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Primary solid tumors originate close to pre-existing tissue vasculature, initially growing
along such tissue blood vessels, and this phenomenon is important for the metastatic
potential which frequently occurs in highly vascularized tissues. Unfortunately, preclinic
and clinic anti-angiogenic approaches have not been very successful, and multiple
factors have been found to contribute to toxicity and tumor resistance. Moreover, tumors
can highlight intrinsic or acquired resistances, or show adaptation to the VEGF-targeted
therapies. Furthermore, different mechanisms of vascularization, activation of alternative
signaling pathways, and increased tumor aggressiveness make this context even more
complex. On the other hand, it has to be considered that the transitional restoration of
normal, not fenestrated, microvessels allows the drug to reach the tumor and act with
the maximum efficiency. However, these effects are time-limited and different, depending
on the various types of cancer, and clearly define a specific “normalization window.”
So, new horizons in the therapeutic approaches consist on the treatment of the tumor
with pro- (instead of anti-) angiogenic therapies, which could strengthen a network of
well-structured blood vessels that facilitate the transport of the drug.

Keywords: tumor angiogenesis, anti-angiogenic therapy, tumor endothelial cells (TECs), pericytes, vascular
normalization, microvascular architecture, hypoxia detection

CANCER-RELATED ANGIOGENESIS AND ANTI-ANGIOGENIC
THERAPY

The blood vessels supplying tumors are permeable, tortuous, heterogeneous in their morphological
structure and efficiency of perfusion, and greatly different from those composing the normal
vasculature. These features determine what is now called “aberrant angiogenesis,” which
characterizes the tumor environment (Huang et al., 2013).

One of the obstacles to the success of cancer treatment is related to inefficient transport of drugs
to cancer cells. Due to lack of proper interconnections between the endothelial cells (ECs), tumor
blood vessels are fenestrated and this constitutes a major impediment to the transport and even
distribution of the chemotherapy to the tumor tissue (Maes et al., 2016) (Figure 1A,a).

Another characteristic of tumor vessels is the lack of pericytes which makes the wall of the vessel
thin, changing the permeability within the same tumor and between different tumors (Jain, 2013).
The abnormal vascularity can make tumors resistant to chemotherapeutic agents.
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FIGURE 1 | Proposed mechanisms of microvessel responses to anti-angiogenic therapy. (A) Tumors may initially respond to anti-angiogenic therapy in
different ways, and this response depends on the integrity of microcirculation. (a) Because of the presence of fenestrated vessels with a poor pericyte coverage,
chemotherapeutic drug cannot reach the targeted tumor site. Consequently, tumor stabilizes or progresses. (b) The association of an anti-angiogenic drug with an
anti-tumor drug in a proper timing window restores a balance between pro- and anti-angiogenic factors, leading to the normalization of blood vessels: the
chemotherapeutic drug can reach the targeted tumor site. These effects are limited spatially and temporally, and are different in different types of cancers, particularly
in the case of little vascularized tumors. (B) The predictive detection of microvessel architectural parameters is necessary for the selection of a precision and personal
therapy, aimed to the vascular normalization, being these parameters based on Magnetic Resonance Imaging (MRI), Vessel Architectural Imaging (VAI),
Microvascular Density (MVD), Positron Emission Tomography (PET).
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The treatment against many types of cancer based on the
administration of chemotherapeutic drugs is supported by the
use of molecules with anti-angiogenic activity, aimed at reducing
tumor blood vessel increase in order to inhibit tumor growth
(Teng et al., 2010) (Figure 1A).

Phase 3 clinical trials of VEGF pathway inhibitors have
shown a significant heterogeneity of tumor response to treatment:
tumors can respond to the anti-angiogenic therapy or can
give a partial or even no response. A classification of
sensitive, partially sensitive and insensitive tumors is reported in
Table 1.

Moreover, tumor vascularisation may occur via alternative
mechanisms, which include intussusceptive microvascular
growth (Nico et al., 2010), glomeruloid angiogenesis (Straume
et al., 2002), looping angiogenesis (Kilarski et al., 2009), vessel
co-option and vasculogenic mimicry (Folberg and Maniotis,
2004).

