10 μg/ml. Media
were changed every 3 days. Human ASCs were cultured in the
presence of Silibinin (10 μM) which was administered every
3 days in the first set of experiments while for the second set
of experiments Silibinin was added for 24 h after 14 days of
adipogenic differentiation.

Oil Red O staining
Staining was performed using 0.21% Oil Red O in 100%
isopropanol (Sigma–Aldrich, St. Louis, MO, USA). Briefly,
adipocytes were fixed in 10% formaldehyde, stained with Oil Red
O for 10 min, rinsed with 60% isopropanol (Sigma–Aldrich), and
the Oil Red O eluted by adding 100% isopropanol for 10 min
and the optical density (OD) measured at 490 nm, for 0.5 s
reading. Lipid droplets accumulation was examined by using
inverted multichannel LED fluorescence microscope (Evos, Life
Technologies, Grand Island, NY, USA).

RNA Extraction and qRT-PCR
RNA was extracted by Trizol reagent (Invitrogen, Carlsbad,
CA, USA). First strand cDNA was then synthesized with

Applied Biosystem (Foster City, CA, USA) reverse transcription
reagent.

Quantitative real-time PCR was performed in 7900HT
Fast Real-Time PCR System Applied Biosystems using the
SYBR Green PCR MasterMix (Life Technologies, Milan,
Italy). The primer sequences used are shown in Table 1.
The specific PCR products were detected by the fluorescence
of SYBR Green, the double stranded DNA binding dye.
The relative mRNA expression level was calculated by
the threshold cycle (Ct) value of each PCR product and
normalized with that of GAPDH by using comparative 2−��Ct

method.

Western Blot Analysis
Western Blot analysis was performed as previously described
(Vanella et al., 2013). Primary polyclonal antibodies directed
against UCP-1 and beta-actin were purchased from Santa
Cruz Technologies. Protein detection was carried out using
a secondary infrared fluorescent dye conjugated antibody
absorbing at 800 nm or 700 nm. The blots were visualized
using an Odyssey Infrared Imaging Scanner (Li-Cor Science
Tec) and quantified by densitometric analysis performed after
normalization with b-actin.
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FIGURE 2 | Analysis of gene expression by Real time PCR of FABP4 (A), FAS (B), MEST/PEG1 (C), TNFα (D), IL-6 (E), and adiponectin (F). All values are
expressed as mean ± SEM of four experiments (n = 4) in duplicate. ∗P < 0.05 vs. undifferentiated; #P < 0.05 vs. differentiated.

Statistical Analysis
Statistical significance (P < 0.05) of differences between
experimental groups was determined by the Fisher method
for analysis of multiple comparisons. For comparison between

treatment groups, the null hypothesis was tested by either single-
factor analysis of variance (ANOVA) for multiple groups, or the
unpaired t-test for two groups, and the data are presented as
mean ± SEM.

FIGURE 3 | Analysis of gene expression by Real time PCR of SIRT1 (A), PPARα (B), PGC1α (C), UCP1 (D), UCP2 (E), and UCP3 (F). All values are
expressed as mean ± SEM of four experiments (n = 4) in duplicate. ∗P < 0.05 vs. undifferentiated; #P < 0.05 vs. differentiated.
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FIGURE 4 | Lipid droplets accumulation measured by Oil red staining in differentiated cells CTRL (A) and in differentiated cells treated for 24 h with
silibinin (B). Oil Red staining measured by spectrophotometer (λ = 490 nm) in differentiated cells and after silibinin treatment (C). All values are expressed as
mean ± SEM of four experiments (n = 4) in duplicate. ∗P < 0.05 vs. CTRL.

RESULTS

Analysis of Adipogenic Differentiation
To investigate signals that might regulate the differentiation of
ASCs, we analyzed the mRNA levels of peroxisome proliferator-
activated receptor gamma (PPARγ; Figure 1D), fatty acid
binding protein 4 (FABP4; Figure 2A), fatty acid synthase (FAS;
Figure 2B) and mesoderm-specific transcript (MEST/PEG1;
Figure 2C). We showed that all of these markers resulted in a
significantly increase after 14 days of adipogenic differentiation.
In addition, Figures 1A–C shows positive Oil Red staining of the
cells following 14 days of differentiation.

The Effect of Silibinin on the
Adipogenesis
Quantification of Oil Red stained cells showed that lipid droplets
decreased following Silibinin treatment (Figures 1A,B). As seen
in Figure 1C PPARγ was significantly reduced by silibinin
treatment respect to the differentiated cells. Moreover, the
administration of silibinin during the adipogenic differentiation
was able to reduce significantly the mRNA levels of PPARγ

(Figure 1C), FABP4 (Figure 2A), FAS (Figure 2B), MEST/PEG1
(Figure 2C), and Adiponectin (Figure 2F).

