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In this report, we investigate dynamical robustness of a complex network to noise injected through one of its
nodes. We focus on synchronization of coupled nonlinear systems and, as a special instance, we address the
classical consensus protocol for linear integrators. We establish an exact closed-form expression of the
synchronization error for the consensus protocol and an approximate result for chaotic units. While
structural robustness is known to be significantly affected by attacks targeted to network hubs, our results
posit that dynamical robustness is controlled by both the topology of the network and the dynamics of the
units. We provide examples where hubs perform better or worse than isolated nodes.

C
ommunication networks, transportation infrastructures, and power grids are all subjected to failures that
often involve a significant portion of the system despite the local nature of the initial fault. Thus, error and
attack tolerance, cascading failures, and, in general, robustness of complex networks have been the body of

intense research1–17.
To quantify network robustness, generally defined as the ability of the network to withstand accidental events,

different measures have been proposed: conditional connectivity3, restricted connectivity4, super connectivity5,
fault diameter6, expansion parameter7, isoperimetric number8, and natural connectivity9. Other measures of
network robustness have been developed in the theoretical framework of statistical physics and percolation
theory10–13. These efforts seek to elucidate the effect of the removal of a fraction of nodes (or links) on character-
istic properties of a network, such as its diameter, largest component, and efficiency.

Such investigations have demonstrated that topology is a determinant of robustness, whereby heterogeneous
(scale-free) networks are highly robust against random attacks, which can instead severely impact homogenous
networks. Nevertheless, targeted attacks to hubs of scale-free networks can dramatically affect network properties.
Indeed, the collapse of the entire network can be caused by a single node whose failure propagates to neighboring
nodes promoting cascading damages and avalanches14–17. This phenomenon is well explained by modeling the
dynamics of flow redistribution on the network to unveil the mechanisms underlying the large breakdowns
observed in real systems, such as the Internet or electrical power grids16,17.

Most of the existing studies deal with the robustness of the network structure and are based on the assumption
that the failure of a node (or a fraction of nodes) is equivalent to a complete loss of its (their) functionalities. Here,
we take a different approach to understand the effect of a partial malfunctioning on the dynamics of the network.
This scenario is expected to be relevant for biological networks18, distributed sensors19 and, in general, complex
systems composed of coupled dynamical units20. Notably, robustness with respect to the system dynamics has
been recently investigated in21, where networks of diffusively coupled second-order periodic oscillators are
considered and node failure is modelled as the inactivation of oscillations (quenching).

In this report, we study networks of identical coupled dynamical units (including chaotic oscillators) and
elucidate on the effect of partial malfunctioning of a network node on synchronization. We model the phenom-
enon of node failure by injecting noise into the dynamics of a node. In particular, we consider a white Gaussian
signal with zero-mean and variance s2. Increasing the noise level, that is, s2, the synchronization error increases
and the units may eventually leave the basin of attraction for sufficiently strong noise. Our primary objective is to
establish a mathematical framework for assessing dynamical robustness and investigating the complex interplay
between network topology and node dynamics. We derive tractable expression for the synchronization error and
introduce a novel network parameter, which allows to rank the nodes in terms of their impact on the network
dynamical robustness. We analyze four representative dynamics for coupled dynamical systems and explore
different network topologies to illustrate the proposed methodology and demonstrate that both the topology and
the dynamics are determinants of node ranking.
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Results
Evaluation of dynamical robustness to noise injection into a node.
Here, we establish a mathematical framework for assessing dynami-
cal robustness and investigating the interplay between network
topology and node dynamics. In particular, we consider a network
of N dynamical units, which synchronize in the absence of noise.
Dynamical robustness is quantified through the synchronization
error as a function of the noise variance. To compute such error,
we first derive the (stochastic) dynamical equations of the transverse
modes of the system. From these equations, we relate the synchro-
nization error to the statistical properties of the transverse modes
and, more in detail, to their joint moments. Based on the derived
expression of the error, we then introduce a novel network
parameter, which allows to rank the nodes in terms of their impact
on the network dynamical robustness.