Comparative studies have reported the existence of molecular
differences, genetic alterations and drug resistance between
normal ECs (NECs) and tumor ECs (TECs). Specific genes
for TECs [named tumor endothelial markers (TEMs)]
have been shown, and 13 novel cell-surface TEM proteins
have been classified (Nanda and Croix, 2004) and are
overexpressed during physiological angiogenesis (Seaman
et al., 2007). For instance, a VEGF autocrine loop in the
first confers resistance to serum starvation, differently
from NECs, and TECs are more responsive to VEGF
and bFGF than NECs (Matsuda et al., 2010). TECs from
highly metastatic tumors show increased sensitivity to
VEGF, have less pericyte coverage (Ohga et al., 2012) and
disclose the upregulation of angiogenesis-related genes and
pathways (Adya et al., 2008). Moreover, tumor cells are
able to transdifferentiate into TECs (Wang et al., 2010).
Therefore, antineoplastic agents, could not only fail to
have access to the tumor mass, but are also relatively
active because cells in hypoxia implement mechanisms of
resistance (Ebos et al., 2009). All this may explain why a
tumor, while being highly vascularised, is often resistant to
chemotherapy.

ANTI-ANGIOGENIC THERAPIES: THE
OTHER SIDE OF THE COIN

Tumor Heterogeneity of Response to
Anti-angiogenic Therapies
Although the anti-VEGF treatments have constituted a milestone
for anti-angiogenic purposes, another aspect of this framework
has to be considered in that VEGF inhibitors often fail to produce
enduring clinical responses in a great number of patients (Saltz
et al., 2007). The anti-angiogenic therapy results in transitory
improvements, in the form of tumor standstill or constriction,
in some cases increasing survival. In spite of this, tumors begin
to grow again, though after a transient period of clinical benefit,
generally measured in months (Miller et al., 2005).

Regarding the resistance to the VEGF-targeted therapy, two
mechanisms through which this endurance is highlighted can be
defined: (i) tumors completely fail to respond from the outset
of treatment (intrinsic resistance) or (ii) they respond initially,
and then continue growing while still receiving the treatment
(acquired resistance; Bergers and Hanahan, 2008).

Microvascular Heterogeneity of
Response to Anti-angiogenic Therapies
A critical occurrence leading to the success or failure of anti-
angiogenic therapy is the need for a proper timing window
for tumor vascular normalization: long term anti-angiogenic
therapy sometimes leads to tumor hypoxia (Winkler et al., 2004),
and hypoxia triggers VEGF production, genetic instability in
tumor ECs and vascular permeability (Taylor et al., 2010). The
decrease in blood flow further reduces oxygen, nutrient and
drug delivery, enforcing stress on the tumor (Figure 1A,a).
In preclinical studies, VEGF-targeted therapy suppresses the
growth of new tumor vessels, but is less effective against the
established tumor vessels (Sitohy et al., 2012). Nagy and Dvorak
(2012) postulated that “early” and “late” tumor vessels might
differ in the susceptibility to anti-VEGF therapies. “Early”
vessels would predominate initially; the “late” ones become
proportionately greater, however, as tumors grow. While the

TABLE 1 | Tumor response to anti-angiogenic therapy.

Anti-angiogenic therapy

Tumor Sensitive Partially sensitive Insensitive Reference

Breast cancer X Fakhrejahani and Toi, 2014; Earl et al., 2015

Clear cell renal carcinoma X Hutson et al., 2014; Rini et al., 2014

Colorectal cancer X X Bennouna et al., 2013; Grothey et al., 2013

Gastroesophageal cancer X Fuchs et al., 2014; Wilke et al., 2014

Glioma X Gilbert et al., 2014

Hepatocellular carcinoma X Bruix et al., 2015; Cainap et al., 2015

Lung cancer X Garon et al., 2014; Liang et al., 2014

Neuroendocrine and thyroid cancer X Brose et al., 2014

Ovarian and cervical cancer X Pujade-Lauraine et al., 2014; Tewari et al., 2014

Pancreatic cancer X Kindler et al., 2010

Prostate cancer X Michaelson et al., 2014
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former are responsive, the latter (though formed from the
“early” vessels) lose their dependence to the growth factor and
become resistant to anti-VEGF-A/VEGFR therapy. Furthermore,
the enormous heterogeneity of the tumor vasculature has to be
considered, and different types of evolving resistant surrogate
tumor blood vessels, which vary between them in anti-VEGF
therapy sensitivity, have been described (Sitohy et al., 2012).
These aberrant new vessels may be VEGF-independent and
therefore capable of mediating tumor vascularisation despite
VEGF-inhibition. For example, brain tumors become more
infiltrating after VEGF pathway inhibition, which may facilitate
vessel co-option (Keunen et al., 2011).