Silibinin Reduces TNF-α and Il-6
Expression
In order to study the potential anti-inflammatory effects
of silibinin, we investigated TNF-α and IL-6 expression
during differentiation. We show a significantly increase of
mRNA levels of these cytokines in differentiated adipocytes
(Figures 2D,E). Silibinin treatment was able to decrease
significantly TNF-α and IL-6 mRNA levels in differentiated
cells.

Effect of Silibinin on Thermogenic Genes
Expression
In order to investigate the effect of silibinin on lipid
metabolism, we analyzed the expression of the thermogenic
pathway markers. The administration of Silibinin during
adipogenic differentiation was able to significantly
increase mRNA levels of sirtuin 1 (SIRT-1), peroxisome
proliferator-activated receptor alpha (PPARα) and peroxisome
proliferator-activated receptor gamma, co-activator 1
alpha (Pgc-1α) (Figures 3A–C). Moreover, to study the
activation of heat-generating pathway, which is the futile
cycle of proton pumping through the actions of UCPs,
we analyzed the expression of UCP1, UCP2, and UCP3.
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FIGURE 5 | Analysis of gene expression, evaluated by Real Time PCR, of cells treated with silibinin for 24 h after adipogenic differentiation. Each
graph (A–I) represents the relative expression of a single gene indicated on the Y axis compared to differentiated untreated cells. All values are expressed as
mean ± SEM of four experiments (n = 4) in duplicate. ∗P < 0.05 vs. DIFF.

These set of experiments showed that Silibinin was able to
significantly increase the expression levels of UCP1, 2, and 3
(Figures 3D–F).

The Effect of Silibinin on Mature
Adipocytes
In a new set of experiments, we examined the effect of Silibinin
on lipid accumulation after 14 days of differentiation by
measuring Red Oil-stained lipid droplet area (Figure 4).
Quantification of Oil Red stained cells showed that lipid
droplets decreased following Silibinin treatment (24 h).
Furthermore, we observed a significantly reduction of PPARγ

(Figure 5A), diacylglycerol O-acyltransferase 1 (DGAT1;
Figure 5D) and Delta like 1 (DLK-1) (Figure 5F) mRNA
levels following silibinin treatment (Figure 5A). Interesting,
silibinin showed a significantly increase of FABP4, FAS,
and insulin receptor substrate 1 (IRS-1) genes expression
(Figure 5).

Consistently with the first set of experiments, TNF-α and Il-
6 resulted in a significantly decrease of mRNA levels following
silibinin treatment.

Silibinin Switches the Lipid Metabolism
of Adipocyte Toward the Thermogenic
Pathway
We found that all markers of thermogenic pathway of brown
adipocytes resulted in a significantly increase following silibinin
treatment. In particular, in Figure 6 we showed that silibinin
administration for 24 h was able to increase the expression of
SIRT-1, PPARα, Pgc-1α, UCP-1, UCP-2, and UCP-3. Moreover,
the increased UCP-1 expression was further confirmed by
Western Blot (Figure 6G).

DISCUSSION

Silibinin, a natural plant flavonolignan is the main active
constituent found in milk thistle (Silybum marianum), a plant
of the Asteraceae family. In particular, it is known to have
hepatoprotective and anti-neoplastic effect (Li Volti et al.,
2011; Marrazzo et al., 2011; Salamone et al., 2012). Ka et al.
(2009) have shown that silibinin inhibits adipogenesis of 3T3
cells by promoting the expression of insulin-induced genes
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FIGURE 6 | (A–F) Analysis of gene expression, evaluated by Real Time PCR, of cells treated with silibinin for 24 h after adipogenic differentiation. (G) Western Blot
analysis of UCP-1 expression in differentiated adipocytes following silibinin treatment. All values are expressed as mean ± SEM of four experiments (n = 4) in
duplicate. ∗P < 0.05 vs. DIFF.

1 and 2 (INSIG1 and INSIG2), which block activation of
sterol regulatory element binding protein-1c (SREBP1-c) (Kim
et al., 2009). Furthermore, Suh et al. (2015) identified anti-
adipogenic effect of silibinin in zebrafish via the down-regulation
of adipogenic factors and the reduction of lipid accumulation
in adipocyte and it is thought to be due to the regulation of
silibinin on the phosphorylation of AMP-activated protein kinase
alpha (AMPKa) and Acetyl-CoA carboxylase (ACC) (Suh et al.,
2015). Adipocyte differentiation and its impact on restriction or
expansion of particular adipose tissue depots have physiological
and pathophysiological significance in view of the different
functions of these depots. Brown or “beige” fat expansion
can enhance thermogenesis, lipid oxidation, insulin sensitivity,
and glucose tolerance; conversely expanded visceral fat (VAT)
is associated with insulin resistance, low-grade inflammation,
dyslipidemia, and cardio metabolic risk.

