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DYNAMIC OLIGOPOLY WITH STICKY PRICES:
CLOSED-LOOP, FEEDBACK, AND OPEN-LOOP

SOLUTIONS

R. CELLINI and L. LAMBERTINI

Abstract. We investigate a dynamic oligopoly game with price ad-
justments. We show that the subgame perfect equilibria are char-
acterized by larger output and lower price levels than the open-loop
solution. The individual (and industry) output at the closed-loop
equilibrium is larger than its counterpart at the feedback equilibrium.
Therefore, firms prefer the open-loop equilibrium to the feedback equi-
librium, and the latter to the closed-loop equilibrium. The opposite
applies to consumers.

1. Introduction

The aim of this note consists in assessing comparatively the proper-
ties of open-loop, feedback, and closed-loop memoryless equilibria in a dy-
namic oligopoly model with price dynamics first introduced by Simaan and
Takayama [16] and then extended by Fershtman and Kamien [8].

Broadly speaking, the main difference between the open-loop equilibrium
on one hand and the feedback and closed-loop equilibria on the other is that
the former does not take into account strategic interaction between play-
ers through the evolution of state variables over time and the associated
adjustment in controls. Under the open-loop rule, players choose their re-
spective plans at the initial date and commit to them forever. Therefore,
in general, open-loop equilibria are not subgame perfect, in that they are
only weakly time consistent since players make their action ‘by the clock’
only. For an exhaustive discussion of this issue, see [1, Chap. 6]. However,
there are classes of games where open-loop equilibria are subgame perfect
(see [2, 5, 7, 12,14]). For a survey, see [10,11].

A further distinction can be made between the closed-loop equilibrium
and the feedback equilibrium, which are both strongly time consistent and,
therefore, subgame perfect since, at any date τ , players decide ‘by the stock’
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of all state variables. However, while the closed-loop memoryless equilib-
rium takes into account the initial and current levels of all state variables,1

the feedback equilibrium accounts for the accumulated stock of each state
variable at the current date. If one player decides according to the feedback
rule, then it is optimal for the others to do so as well. Hence, the feedback
equilibrium is a closed-loop equilibrium, while the opposite is not true in
general.2

We extend the analysis of [8] to investigate the open-loop, closed-loop
memoryless, and feedback equilibria of an industry with more than two
players. Then, we characterize the closed-loop equilibrium for this market,
to show the following results:

(i) both subgame perfect equilibria involve a larger production and a
lower price as compared with the open-loop solution;

(ii) the steady state price and output levels are, respectively, higher and
lower in the closed-loop equilibrium than in the feedback equilibrium.

Property (i) can be reformulated by saying that if firms are unable to ini-
tially commit to a given output plan for the whole time horizon, then sub-
game perfection entails overproduction (for analogous results see [15, 17]).
Property (ii) suggests that the feedback rule allows firms to reduce overpro-
duction as compared with the closed-loop rule, precisely because according
to the feedback rule they look exclusively at the current level of the state
variable.

The remainder of the paper is organized as follows. The model is laid
out in Sec. 2. Sections 3 and 4, which illustrate the open-loop and feedback
equilibria, are simply the extension of analysis made in [8] to the oligopoly
case. The closed-loop equilibrium is analyzed in Sec. 5. A comparative
assessment of steady states is given in Sec. 6. Section 7 concludes the
paper.

2. Set-up

Probably the simplest way to think about the dynamics of market inter-
action consists in assuming that prices evolve over time according to some
acceptable rules. That is, it consists in taking price as the state variable.

1The information set associated with the closed-loop decision rule can take several
forms. One consists in the level of the state variable(s) at the intial and current dates.
This is usually defined as the closed-loop memoryless decision rule. Another consists in
the whole path of state variable(s) from the initial date to the present time. This is
defined as a closed-loop perfect state information rule.

2For an exhaustive exposition of the difference among these equilibrium solutions,
see [1, pp. 318–327, Chap. 6, Proposition 6.1].
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This is the problem analyzed in [8, 16].3 Here, we present a generalization
of Fershtman and Kamien’s set-up to the case of N firms.4

Consider an oligopoly where, at any t ∈ [0,∞), N firms produce quanti-
ties qi(t), i ∈ {1, 2, . . . , N}, of the same homogeneous good at a total cost
Ci(t) = cqi(t) − 1

2 [qi(t)]
2, c > 0.

In each period, market demand determines the price level

p̂(t) = A −
N∑

i=1

qi(t).