We consider a network of N dynamical units, described by the
following coupled equations:

_xi~F xið Þ{k
XN

j~1

gijHx xj

� �
zjiHgg ð1Þ

for i 5 1, …, N, where xi[Rm represents the state vector of the ith
node, F the individual dynamics, k the coupling coefficient, gij the ijth
entry of the network Laplacian G, and Hx the coupling function. The
term g is a zero-mean Gaussian white noise of variance s2 and
Hg[Rm is a vector of zeros and ones that models how the noise
influences the dynamics of a node. We hypothesize that the noise
acts on a single node, say node h, so that ji 5 1 if i 5 h and ji 5 0 if i
? h.

To study the effect of the noise intensity and injection site on the
network synchronization, we suppose that the network synchronizes
in the absence of the noise and evaluate the synchronization error
with respect to the noise variance. We consider the following syn-
chronization error:

Eh~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2

X
i,j

xi{xj

�� ���� ��2D E
t

s
ð2Þ

where Æ?æt indicates averaging with respect to t in a defined obser-
vation window. For a sufficiently large observation window and
assuming the system to be ergodic, the error (see Methods) is rewrit-
ten as:

Eh~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
N

XN

i~1

XN

k,l~2

TikTilE yT
k yl

� �vuut ð3Þ

where E[?] is the expected value, T contains the right eigenvectors of
the graph Laplacian G, and yk for k 5 2, …, N are the transverse
modes (see Methods).

Now, we distinguish between a special case of synchronization,
namely the classical consensus problem27, for which an exact formula
of E yT

k yl

� �
is derived, and the more general case of synchronization of

chaotic units, for which an approximation of E yT
k yl

� �
is established.

We first consider a consensus problem, that is, xi[R and F 5 0. In
this case (see Methods), E[ykyl] is given by:

E ykyl½ �~
Thk{

P
j

1
N Tjk

� �
Thl{

P
j

1
N Tjl

� �
k ckzclð Þ s2 ð4Þ

As expected, Eh in (3) is linear with respect to s and both the network
topology and the node dynamics are important in shaping the net-
work dynamical robustness.

We now consider the case of synchronization of chaotic units. To
this aim, we rewrite the dynamical equations of the transverse modes
(see Methods) in terms of the scaled Gaussian noise g�k~

Thk{N{1P
jTjk

� �
g (with zero mean and variance s�k

� �2
~

Thk{N{1P
jTjk

� �
s2), and we numerically compute the evolution

of the modes for each value of s�h and calculate E yT
k yl

� �
as a function

of s.
Consistently with the consensus problem, numerical simulations

show that E yT
k yl

� �
is proportional to s�ks�l . Thus, we define the func-

tion M so that M yk, yl

� �
~

E yT
k yl

� �
s�ks�l

. Since the transverse modes

only differ for the term ak 5 kck, in the following we use the notation
M ak, alð Þ. Notably, for the consensus problem, such function
reduces to 1/(ak 1 al). In general, M depends only on the node
dynamics, the coupling function, and the modality for which noise
is injected into the node.

To quantify the effect of noise injected in the network at the hth
node, we define the normalized quantity rh~

Eh
s , which takes the

following general form:

rh~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
N

XN

i~1

XN
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TikTil Thk{
XN

j~1

1
N

Tjk

 !
Thl{

XN

j~1

1
N

Tjl

 !
M ak, alð Þ

vuut
ð5Þ

Injection of noise in correspondence of nodes with small rh leads to
smaller synchronization error, compared to the case when noise is
applied to nodes with large rh. Hence, the network is more robust to
noise injected at sites with low rh. We remark that rh depends on the
topology of the network and on the dynamics of the unit. In contrast
with structural robustness, which depends only on topology, we find
that dynamics is an essential element of dynamical robustness.