Cancer Adaptation
Microenvironment adaptation to a cancer stress condition plays
a key role in determining whether tumors respond to VEGF-
targeted therapies (Rak et al., 2002). This event is driven in
part by the molecular promotion of the translation of pro-
survival genes, such as BCL2 (Sherrill et al., 2004), X-linked
inhibitor of apoptosis protein (XIAP; Gu et al., 2009), and stress
response genes (Somers et al., 2015). It has been shown that
under the hypoxic condition, which inhibits the global protein
synthesis, the eIF4E homolog 4EHP can promote the translation
of certain mRNAs involved in the adaptation to hypoxia, such
as EGF receptor and PDGF receptor-α (Uniacke et al., 2012).
Preclinical data has shown that some adaptive mechanisms
include a decreased propensity for certain cancer cells to die
under stress conditions, sometimes following genetic aberrations
such as loss of p53 function (Yu et al., 2002), by adapting
their metabolism (McIntyre et al., 2012) or by autophagy (Xu
et al., 2013). In addition to being constituted by transformed
cells, tumors are characterized by the presence of infiltrating
different stromal cells, which are often the cause of therapy
resistance, including the resistance to anti-angiogenic therapies
(McMillin et al., 2013). Among these, the immature myeloid
cells (Chung et al., 2013), fibroblasts (Crawford et al., 2009) and
endothelial progenitor cells (Shaked et al., 2006) infiltrate the
tumor and mediate the resistance by incorporating themselves
into vessels or by releasing pro-angiogenic growth factors, such
as BV8 (Shojaei et al., 2007) or PDGF-C (Crawford et al., 2009).
At present, there is conflicting evidence to whether the anti-
angiogenic therapy could increase the tumor aggressiveness and
cause flare phenomena. In some pre-clinical studies the anti-
VEGF treatment promoted this serious downside, in terms of
invasion and metastasis (Ebos et al., 2009). Also, evidence in
patients showed that anti-VEGF therapy can promote tumor
aggression. A study on metastatic renal cancer cell (mRCC)
patient demonstrated a significant increase in tumor grade in
the primary tumor after treatment with sunitinib and pazopanib
(Sharpe et al., 2013), while data from the AVANT trial for
colorectal cancer with adjuvant bevacizumab has highlighted that
this treatment caused a higher incidence of relapses and deaths
(de Gramont et al., 2012). Moreover, anti-VEGF therapy can
promote invasion and the undergoing epithelial-to-mesenchymal
transition (Lu et al., 2012). In our and other researchers’
opinion, a possible mechanism could be that the anti-angiogenic
treatment damages the vessels, causing cancer cell extravasation;

in preclinical models, TKIs may promote metastasis by damaging
the vasculature integrity (Chung et al., 2012). On the other hand,
flare-up phenomena have been described in patients with mRCC
after the withdrawal of the anti-angiogenic therapy (Powles et al.,
2013), and the analysis of the NSABP-C08 trial of adjuvant
bevacizumab in colorectal cancer patients did not evidence the
noxious effect of bevacizumab (Allegra et al., 2013).

Evidences of Toxicity
Clinical practices have revealed a large number of adverse
complications associated with anti-VEGF treatments. Among
these, hypertension, proteinuria, hemorrhage, endocrine
dysfunction, thrombosis, gastrointestinal perforation,
fistula formation, cardiac toxicity, and reversible posterior
leukoencephalopathy (Chen and Cleck, 2009). The need for
hypertension treatment has been seen in approximately 25%
of patients (Burger et al., 2011). The occurrence of reversible
posterior leukoencephalopathy is correlated with uncontrolled
hypertension and the permanent cessation of VEGF inhibitor
therapy is greatly needed. VEGF inhibitors could also increase
the risk of thromboembolism by about 5%, and anticoagulant
treatments were active in reducing this side effect. Proteinuria
might reflect the hypertension, and VEGF inhibitor treatment
is usually stopped when it reaches 3 g protein loss in 24 h
(Burger et al., 2011). Although the treatment with bevacizumab
(Avastin, which neutralizes specifically the VEGF-A isoforms)
and paclitaxel plus carboplatin (both chemotherapeutics) in
the treatment of patients with non-small-cell lung cancer had
significant survival benefits, febrile neutropenia and pulmonary
hemorrhage were associated with the addition of anti-VEGF
(Sandler et al., 2006). Moreover, bevacizumab is avoided in
patients with ovarian cancer with substantial pelvic disease or
with previous bowel surgery for the risk of bowel perforation or
fistula formation (Simpkins et al., 2007). Owing to the fact that
TKIs inhibit a lot of off-target kinases, they are associated with
malaise, fatigue, hypothyroidism, diarrhea, and cardiac failure
(Schmidinger and Bellmunt, 2010).

NEED FOR PRO-ANGIOGENIC
THERAPY?