However, in general, p̂(t) will differ from the current price level p(t), since
there is price stickness, and price moves according to the following equation:

dp(t)
dt

≡ ṗ(t) = s {p̂(t) − p(t)} . (1)

Note that the dynamics described by (1) establishes that price adjusts
proportionally to the difference between the price level given by the inverse
demand function and the current price level, where the speed of adjustment
is determined by the constant s with 0 < s < 1. This amounts to saying
that the price mechanism is sticky, i.e., firms face menu costs in adjusting
their price to the demand conditions deriving from consumers’ preferences:
they may not (and, in general, they will not) choose outputs so that the
price reaches immediately p̂(t).

The instantaneous profit function of the firm i is

πi(t) = qi(t) ·
[
p(t) − c − 1

2
qi(t)

]
. (2)

Hence, the problem of the firm i is

max
qi(t)

Ji =

∞∫
0

e−ρtqi(t) ·
[
p(t) − c − 1

2
qi(t)

]
dt (3)

subject to (1) and to the conditions p(0) = p0 and p(t) ≥ 0 for all t ∈ [0,∞].
We solve the problem by considering, in turn, the open-loop solution, the

feedback solution, and the closed-loop memoryless solution.

3. Open-loop solution

Here we look for the open-loop Nash equilibrium, i.e., we examine a
situation where firms commit to a production plan at t = 0 and stick to
that plan forever.

3See also [11, Chap. 5] for an exhaustive exposition of both contributions, and [9,19]
for further results on the same model, in the case of a finite horizon.

4An interesting application of this model to the analysis of adverting strategies is
in [13]. Trade policy issues are investigated by Dockner and Haugh [3,4].
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The Hamiltonian function is

Hi(t) = e−ρt ·
{

qi(t) ·
[
p(t) − c − 1

2
qi(t)

]
+ λi(t)s

[
A −

N∑
i=1

qi(t) − p(t)
]}

,

(4)

where λi(t) = µi(t)eρt and µi(t) is the co-state variable associated with
p(t). The supplementary variable λi(t) is introduced to ease calculations as
well as the remainder of the exposition. In the remainder of the paper, the
superscript OL indicates the open-loop equilibrium level of a variable. The
outcome of the open-loop game is summarized as follows.

Proposition 1. At the open-loop Nash equilibrium, the steady state lev-
els of the price and the individual output are

pOL = A − NqOL, qOL =
(A − c)(s + ρ)

(s + ρ)(1 + N) + s
.

The pair
{
pOL, qOL

}
is a saddle point.

Proof. Consider the first-order condition (FOC) w.r.t. qi(t), calculated us-
ing (4):

∂Hi(t)
∂qi(t)

= p(t) − c − qi(t) − λi(t)s = 0. (5)

This yields the optimal open-loop output for the firm i as follows:5

qi(t) =

{
p(t) − c − λi(t)s if p(t) > c + λi(t)s,
0 otherwise.

(6)

The adjoint conditions for the optimum are:

−∂Hi(t)
∂p(t)

= −qi(t) + λi(t)s =
∂µi(t)

∂t
⇒

∂λi(t)
∂t

= λi(t)(s + ρ) − qi(t),
(7)

lim
t→∞µi(t) · p(t) = 0. (8)

Differentiating (6) and using (7), we obtain
dqi(t)

dt
≡ .

qi(t) =
dp(t)
dt

− s [(ρ + s)λi(t) − qi(t)] . (9)

Now substitute into (9)
dp

dt
= s {p̂(t) − p(t)}

5In the remainder, we consider the positive solution. Obviously, the derivation of the
steady state entails nonnegativity constraints on the price and quantity that we assume
to be satisfied.
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with p̂(t) = A − Nq(t), where a symmetry assumption is introduced for an
individual firm output, and

sλ(t) = p(t) − c − q(t)

from (6). This yields

dq(t)
dt

= sA + (s + ρ)c − (2s + ρ)p(t) + [s(1 − N) + s + ρ] q(t). (10)

Note that
dq(t)
dt

= 0 is a linear relationship between p(t) and q(t). This,

together with
dp(t)
dt

= 0, also a linear function, fully characterizes the steady
state of the system. The dynamic system can be immediately rewritten in
the matrix form as follows:[

ṗ
q̇

]
=

[ −s −sN
−(2s + ρ) s + ρ − s(N − 1)

] [
p
q

]
+

[
sA

sA + (s + ρ)c

]
. (11)

Since the determinant of the above (2×2)-matrix is negative, the equilibrium
point is a saddle, with

qOL =
(A − c)(s + ρ)

(s + ρ)(1 + N) + s
, pOL = A − NqOL. (12)

This concludes the proof.

As in the duopoly case described by [8, pp. 1159–1161], here the static
Cournot–Nash equilibrium price and the output

{
pCN , qCN

}
are also ob-

tained from (12), in the limit as ρ → 0 or s → ∞. For all positive levels
of the discount rate and any finite speed of adjustment, the static Cournot
price (output) is higher (lower) than the open-loop equilibrium price (out-
put).