Interplay of topology and dynamics. We illustrate the concept of
dynamical robustness through some examples. We consider two
types of networks, that is, scale-free (SF) and Erdos-Renyi (ER)
networks, and four different dynamics for the network units: a
simple integrator, a Chua’s circuit22, a Rossler’s system23, and a
Chen’s system24 (see Methods). These systems are selected on the
basis of an exhaustive analysis on a multitude of dynamical systems
(not reported here) to highlight the salient features of dynamical
robustness that are unveiled by our study. We first investigate the
agreement between our theoretical arguments and numerical or
experimental data and then analyse rh for some networks with a
large number of nodes.

We consider a SF and an ER network with N 5 100 nodes and
average degree equal to 2 (see29 and Methods). The coupling coef-
ficient k is chosen so that the networks synchronize in the absence of
noise and kc2 does not vary. We integrate equation set (1) and
evaluate the synchronization error (2). As expected, we find that
Eh is linear in s and we define dh~

dEh
ds

to compare the theoretical
results based on rh with numerical findings based on dh.

In Fig. 1, we report rh vs dh for both types of networks. The
agreement between simulations and theoretical expectations is
almost perfect; theoretical expectations correctly reproduce the rank-
ing of nodes based on the network performance in the presence of
noise. In fact, nodes can be equivalently ranked according to either
the value of rh or of dh.

Next, we compare theoretical expectations with a network of real
electronic oscillators. The experimental setup is that described in25

and consists of a network of six Chua’s circuits coupled according to
the network topology shown in Fig. 2(a). Fig. 2(b) shows the com-
parison between rh (theoretical expectation) and dh (experimental
data) for each network node, demonstrating a very good agreement
between theoretical and experimental results.

To offer some statistical relevance to the proposed method, we
numerically analyze rh for networks with a large number of nodes. In
particular, we consider SF and ER networks with N 5 1000 nodes
and average degree equal to 2. Fig. 3 illustrates the results for four case
studies. In panels (a,b,c,d), we display the value of rh ordered in
ascending order for a SF and an ER network. In panels (e,f,g,h), we
display the degree of node h, labelled as kh, vs. rh. The network
dynamics are those of Fig. 1. SF networks demonstrate worse
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performance than ER networks for most of the nodes in the case of
consensus and Chua’s dynamics. Instead, in the case of Rossler’s
systems, the SF network performs better than the ER network with
the exception of a small percentage of nodes, which are the network
hubs. In the case of Chen’s systems, the ER network performs better
than the SF network for about half of the nodes.

Based on the premise that the precise ranking of the nodes in terms
of dynamical robustness is dictated by rh, we observe some general
trends in the node ranking with respect to topological measures, such
as the node degree. Specifically, for the consensus problem and for
the network of Chua’s circuits, we find that nodes with high degree
have better robustness to noise as compared to nodes with low
degree. On the contrary, for networks of Rossler’s systems, the
opposite holds, whereby nodes with low degree display better robust-
ness to noise than nodes with high degree. In the case of Chen’s
systems, the correlation between kh and rh is weaker. In fact, the
nodes that display poor dynamical robustness are those with high
degree. Yet, there are also several low degree nodes with limited
performance as shown in panel (h).

Our analysis demonstrates that robustness to noise is the result of
the interplay between dynamics and topology, whereby dynamical
robustness with respect to noise injected in select node cannot be
inferred only on the basis of its degree or other topological measures
such as, for instance, eigenvector centrality. To further elucidate this

interplay, we report in Fig. 4 the functionM ak, alð Þ for the different
systems investigated. We distinguish between functionsM that are
monotonically decreasing with respect to each of their variables ak

and al and those that are not. Specifically, we define as the
family of functions that are monotonically decreasing with respect to
each of the two variables. Thus, for consensus and Chua’s circuit
M[ , while for Rossler’s and Chen’s dynamics M[= We
observe that this difference is crucial to determine the opposite beha-
viors found in the correlation between node degree and node robust-
ness, for instance, for the Chua’s circuit and the Rossler’s system.