In the present study we showed that silibinin treatment during
and at the end of adipogenic differentiation of ASC cell induces
thermogenesis pathway in adipocyte by activation of UCPs.

Our data showed that silibinin is able to switch the lipid
metabolism from white adipocytes phenotype to beige or

brown. Silibinin treatment, from the beginning or at the
end of adipogenic differentiation, resulted in an increase of
SIRT-1, PPARα, Pgc-1α, and UCPs. On the other hand, the
silibinin effects resulted in a decrease of PPAR gamma, FABP4,
FAS, and MEST/PEG1 expression during the differentiation,
confirming that its administration is able to reduce the fatty
acid accumulation and the size of the cells. Moreover, decreasing
in TNF-α and IL-6 expression in the differentiated adipocyte
treated with silibinin respect the untreated adipocyte confirms
a reduction of inflammation (Figure 7). Consistently with
our findings previous reports showed that TNF-α inhibits
SIRT1 expression in human adipocytes (Serrano-Marco et al.,
2012). SIRT1, an NAD+ dependent type III deacetylase sirtuin,
enhances glucose tolerance by potentiating brown adipose
tissue function (Boutant et al., 2015) contributing to energy
expenditure and browning of WAT and resistance to dietary
obesity (Wang et al., 2013), interacts with PPARα and is
required to activate PGC-1α (Purushotham et al., 2009). PPARα

plays an important role in lipid metabolism, and activation of
PPARα in human WAT leds to the appearance of brown fat
gene expression, including UCP1 and PGC-1α (Mandard et al.,
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FIGURE 7 | Scheme of the silibinin effects during adipogenic differentiation and in mature adipocytes. Adipogenic differentiation causes an increase in
TNFα, IL-6, FAS, FABP4, and MEST/PEG1 resulting in an increase of insulin resistance, inflammation, dyslipidemia, and cardiometabolic risk. Silibinin switches the
lipid metabolism of adipocyte to thermogenic pathway resulting in an improvement of insulin sensitivity and glucose tolerance.

2004; Hondares et al., 2011). PPARα has been considered a
distinctive marker of BAT with respect to the WAT phenotype
(Villarroya et al., 2007). Finally, in this pathway, Pgc-1α is
essential for cold-induced or β3-agonist-induced thermogenic
activation of brown adipocytes (Uldry et al., 2006) and the
expression of thermogenic genes in WAT (Kleiner et al., 2012).
In addition, we found a significantly decrease of adiponectin
expression in adipocytes differentiated with silibinin. These
data are consistent with previously studies demonstrating that
adiponectin overexpression significantly decreases UCP1 and
PGC-1α protein levels (Qiao et al., 2014). In order to study
the effects of silibinin on the mature adipocytes we also treated
the cells at the end of differentiation. The mature adipocytes
treated with silibinin (24 h) showed a significantly decrease
of fatty acid accumulation and of DGAT1 gene expression,
enzyme required for triacylglycerol synthesis and lipid droplets in
adipocytes (Harris et al., 2011). In contrast to what was observed

for silibinin treatment during the differentiation, FABP4 and
FAS gene expression resulted in a significantly increase, which
could be a response to lipolytic effect of silibinin. Moreover,
the expression of those enzymes involved in lipid uptake and
mobilization, favoring fatty acid utilization through uncoupled
respiration (Teruel et al., 2005). Furthermore, we found an
increase of IRS1 gene expression in adipocyte treated with
silibinin. This data are consistent with a recent study showing that
IRS-1 plays important roles in brown adipocyte differentiation
where defects in differentiation in the IRS-1 knockout cells
can be restored by reconstitution of these cells with IRS-1
(Tseng et al., 2004). In the present study, we also showed
the decrease of DLK1 gene expression by silibinin in mature
adipocytes. This gene is a molecular gatekeeper of adipogenesis
which acts by maintaining the pre-adipocyte state and preventing
adipocyte differentiation (Hudak and Sul, 2013). In addition,
it was demonstrated that DLK-1 preferentially inhibits heat
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production in brown adipose tissue (Rakhshandehroo et al.,
2012).

Our results showed that silibinin could induce
thermoregulation improving metabolic homeostasis. In
particular, silibinin modulated adipocytes lipid metabolism,
inducing thermogenesis and promoting a brown remodeling
of WAT. Taken together, our findings suggest that silibinin
increases UCPs expression by stimulation of SIRT1, PPARα,
and Pgc-1α, which might mediate the induction of higher
energy efficiency, improved metabolic parameters, decreased fat
mass and formation of functional adipocytes. In conclusion,
silibinin may serves as a potential pharmacological tool to
restore adipocyte function in metabolic diseases by acting as the
biochemical switching of adipocytes phenotype.
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