4. Feedback solution

In this section, we extend the analysis of the feedback solution made
in [8] to the case of N firms. Using Bellman’s value function approach,
the feedback solution must satisfy the following set of Hamilton–Bellman–
Jacobi equations (see [18]):

ρVi(p(t)) = max
qi(t)

{
qi(t) ·

[
p(t) − c − 1

2
qi(t)

]

+
∂Vi (p(t))

∂p(t)
s

[
A −

N∑
i=1

qi(t) − p(t)

] }
,

(13)
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where Vi (p (t)) is the value function for the firm i. In the sequel, the
indication of time will be omitted to ease the exposition. Given the linear-
quadratic form of the maximand, we follow [8], and propose the quadratic-
value function:

Vi (p) =
kip

2

2
+ hip + gi (14)

so that
∂Vi (p)

∂p
= kip + hi. (15)

In the sequel, the superscript F stands for the feedback. The outcome of
the game is summarized as follows.

Proposition 2. At the feedback Nash equilibrium, the steady state levels
of the price and individual output are

pF =
A + N

(
c − hs

)
N

(
1 − ks

)
+ 1

,

qF =

 pF
(
1 − sk

)
+ hs − c if pF >

c − hs

1 − sk
,

0 otherwise,

where

h =
c − s (A − Nc) k

ρ + s
(
ks − 2Nks + N + 1

) ,

k =
ρ + 2s (N + 1) − √

ρ2 + 4s (ρ + Nρ + 2s + sN2)
2 (2N − 1) s2

.

Proof. Taking the FOC w.r.t. qi, we obtain:

qF
i = p − c − s

∂Vi (p)
∂p

= p − c − s (kip + hi) , (16)

where we invoke the symmetry conditions gi = g, ki = k, and hi = h, so
that qi = q for all i. On the basis of (16) and (1), we find

pF =
A + N (c − hs)
N (1 − ks) + 1

, (17)

where h and k can be calculated by the following procedure. We can rewrite
(13) as

πV (p) − max
{

π +
∂V (p)

∂p
s
dp

dt

}
= 0, (18)

i.e.,
β1p

2 + β2p + β3 = 0, (19)
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where

β1 =
k [ρ + s (2 + 2N + ks − 2ksN)] − 1

2
, (20)

β2 = c − h(ρ + s + sN) − ks (A + Nc + hs − 2hsN) , (21)

β3 =
2gρ − c2 + hs (2A + 2Nc + hs − 2hsN)

2
. (22)

Equation (19) is satisfied if expressions (20)–(22), i.e., coefficients β1, β2,
and β3, are simultaneously zero. This gives a system of three equations in
three variables, {g, h, k}, with the following solutions:

g =
c2 − hs (2A + 2Nc + hs − 2hsN)

2ρ
, (23)

h =
c − s (a − Nc) k

ρ + s
(
ks − 2Nks + N + 1

) ≡ h, (24)

k =
ρ + 2s (N + 1) ± √

ρ2 + 4s (ρ + Nρ + 2s + sN2)
2 (2N − 1) s2

. (25)

We must choose the smaller solution for k in (25): the larger solution is
inconsistent with the stability of the steady state (see also [8, p. 1164]).
For N = 2, expression (25) coincides with expression (3.2) obtained by
Fershtman and Kamien [8, Theorem 2, p. 1157]. This concludes the proof.

5. Closed-loop solution

It remains to investigate the closed-loop memoryless solution. We use the
superscript CL to denote the closed-loop equilibrium levels of the relevant
variables. The Hamiltonian of the firm i is given by (4), and the outcome
is summarized by the following proposition.

Proposition 3. At the closed-loop Nash equilibrium, the steady state
levels of the price and the individual output are

pCL = A − NqCL,

qCL =
(A − c) (ρ + sN)

(N + 1) ρ + (N2 + N + 1) s
.

The pair
{
pCL, qCL

}
is a saddle point.

Proof. The first-order condition w.r.t. qi, calculated using (4), obviously
coincides with condition (5) calculated in the open-loop case:

∂Hi

∂qi
= p − c − qi − λis = 0. (26)
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This yields the closed-loop output for the firm i as follows (again, in the
remainder we will consider only the positive solution):

qCL
i =

{
p − c − λis if p > c + λis,

0 otherwise.
(27)

The adjoint conditions for the optimum are

−∂Hi

∂p
−

∑
j �=i

∂Hi

∂qj

∂qCL
j

∂p
=

∂λi

∂t
+ ρλi. (28)

Now assume that
∂Hi

∂qj
= −λjs,

∂qCL
j

∂p
= 1. (29)

Therefore, ∑
j �=i

∂Hi

∂qj

∂qCL
j

∂p
= −

∑
j �=i

λjs (30)

is the additional term in the co-state equation, characterizing the strategic
interaction among firms, which is not considered by definition in the open-
loop solution (see, e.g., [6]). Equation (28) can be rewritten as