The interplay between topology and dynamics in dynamical
robustness can be further illustrated through the analysis of an exem-
plary network, which allows for the derivation of closed-form expres-
sions. In particular, we focus on a star network topology for which we
can find rh for every network node. In this network, one node,
labelled as node 1 and referred to as the hub, is connected to all
the other nodes of the network, referred to as the leaves. All the leaves
have degree equal to one, while the hub has degree N 2 1. The star
network Laplacian has eigenvalues equal to: c1 5 0, c2,…,N21 5 1, and
cN 5 N. For such network, lengthy, but trivial, calculations lead to the
following formulas for r1 and r2,…,N:

r1 ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
N

1{
1
N

� 	
M aN , aNð Þ

s

r2,...,N~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
N

1{
1

N{1

� 	
M a2, a2ð Þz 2

N2 N{1ð ÞM aN , aNð Þ

s ð6Þ

These expressions are particularly simple since they depend only on
two values of the functionM, that is,M a2, a2ð Þ andM aN , aNð Þ. It
is easy to note that r1 is greater than r2,…,N (that is, the leaves
perform better than the hubs) if and only if M aN , aNð Þw
M a2, a2ð Þ. Given the form of M for the Chen’s system,
M aN , aNð Þ can be either greater or lower than M a2, a2ð Þ, which
implies that according to the values of a2 and aN (and, ultimately, on
the coupling strength k), the leaves can perform better than the hub
or vice versa. This is illustrated in Fig. 5 for a star network of N 5 5
Chen’s systems. For k 5 k1 5 30, the hub of the network has superior
dynamical robustness performance than peripheral nodes. In fact,
k1c2 and k1cN are such thatM k1cN , k1cNð ÞvM k1c2, k1c2ð Þ (panel

Figure 1 | rh vs. dh for each of the N nodes of a ER network (a,b,c,d) and a SF network (e,f,g,h) with N 5 100 and average degree equal to 2. The

dynamics of a unit is: (a)-(e) integrator; (b)-(f) Chua’s circuit; (c)-(g) Rossler’s system; and (d)-(h) Chen’s system. The coupling coefficient is k 5 1 (a,e);

k 5 18.38 (b); k 5 2.97 (c); k 5 45.93 (d); k 5 13.81 (f); k 5 1.73 (g); and k 5 34.54 (h).

Figure 2 | Experimental results: (a) topology of the network of 6 Chua’s
circuits and (b) comparison between rh (theoretical expectation) and dh

(experimental data) for each node of the network.
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(a), black circles). Instead, for k 5 k2 5 60 the opposite holds,
M k2cN , k2cNð ÞwM k2c2, k2c2ð Þ (panel (a), red circles), and the
leaves outperform the hub.

The analysis of the star network confirms that, depending on the
shape of M, the same topology may display opposite correlations
between node degree and node robustness. In the general case
(shown in Fig. 1(h)), for whichM 6[ , a clear correlation betwe-
en node degree and node robustness cannot be readily established.

Discussion
Here, we have introduced a mathematical framework to understand
the dynamical robustness of complex networks to noise injected into
their nodes. The approach lends itself to the formulation of a novel
performance metric, see Eq. (5), which allows for the quantification
of dynamical robustness as a function of network topology and node

dynamics. We have considered a spectrum of dynamics and topol-
ogies to demonstrate the complex response of networks to noise
injection. In contrast with structural robustness, where attacks tar-
geted to hubs are generally more severe than removal of low-degree
nodes, injection of noise into hubs may be more or less dangerous
than injection of noise into low-degree nodes depending on the unit
dynamics. Experimental evidence of this second scenario has been
reported for small networks (limited to up to six nodes) in25. A
similar role of low-degree nodes has been also observed in21, where
periodic oscillators have been considered and failure has been mod-
elled through quenching rather than injected noise. Finally, we men-
tion that another measure of network robustness in terms of the
dynamical properties of the network has been introduced in30, where
dynamic vulnerability, that is, the collective response of the network
to a finite time perturbation into a single node, is studied for a