Some cancer therapies are based on the association of an
anti-angiogenic drug with an anti-tumor drug: the transitional
restoration of normal blood vessels allows the drug to reach
the tumor site (Jain, 2013). These effects, however, are limited
spatially and temporally and are different in different types of
cancer and therefore should clearly define the “normalization
window” for so the anti-tumor drug can act with maximum
efficiency (Figure 1A,b).

The approach to the treatment of the cancer with a pro-
angiogenic therapy instead of anti-angiogenic, certainly opens up
new horizons in therapeutic strategies and leads to a profound
change from the clinical point of view. A pro-angiogenic drug
can create, around the tumor mass, an extensive network of well-
structured blood vessels that facilitate the transport and thus the
effectiveness of a cancer drug.
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Pericytes are very important in vessel stabilization and
maturation, promoting vascular normalization. Data has shown
that pericyte loss is a crucial event in early phases of tumor
angiogenesis (Anfuso et al., 2014; Lupo et al., 2014; Salmeri et al.,
2013). Their presence assure the prevention of metastasis (Xian
et al., 2006) and the increment of oxygenation that enhances the
sensitization to focal therapies and reduction of tumor growth
(Cooke et al., 2012).

Pericyte recruitment is driven by PDGFRβ and its increased
expression is a predictor of low survival in breast (Paulsson et al.,
2009) and prostate cancers (Hagglof et al., 2010). It has been
also demonstrated that PDGF overexpression is associated with
increase of melanoma cells proliferation and increased pericyte
abundance (Furuhashi et al., 2004). Unfortunately, treatment
with imatinib (TKR inhibitor specific to PDGFRβ) has not
produced encouraging results in patients with metastatic non-
small cell lung cancer (Tsao et al., 2011). Conversely, dual
PDGFRβ/VEGFR inhibition is effective for treating multiple
stages in tumorigenesis, particularly in solid tumors with high
pericyte coverage (Bergers and Hanahan, 2008).

On the other hand, numerous studies have highlighted that the
presence of pericytes stabilize tumor microvasculature and allows
direct drug delivery to cancer cells (Lo Dico et al., 2015). An
increased amount of pericyte on the tumor microvessels inhibits
the angiogenesis, while the absence of pericyte coverage correlates
with metastasis in colorectal cancer patients (Yonenaga et al.,
2005). Particularly noteworthy is the role played by pericytes in
response to anti-angiogenic therapy. It has been shown in a pre-
clinical study that VEGFR2 blocking is able to determine the
recruitment of pericytes, normalizing the tumor microcirculation
and allowing the drug to penetrate inside the tumor (Greenberg
et al., 2008).

PREDICTIVE DETECTION

In this scenario, identifying specific parameters, predictive of
therapy success, could be necessary for the selection of a targeted
anti-tumor drug. These parameters could be provided by imaging
techniques (Figure 1B).

Microvascular Density Analyses
Measurements of vessel caliber by Magnetic Resonance Imaging
(MRI) is a technique for in vivo monitoring of microvascular
development during the treatment of cancer patients (Dennie
et al., 1998). Some of MRI-based studies, have shown that
treatment with anti-angiogenic drugs leads to an improvement
in tumor microcirculation, which is less permeable and has
an increased pericyte coverage (Goel et al., 2011). By using
this technique, it is possible to obtain images of the structure
of the tumor microvasculature (Vessel Architectural Imaging,
VAI) whose evaluation provides an efficient parameter for
monitoring disease progression and response to treatment in
cancer patients. Emblem et al. (2013) conducted a retrospective
analysis of 30 patients affected by glioblastoma and studied the
structural heterogeneity of the tumor microcirculation by VAI,
demonstrating that, during the anti-angiogenic therapy, tumor

blood vessels of subjects who responded to treatment were similar
to those of normal tissues (Sikov et al., 2015). Recent studies
have shown a significant increase in the number of patients
with breast cancer who are HER2-negative or triple negative and
do not respond to conventional anti-angiogenic therapies (Earl
et al., 2015), and that an improvement of vascular conditions
causes an increase in tumor oxygenation and a better response
to anti-angiogenic agents (Heist et al., 2015).

Tolaney et al. (2015) have demonstrated that high baseline
microvascular density (MVD) in breast tumors is considered
a positive response to vascular normalization index induced
by bevacizumab. MVD is calculated by evaluating specific
parameters including pericytes coverage and the number of
α-SMA. In the case of high MVD, the effect of anti-angiogenic
drugs would be to remove some vessels and increase the
functions of others, by inducing their normalization. In the case
of low MVD, the anti-angiogenic drug reduces them further
and prevents their normalization. This makes some tumors
insensitive to anti-angiogenic therapy. Consequently, knowing
the baseline MVD is a key factor in predicting the success of
treatment with anti-angiogenic drugs (Jeong et al., 2015).