−qi + λis +
∑
j �=i

λjs =
∂λi

∂t
+ ρλi,

and, invoking the symmetry, we obtain
∂λ

∂t
= −q + λ (ρ + Ns) . (31)

Then we have the transversality condition

lim
t→∞µi · p = 0. (32)

Differentiating (27) w.r.t. time and using (31), we obtain:

dqi

dt
=

dp

dt
− s [(ρ + w)λi − qi] . (33)

Now substitute into (33) the expressions

dp

dt
= s {p̂ − p}

with p̂(t) = A − Nq, where a symmetry assumption is introduced for an
individual firm output, and

sλ = p − c − q,

which follows from (26). This yields

dq

dt
= ρ (c − p + q) + s [A − p + q − N (p − c)] . (34)
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As in the open-loop case, dq/dt = 0 is a linear relationship between p and
q. This, together with dp/dt = 0, which is also a linear function, yields

pCL = A − N (A − c) (ρ + sN)
(N + 1) ρ + (N2 + N + 1) s

,

qCL =
(A − c) (ρ + sN)

(N + 1) ρ + (N2 + N + 1) s

(35)

as the unique steady state of the system.6 We can immediately rewrite
the dynamic system in the matrix form to verify that the pair

{
pCL , qCL

}
is stable in the saddle sense. The proof of this is omitted for the sake of
brevity.

6. Comparative assessment of steady states

Now we can compare the steady state levels of price and individual output
in the three cases analyzed above, as well as in the static case. We have the
following result.

Proposition 4. For all s ∈ [0, 1] and all N ∈ [1,∞), we have

qCL > qF > qOL > qCN ,

pCN > pOL > pF > pCL.

The proof is straightforward. Confining our attention to the equilibria
of the dynamic setting, all subgame perfect equilibria entail a higher (indi-
vidual and industry) output and a lower market price than the open-loop
equilibrium (which is not subgame perfect). Therefore, Proposition 4 pro-
duces a relevant consequence.

Corollary 5. From the firms’ viewpoint, the open-loop equilibrium is
preferred to both the feedback equilibrium and closed-loop memoryless equi-
librium. On the contrary, the closed-loop memoryless equilibrium is socially
preferred to the feedback and open-loop equilibria.

Fershtman and Kamien [8, pp. 1159–1161] also investigated the proper-
ties of the limit games, where the speed of adjustment s tends to infinity or
ρ becomes zero. They established that, in such cases, the open-loop equi-
librium coincides with the Nash equilibrium of the static game. However,
considering an infinitely high speed of the price adjustment seems more a
mathematical curiosum than a theoretically relevant case, where for s > 1,
the instantaneous change in price is larger than the error p̂(t) − p(t). If we
confine to s ∈ [0, 1], then we obtain the following consequence of Proposi-
tion 1.

6Of course, we mean by “unique” the only steady state with positive price and output.
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Corollary 6. For s = 1,

qOL =
(A − c) (1 + ρ)

(N + 1) (1 + ρ) + 1
,

which is greater than the static Cournot–Nash output

qCN =
A − c

N + 2

for all N ≥ 1 and all ρ > 0.
In the limit, qOL → qCN as ρ → 0 for all admissible N and s.

Finally, one can verify what happens to the steady state levels of output
as N tends to infinity, to verify the following consequence of Proposition 4.

Corollary 7. As the number of firms becomes infinitely large, optimal
individual output tends to zero independently of the solution concept.

Therefore, if the market becomes perfectly competitive, open-loop,
closed-loop, and feedback solutions coincide with the static Cournot–Nash
solution, which itself reproduces the perfectly competitive outcome.

7. Concluding remarks

We have investigated the properties of a dynamic oligopoly game with
sticky prices. Specifically, we have made two contributions with respect to
the available literature. First, we have generalized the analysis presented
in [8] to the case of N , rather than two, firms. Second, we have analyzed
the case of the closed-loop (memoryless) solution concept, in addition to
the open-loop and feedback solutions.

The foregoing analysis shows that the subgame perfection always entails
larger output and lower price levels in steady state, as compared with the
weakly time consistent open-loop solution. In particular, the individual and
industry output associated with the closed-loop equilibrium is larger than
its counterpart at the feedback equilibrium.

We make two further and related remarks. First, the foregoing analysis
highlights that the larger the relevant information set, the larger the over-
production compared with the (commitment) open-loop equilibrium. The
second is that among the subgame perfect solution concepts, the feedback
rule turns out to be able to minimize the overproduction. Accordingly, while
firms would prefer the open-loop equilibrium to the feedback equilibrium,
and the latter to the closed-loop equilibrium, the opposite holds from the
social-welfare standpoint.
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