Figure 3 | Numerical results for networks with N 5 1000 nodes: (a,b,c,d) rh and (e,f,g,h) degree of node h (kh). The dynamics of a unit is: (a)-(d)

consensus; (b)-(e) Chua’s circuit; (c)-(f) Rossler’s system; and (d)-(h) Chen’s system. The coupling coefficient k is 1 for consensus; 14.45 and 16.22 for SF

and ER networks of Chua’s circuits; 1.81 and 2.03 for SF and ER networks of Rossler’s systems; and 14.88 and 17.49 for SF and ER networks of Chen’s

systems.

Figure 4 | The functionM ak, alð Þ for (a) consensus; (b) Chua’s circuit; (c) Rossler’s system; and (d) Chen’s system. To better visualize the specific

features of each function, the range for which they are reported is not the same.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2026 | DOI: 10.1038/srep02026 4



network of Rossler’s systems. The conclusion that the hubs are not
the more vulnerable nodes is in agreement with our results.

We have found that networks of Chua’s circuits and Rossler’s
systems are representative of two opposite behaviors that can be
exhibited by a network in terms of its dynamical robustness to noise.
Specifically, we have demonstrated that, in networks of Chua’s cir-
cuits, the ranking of the nodes mirrors the node degree, while, in
networks of Rossler’s systems, low-degree nodes are more robust to
noise injection. Furthermore, we have observed (as in the case of
networks of Chen’s systems) that there are scenarios in which a clear
correlation between node degree and node robustness cannot be
established. The different behaviors exhibited by these systems are
explained by the shape of the functionM in Eq. (5). For systems with
M[ , which we classify as dynamical robustness class I systems,
we have observed a degree-correlated behavior (that is, higher degree
nodes have higher dynamical robustness performance than lower
degree nodes). On the other hand, for systems withM[= , which
we classify as dynamical robustness class II systems, a clear correlation
between node degree and node robustness cannot be established. For
dynamical robustness class II systems, different scenarios may arise
depending on the system (topological and dynamical) parameters,
including degree-correlated and anti-degree correlated behaviors.
Thus, our main conclusion is that dynamical robustness is affected
by both the topology of the network and the dynamics of the units
and that the parameter rh is a suitable measure for node dynamical
robustness.

Methods
Dynamical equations of transverse modes. Using the Kronecker algebra, Eqs. (1)
can be rewritten in the compact form:

_x~F xð Þ{kG6Hx xð ÞzJ6Hgg ð7Þ

where x 5 [x1, x2, …, xN]T, Hx(x) 5 [Hx(x1), Hx(x2, …, Hx(xN)]T, and J 5 [j1, j2, …,
jN]T.

Due to the presence of the noise, the oscillators cannot synchronize, that is, the
solution x1 5 … 5 xN is not feasible. Thus, we define the synchronization error with
respect to a virtually synchronous state s whose evolution proxies the individual node
dynamics when the noise is uniformly distributed in the network: _s~F sð ÞzN{1Hgg.
We now linearize Eq. (7) around the synchronous state s to obtain

_f~ IN6DF{kG6DHx½ �fz~J6Hgg ð8Þ

where f 5 x 2 1N fl s, 1N[RN is the vector of all ones, Jacobians are evaluated on the

synchronous state, and ~J~ j1{
1
N , j2{

1
N , . . . , jN{ 1

N

� �T
. To study Eq. (8), we

define a new set of state variables y 5 T21
fl Imf, where T contains the right

eigenvectors of the graph Laplacian G and Im is the identity matrix of order m. For the

sake of simplicity, we suppose that the network is undirected so that G is symmetric

and T21 5 TT. Since TT ~J~ Th1{
P

jTj1



N, . . . , ThN{
P

jTjN



N
� �T

, we have:

_yk~ DF{kckDHx½ �ykz Thk{N{1
X

j

Tjk

 !
Hgg ð9Þ

where ck for k 5 1, …, N are the ordered eigenvalues of G. For k 5 1, c1 5 0 and Tj1 5

1 for j 5 1, …, N so that the variation along the synchronization manifold evolves
independently of the injected noise being controlled by the Lyapunov exponents of
the individual dynamics. For k 5 2, …, N, Eqs. (9) represent the dynamical equations
of the transverse modes. The noise injected into the hth node affects each transverse
mode yk and is weighted by the term Thk{

P
jTjk



N
� �

.
The synchronization error (2) is now rewritten in terms of the transverse modes. In

fact, since 1
N2

P
i,j xi{xj

�� ��2
D E

t
~ 2

N

P
i xi{�xk k2� 

t (where �x~N{1
P

ixi is the

average trajectory that can be approximated as �x~szy1), and fi~xi{s~
P

kTikyk ,
the error (2) can be rewritten as:

Eh~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
N

X
i

Ti,2y2zTi,3y3z . . . zTi,N yN

�� ��2
D E

t

s
ð10Þ

Now, we illustrate the form of the dynamical equations of the transverse modes and
the expression of E yT

k yl

� �
for the two cases investigated (the classical consensus

problem and the more general case of synchronization of chaotic units).
For the consensus problem (xi[R and F 5 0), Eq. (9) becomes

_yk~{kckykz Thk{N{1
X

j

Tjk

 !
g ð11Þ

By noting that for a continuous-time system in the form:

_e1~{a1e1zg1

_e2~{a2e2zg2

ð12Þ

with a1, a2 . 0 and g1 and g2 zero-mean Gaussian processes with

variance s1 and s2, respectively, E e1e2½ �~ s1s2

a1za2

28, E[ykyl] is given by

E ykyl½ �~
Thk{

P
j

1
N

Tjk

� 	
Thl{

P
j

1
N

Tjl

� 	
k ckzclð Þ s2.

In the case of synchronization of chaotic units, Eq. (9) is rewritten in terms of the
scaled Gaussian noise g�k~ Thk{N{1 P

jTjk
� �

g (with zero mean and variance
s�k
� �2

~ Thk{N{1
P

jTjk
� �

s2), that is,

_yk~ DF{kckDHx½ �ykzHgg�k ð13Þ

In this case, E yT
k yl

� �
is calculated from Eq. (13). In particular, we numerically

integrate Eq. (13) with the Euler-Maruyama integration method, we compute the
evolution of the modes for each value of s�h and calculate E yT

k yl

� �
as a function of s.

Model equations. The network for the consensus problem is described by Eqs. (1)
with m 5 1, xi[R, F(xi) 5 0, Hx(xi) 5 xi and Hg 5 1.

The network of Chua’s circuits is described by Eqs. (1) with m 5 3, xi 5 [xi,1, xi,2,
xi,3]T, Hx(xi) 5 [xi,1, 0, 0]T, Hg 5 [1, 0, 0]T, and F(xi) given by

Figure 5 | (a) The functionM ak, alð Þ for the Chen’s system. (b-c) Eh vs. s for a star network of N 5 5 nodes for two different values of the coupling k. In
(b) (k 5 30), the hub of the network has better dynamical robustness performance than peripheral nodes. In (c) (k 5 60), the opposite holds. The two

cases correspond to a different location of the eigenvalues (kc2,3,4 5 k and kc5 5 5k), leading to two different sets of values along the curveM ak, alð Þ
marked in (a) as black (k 5 30) or red (k 5 60) circles. Note that h 5 1 is the hub and h 5 2, …, 5 are the leaves.
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F xið Þ~
aC xi,2{ m1z1ð Þxi,1{0:5 m0{m1ð Þ xi,1z1j j{ xi,1{1j jð Þð Þ

xi,1{xi,2zxi,3

{bCxi,2

2
64

3
75 ð14Þ

The parameters are chosen so that the Chua’s circuit is chaotic in the double scroll
regime: aC 5 9, bC 5 14.3, m0 5 21/7, and m1 5 2/7.