Hypoxia Detection
A characteristic of tumor microenvironment is low oxygen
tension, caused by an imbalance in oxygen delivery and
consumption. At low pO2 levels, cells become radioresistant and,
as a vicious circle, the irradiation itself, which induces direct
vessel damage, stimulates hypoxia with consequent recruitment
of immunosuppressive myeloid cells, contributing to tumor
resistance (Russell and Brown, 2013). Conversely, it has also
been also demonstrated, in a xenograft tumor model, that VEGF
is released at the onset of angiogenesis, independent of HIF
(Hendriksen et al., 2009). These conflicting results are ascribable
to the different origin of the tumors and to the different areas
within the same tumor, characterized by chaotic and complex
tumor vascular architecture that determines a better or worse
oxygen distribution (Hida et al., 2016).

The lactate, produced by tumor glycolytic metabolism,
predicts the response to irradiation of human carcinomas (Sattler
et al., 2010), an increased risk of metastases (Brizel et al., 2001)
and is able to induce angiogenesis (Hirschhaeuser et al., 2011).
These findings indicate that the anaerobic metabolism of cancer
cells is strongly related to the increased aggressiveness of a tumor
and the possibility of measuring its amount is an important
predictor.

HIF-1 activity can be silenced through inhibition of epidermal
growth factor receptor (EGFR) or topoisomerase-1 or by
anthracyclines (Semenza, 2010). Moreover, HIF-1 activity can be
inhibited by new drugs which reduces HIF-1 mRNA amounts
(Koh et al., 2008) or which provokes HIF-1 degradation (Kim
et al., 2006). The treatment with these drugs during radiotherapy
amplifies the irradiation effects prompting tumor vasculature
destruction and reduction in growth (Harada et al., 2009).
Unfortunately, these exciting results did not apply to all types of
tumor because several cancers show little or no hypoxia and do
not express HIF activation (Moeller and Dewhirst, 2006; Meijer
et al., 2012).
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Tumor hypoxia represents an important aspect of the
tumor microenvironment. Clinical studies using needle-sensors
(Eppendorf) R© have demonstrated that hypoxia varied on
a tumor-to-tumor basis and represents a universal therapy
resistance mechanism (Koch and Evans, 2015). For this reason,
several methods have been developed to assess tumor hypoxia
and to predict treatment outcome by evaluating the oxygenation
status during therapy.

Several studies have been conducted to determine the presence
of HIF inside tumor cells. Recent advances in imaging of hypoxia
by positron emission tomography (PET) demonstrated that it
is possible to select patients for specific therapies, improving
the anti-hypoxia-direct radiotherapy (Baumann et al., 2016).
Activation of HIF transcription factor can be also evaluated
by using genetically encoded fluorescent sensors with different
switching and their combination allows the distinction of hypoxic
and re-oxygenated cells in glioma cell lines, focusing on regions
devoid of blood vessels (Erapaneedi et al., 2016). A potential
tracer, used as a biomarker in the context of anti-angiogenic
therapy, is [18F]-FMISO: a low [18F]-FMISO-PET signal is
correlated to decreased hypoxia and it is a predictor of vascular
normalization (Hernandez-Agudo et al., 2016).

The dynamic contrast enhanced magnetic resonance imaging
(DCE-MRI) technique has been used to evaluate the effect
of bortezomib, by using multiple endogenous and exogenous
markers to evaluate hypoxia (Sun et al., 2014). By DCE-MRI it has
been demonstrated that tumor blood flow is significantly reduced
after bortezomib administration and the results of this study are
very important to monitoring the effects of treatment with an
anti-tumoral drug.

It has been recently reported that a hypoxia visualization
bio-imaging probe, protein transduction domain [PTD]-oxygen
dependent degradation domain [ODD]-HaloTag (POH), was able
to detect HIF-1 active (Takata et al., 2015).

HIF activity has also been monitored in a preclinical glioma
model. After treatment with different drugs, imaging biomarkers

through luciferase expression have been used to document the
tumor response (Lo Dico et al., 2015).

CONCLUSION

The authors believe that these studies show alternative
therapeutic pathways, capable of inducing the differentiation
and maturation of tumor blood vessels. In our opinion, the
recruitment of pericytes must be taken into account for new
strategies in the fight against those tumors, which are especially
drug-resistant to traditional therapies.

These studies on new target tracers represent a useful tool for
theranostic procedures.
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