The network of Rossler’s systems is described by Eqs. (1) with m 5 3, xi 5 [xi,1, xi,2,
xi,3]T, Hx(xi) 5 [0, xi,2, 0]T, Hg 5 [1, 0, 0]T, and F(xi) given by

F xið Þ~
{10 xi,2zxi,3ð Þ
10 xi,1zaRxi,2ð Þ

10 bRzxi,3 xi,1{cRð Þð Þ

2
64

3
75 ð15Þ

The parameters are chosen so that the Rossler’s system is chaotic: aR 5 0.2, bR 5 0.2,
and cR 5 9. The Rossler’s equations are scaled by a factor equal to 10 to make the time
scale similar to that of the Chua’s circuit.

The network of Chen’s systems is described by Eqs. (1) with m 5 3, xi 5 [xi,1, xi,2,
xi,3]T, Hx(xi) 5 [0, xi,2, 0]T, Hg 5 [1, 0, 0]T, and F(xi) given by

F xið Þ~
0:5 aCxi,2{aCxi,1ð Þ

0:5 cC{aC{xi,3ð Þxi,1zcCxi,2ð Þ
0:5 xi,1xi,2{bC xi,3ð ÞÞ

2
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The following parameters have been chosen: aC 5 35, bC 5 8/3, and cC 5 28. The
Chen’s equations are scaled by a factor equal to 0.5 to render the time scale similar to
that of the other systems investigated.

Eqs. (1) are integrated with the Euler-Maruyama method for a window of duration
equal to 2000 with a time step of 0.001 (which is a time step adequate for all the three
dynamics investigated) and noise standard deviation s in the range [0, 0.5] (with a
step of 0.02). The synchronization error (2) is evaluated on the last 500 time units of
the simulation.

The Master Stability Function. In our analysis, the coupling coefficient k is chosen so
that the network synchronizes in the absence of the noise. This selection is informed
by the Master Stability Function (MSF)26.

According to this approach, a block diagonalized variational equation of the form
_jk~ DF{kckDH½ �jk represents the dynamics of the system around the synchron-
ization manifold. Here, ck is the h-th eigenvalue of G, h 5 1, …, N, and DF and DH are
the Jacobian matrices of F and H computed at the synchronous state. Therefore, the
blocks of the diagonalized variational equation differ from each other only for the
term kck. To investigate the synchronization properties with respect to different
topologies, the variational equation is studied as a function of a generic eigenvalue a
(for the sake of simplicity, we limit the discussion to the case of undirected networks,
for which the Laplacian has real eigenvalues). This leads to the definition of the
Master Stability Equation (MSE): _f~ DF{aDH½ �f.

The maximum (conditional) Lyapunov exponent lmax of the MSE is studied as a
function of a, thus obtaining the MSF, that is, V(a). Then, the stability of the syn-
chronization manifold in a given network is evaluated by computing the eigenvalues
ck (with k 5 2, …, N) of the matrix G and studying the sign ofV at the points ak 5 kck.
If for all eigenmodes with k 5 2, …, N, V is negative, then the synchronous state is
stable at the given coupling strength k.

In the literature, systems with always positive V are referred to as type I MSF
systems1; systems having V negative for a larger than a given constant are referred to
as type II MSF systems1; and systems having V negative only in a compact interval,
that is, V , 0 in [a1, a2], are referred to as type III MSF systems1.

All the systems investigated in this report have type II MSF so that our analysis is
not biased by the MSF type.

Networks’ construction. We consider Erdos-Renyi (ER) networks, that is, networks
having a connectivity distribution (the probability that a given node has a given
number of links) following a Poisson-like distribution, and scale-free (SF) networks,
that is, networks with a heterogeneous degree distribution (a power-law distribution).
Both networks are generated by using the model reported in29. The model has a single
tunable parameter which allows to interpolate between ER and scale-free SF networks
as far as the degree distribution is concerned.
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